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ABSTRACT

Nowadays, because of the massive and systematic deployment of
sensors, systems are routinely monitored via a large collection of
time series. However, the actual number of sources driving the tem-
poral dynamics of these time series is often far smaller than the
number of observed components. Independently, self-similarity has
proven to be a relevant model for temporal dynamics in numerous
applications. The present work aims to devise a procedure for identi-
fying the number of multivariate self-similar mixed components and
entangled in a large number of noisy observations. It relies on the
analysis of the evolution across scales of the eigenstructure of multi-
variate wavelet representations of data, to which model order selec-
tion strategies are applied and compared. Monte Carlo simulations
show that the proposed procedure permits identifying the number of
multivariate self-similar mixed components and to accurately esti-
mate the corresponding self-similarity exponents, even at low signal
to noise ratio and for a very large number of actually observed mixed
and noisy time series.

Index Terms— multivariate self-similarity, operator fractional
Brownian motion, wavelet spectrum, model order selection

1. INTRODUCTION

Context: multiple sensors versus few sources. Recent techno-
logical developments have permitted the massive production of low
cost sensors with low cost deployment, as well as the easy storage
and processing of large amounts of data, the so-called data deluge.
Therefore, it is very common that one same system is monitored by a
large number of sensors producing multivariate and dependent data,
i.e., a large number of time series recorded together, whose joint tem-
poral dynamics contain information about the system under scrutiny.
This is the case in numerous applications that are very different in
nature, such as macroscopic brain activity, where the number of ob-
served time series ranges from hundreds (MEG data) to several tens
of thousands (fMRI data), cf., e.g., [1, 2], or in meteorology and
climate studies, where the use of large numbers of measured com-
ponents has become standard (e.g., [3]). However, the number of
actual mechanisms, or sources, driving the spatio-temporal dynam-
ics of one single system is usually far smaller than the number of
recorded time series (sparsity). Therefore, it has become a research
trend in data analysis to develop methods for identifying the actual
number of sources driving the dynamics of a given system, as well
as to extract the information provided by these sources from the usu-
ally noisy observations.
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Context: multivariate self-similarity. Scale-free dynamics has
proven to be a useful concept to model real-world data produced
from numerous applications in several branches of science and tech-
nology (e.g., [4,5] and references therein). In essence, the scale-free
paradigm assumes that temporal dynamics are not governed by one
or a few characteristic time scales but, instead, by a large continuum
of time scales that jointly contribute to the temporal dependencies.
Self-similarity provides a formal, versatile model for scale-free dy-
namics [6]. In a stochastic processes framework, fractional Brow-
nian motion (fBm) [7] has been widely and successfully used to
model real-world data characterized by scale-free dynamics. While
the modeling of the latter in applications has remained so far based
on the univariate fBm model, a multivariate extension called operator
fractional Brownian motion (ofBm) was recently proposed [8–11] to
permit their modeling in a multivariate time series setting [12]. The
availability and potential of this multivariate self-similarity model
for describing real-world data immediately raises a first yet critical
question: how many different self-similar components actually exist
amongst the possibly very large number of time series recorded by
sensors?
Related work. The general issues of identifying the number of
actual sources in potentially high-dimensional multivariate signals,
and of characterizing them from noisy observations, has continu-
ously been addressed in statistical signal processing over the years.
Often embedded in the general themes of dimensionality reduction,
source separation [13], or model order selection and system identi-
fication [14–17], numerous technically distinct solutions were pro-
posed in theory and widely used in applications. Examples include
principal component analysis (PCA), factor analysis, sparse graphi-
cal Gaussian models, etc. (cf., e.g., [18]). Independently, a multivari-
ate wavelet variance eigenvalue-based representation of multivariate
self-similarity was recently put forward and studied [12]. Notably, it
was shown to lead to efficient and robust estimation of self-similarity
exponents in intricate multivariate settings [19]. Notwithstanding
significant success in applications, none of the classical dimension
reduction tools takes explicitly into account multivariate scale-free
dynamics (see [20,21] for exceptions). Thus, there is a great paucity
of methodological and practical data modeling tools that are both in-
herently multivariate and scale-free analytical.
Goal, contributions and outline. The present work is a first con-
tribution aiming at identifying and characterizing multivariate self-
similar components embedded in a large set of noisy observations. It
relies on ofBm, whose definition and properties are recalled in Sec-
tion 2.1, as well as on the recently proposed multivariate eigenvalue
wavelet representation, detailed in Section 2.2. The model, com-
prising a high-dimensional mixture of low-dimensional multivariate
self-similar sources in additive noise, is described in Section 3.1.



Section 3.2 contains the proposed model order selection procedure.
It relies on information theoretic tools constructed and studied in
different contexts [15–17] and adapted here to the multivariate and
multiscale eigenvalue wavelet representation of the noisy observa-
tions. Using large size Monte Carlo experiments, the performance
of the devised model order selection methods is assessed in com-
putational practice for various instances of ofBm (combinations of
scaling exponents, mixing matrices and covariance), number of ac-
tual self-similar components versus observed time series, noise level
and sample size. The method’s performance, depicted and analyzed
in Section 4, is shown to be promising in its ability to identify the
number of ofBm components amidst noisy observations and to esti-
mate the corresponding multiple self-similarity exponents.

2. OPERATOR FRACTIONAL BROWNIAN MOTION AND
WAVELET ESTIMATION OF SCALING EXPONENTS

2.1. Operator fractional Brownian motion

The present work makes uses of ofBm for modeling multivariate
self-similar structures in real-world data, whose definition and prop-
erties are briefly recalled here (the interested reader is referred to
[10] for the most general definition and properties of ofBm). Let
BH,Σ(t) =

(
BH1(t), . . . , BHM (t)

)
t∈R denote a collection of M

possibly correlated fBm components defined by their individual self-
similarity exponents H = (H1, . . . , HM ), 0 < H1 ≤ . . . ≤
HM < 1. Let Σ be a pointwise covariance matrix with entries
(Σ)m,m′ = σmσm′ρm,m′ , where σ2

m are the variances of the com-
ponents and ρm,m′ their pairwise Pearson correlation coefficients.
We define ofBm as the stochastic process BP,H,Σ(t) , PBH,Σ(t),
where P is a real-valued, M ×M invertible matrix that mixes the
components (changes the scaling coordinates) of BH,Σ(t). In this
case, ofBm consists of a multivariate Gaussian self-similar process
with stationary increments. Moreover, it satisfies the (operator) self-
similarity relation

{BP,H,Σ(t)}t∈R
fdd
= {aHBP,H,Σ(t/a))}t∈R, (1)

∀a > 0, with matrix exponent H = Pdiag(H)P−1, termed Hurst

matrix parameter, aH ,
∑+∞
k=0 logk(a)Hk/k!, where fdd

= stands for
the equality of finite dimensional distributions. It is well documented
that the scaling exponents H (Hurst eigenvalues) and the covariance
matrix Σ cannot be chosen independently [10, 22]. For simplicity,
hereafter we denote

Y (t) , BP,H,Σ(t).

2.2. Wavelet based scaling exponent estimation

Multivariate wavelet transform. The multivariate DWT of
the multivariate process {Y (t)}t∈R is defined as DY (2j , k) ,
(DY1(2j , k), . . . , DYM (2j , k)), ∀k ∈ Z, ∀j ∈ Z, and m ∈
{1, . . . ,M}, with DYm(2j , k) , 〈2−j/2ψ(2−jt − k)|Ym(t)〉,
where ψ0 denotes the mother wavelet. For a detailed introduction to
wavelet transforms, interested readers are referred to, e.g., [23].
Multivariate self-similarity in the wavelet domain. It can be
shown that the wavelet coefficients {DY (2j , k)}k∈Z satisfy the
(operator) self-similarity relation [12, 19]

{DY (2j , k)}k∈Z
fdd
= {2j(H+ 1

2
I)DY (1, k)}k∈Z, (2)

for every fixed octave j. When P = I (no mixing), the (canoni-
cal) components of ofBm are generally correlated fBm processes. In

this case, M -variate (operator) self-similarity in the wavelet domain
boils down to M entrywise self-similarity relations [22]

{DY1(2j , k), . . . , DYM (2j , k)}k∈Z
fdd
= {2j(H1+ 1

2
)DY1(1, k), . . . , 2j(HM+ 1

2
)DYM (1, k)}k∈Z. (3)

Estimation of H . Extending univariate wavelet analysis, it is
natural to consider the empirical wavelet spectrum (variance), which
is given by the M ×M matrices

SY (2j) =
1

nj

nj∑
k=1

DY (2j , k)DY (2j , k)∗, nj =
N

2j
,

where N is the data sample size. Proceeding as in the univariate
setting leads to the estimators [22]

Ĥ(U)
m =

(
j2∑
j=j1

wj log2 SY,(m,m)(2
j)

)/
2− 1

2
,∀m. (4)

Starting from (3), namely, when there is no mixing (P = I), Ĥ(U)
m

is expected to be a good estimator of Hm. However, starting from
(2), i.e., a general mixing matrix P (non-canonical coordinates) and
Hurst matrix parameter H , it is clear that this is no longer the case
(cf., [12, 19] and Section 4.1 for further discussions).

These observations lead to the definition of an estimator for H
that is relevant in the general setting of non-diagonal P using the
eigenvalues ΛY (2j) = {λ1(2j), . . . , λM (2j)} of SY (2j). The es-
timators Ĥ = (Ĥ1, . . . , ĤM ) for (H1, . . . , HM ) are defined by
means of weighted linear regressions across scales 2j1 ≤ a ≤ 2j2

Ĥm =

(
j2∑
j=j1

wj log2 λm(2j)

)/
2− 1

2
, ∀m. (5)

It is shown both theoretically and in practice that Ĥ benefits from
satisfactory performance (consistency, asymptotic normality), see
[12, 19].

3. MODEL ORDER SELECTION
FOR HIGH-DIMENSIONAL NOISY MIXTURES

3.1. High-dimensional noisy observations

To model the embedding of ofBm Y in a large set of noisy observa-
tions Z, let now W denote a matrix of size L ×M , L ≥ M , with
full rank M , and let N (t) =

(
N1(t), . . . ,NL(t)

)
t∈R be a collec-

tion of L independent vectors, each consisting of i.i.d. standardized
Gaussian variables. The L observed noisy time series are modeled
as

Z(t) ,WY (t) + σNN (t), (6)

where σ2
N controls the variance of the noise. Adhering to the con-

vention that W and P are normalized such that WP has rows with
unit norm, the Signal-to-Noise Ratio (SNR) is defined as

SNR ,
M∑
m=1

σm
/

(LσN ) (7)

where σm, m = 1, . . . ,M, is defined in Section 2.1.



3.2. Model order selection procedure

The proposed procedure relies on the eigenstructure of the empir-
ical wavelet spectra SZ(2j) of the multivariate wavelet represen-
tation of the L-variate observations Z. It is obvious that, in the
absence of noise (i.e., SNR = +∞), SZ(2j) has rank M for all
scales 2j (as long as nj > M ). Conversely, when noise is added
(SNR < +∞), SZ(2j) has rank L. Hence, heuristically speak-
ing, when the SNR is sufficiently large, SZ(j) possess L − M
small eigenvalues corresponding to noise, and M (large) eigenval-
ues that correspond to the hidden ofBm components. Then, M can
be estimated by using classical eigenvalue-based model order selec-
tion criteria, M̂ = φN ((λ1, . . . , λL)), such as Akaike’s Informa-
tion Criterion (AIC) or Minimum Description Length (MDL), see,
e.g., [15–17] for details and more references.

However, in the context of multivariate self-similarity, wavelet
spectra matrices SZ(2j) are available corresponding to each octave
and must be combined. To this end, we study two strategies, which
we refer to as majority vote (MV) and rescaled-average (RS). As
a common preprocessing step, the wavelet spectra SZ(2j) of the
L-variate observations Z and their eigenvalues ΛZ(2j) of SZ(2j)

are computed, estimates Ĥl are obtained using (5), and the rescaled
eigenvalues (ΛZ(2j))l , 2−2jĤl(ΛZ(2j))l, l = 1, . . . , L are
computed. The rationale behind ΛZ(2j) is the use the multivari-
ate self-similarity of the sources for reducing the variance of their
eigenvalues at each scale and for enabling averaging across scales.

For some φN , the model order selection strategies are defined as
follows.
MV: A model order estimate M̂(j) is computed for ΛZ(2j)

M̂(j) = φnj (ΛZ(2j))

for each scale j. Then the scale-wise estimates M̂j are com-
bined by majority vote (where 1() is the indicator funtion)

M̂MV = arg maxm=0,...,L

j2∑
j=j1

1(M̂(j)−m).

RS: The rescaled eigenvalues ΛZ(2j) are averaged across scales

ΛZ =
∑j2

j=j1
ΛZ(2j).

A model order estimate M̂ is computed from the averages
M̂RS = φN (ΛZ).

For both strategies, the AIC classical model order selection is used

φN (Λ) = arg min
k
−N(α−k) log

(
g(k)/a(k)

)
+k(2α−k), (8)

where α = min(L,N), a(k), g(k) are the arithmetic and geometric
mean of the k smallest values of Λ, respectively.

Once the number of ofBm components M̂ is estimated, a scaling
exponents vector (Ĥ1, . . . , ĤM̂ ) can be computed using the estima-
tion procedure described in (5), applied to the M̂ largest values of
ΛZ(2j), where ΛZ(2j) denotes the eigenvalues of SZ(2j).

4. PERFORMANCE ASSESSMENT

We apply the ofBm model order selection and parameter estima-
tion procedure to 1000 independent realizations of ofBm with M =
4 components of length N = 214 using various SNR values, as
defined in (7). We consider 4 different sizes for the mixing ma-
trix W , L ∈ (10, 20, 50, 100); W is drawn at random for each
realization of ofBm and normalized such that WP has unit norm
rows. The ofBm parameters are set to H = (0.2, 0.5, 0.7, 0.9) and
Σ = Toeplitz(1, 0.2, 0.2, 0.3). We use the Daubechies wavelet with
Nψ = 2, and pick (j1, j2) = (4, 9) in (5).
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Fig. 1. Illustration of estimation procedure. Univariate anal-
ysis (left column) and multivariate analysis (right column) for
single realization of ofBm with M = 4 components (H =
(0.2, 0.5, 0.7, 0.9)). Top row: without mixing and noise; Second
row: with mixing and embedding in L = 20-dimensional noise;
Bottom row: mixed L = 20 noisy time series (15dB SNR).

4.1. Univariate vs multivariate estimation

Fig. 1 plots univariate structure functions (i.e., the wavelet spectra
(S(2j))mm; left column) and the multivariate estimates Λ(2j) (right
column) as a function of the octave j for (from top to bottom): a sin-
gle realization of unmixed ofBm P−1Y with M = 4 components
without noise; mixture WY of dimension L = 20; mixture with ad-
ditive white Gaussian noiseZ (with SNR of 15dB). The results show
that for unmixed noise-free ofBm in canonical coordinates, P−1Y ,
the univariate and multivariate estimates (S(2j))mm and (Λ(2j))m
and the estimated exponents Hm are essentially identical. However,
for the L-dimensional mixture WY , the univariate estimates fail to
provide relevant results. In contrast, mixing (change of coordinates)
does not affect the multivariate procedure. For the latter, the analysis
of the M = 4 largest eigenvalues yields estimates that are very sim-
ilar to those for unmixed ofBm P−1Y (see [20] for similar findings;
note that L−M = 16 eigenvalues λm(2j) are not visible in the plot
because they equal zero). Finally, when noise is added to the mix-
ture WY , the univariate estimates S(2j) do not allow to conclude
on the composition of the observed data Z (i.e., mixture ofM multi-
variate self-similar components + noise) and are essentially identical
to the noise-free mixture case WY . In stark contradistinction, the
presence of noise appears in the form of distinct eigenvalues for the
multivariate estimates Λ(2j). The behavior of the latter is visually
quite different (smaller values that are consistent across noise com-
ponents) from that of the M = 4 largest eigenvalues, which can be
identified with the hidden Hurst eigenvalue-driven scaling compo-
nents of the ofBm. This enables us to unveil the existence of M = 4
components in the mixture. What is more, the estimation of the cor-
responding exponents Hm is not affected by the presence of noise.
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Fig. 2. Histograms of selected model orders M̂ for different SNR
(top to bottom) and number of componentsL (left to right). The blue
and red bars correspond to multiscale model selection strategies MV
and RS, respectively (cf., Section 3.2). The ground truth is M = 4.

4.2. Model order selection performance

Fig. 2 plots the histograms of the model orders that are selected for
the noisy mixtures of ofBm using the MV and RS procedures and (8)
(blue and red bars), for various SNR values (increasing from bottom
to top) and mixture dimensions L (from left to right), respectively.
The results lead to the following conclusions. First, the model order
selection procedure is overall satisfactorily accurate as long as the
SNR is sufficiently large. For instance, a large majority of decisions
are correct for 21dB SNR and L ≥ 20. Second, except for very
severe SNR, the procedure does not detect more components than
there actually are in the mixture, regardless of the SNR value and L.
As a result, the decisions are slightly conservative (i.e., M̂ ≤M ) on
average. This can be heuristically interpreted as follows. For small
SNR, the ofBm components with smallest Hm are confounded with
the noise, hence leading to underestimation of M . By contrast, for
large SNR, the gap between noise and ofBm components becomes
large, leading to two distinct groups of eigenvalues and no ambiguity
in the composition of the mixture.

Further, the MV and RS strategies for combining information
from different scales lead to comparable results, with slightly bet-
ter performance for RS; for instance, for 18dB SNR and mixture
dimension L = 50, RS yields 58% correct decisions, while MV
underestimates the number of components in more than 45 out of
100 cases. Finally, it is interesting to note that the performance
of the proposed approach increases for large mixture dimension L
(“blessing of dimensionality”). Indeed, correct decisions are given
with higher probability for large L. Moreover, it is observed that for
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Fig. 3. Estimation performance for ofBm parameters from M =
4 largest eigenvalues Λ(2j) for different L as a function of SNR:
bias, standard deviations, and rmse (from left to right).

small L, the estimates M̂ are spread out between different values,
while for large L, the procedure always tends to prefer one single
value M̂ for a given SNR value.

4.3. Estimation performance

Fig. 3 reports results on the average estimation performance, evalu-
ated over 100 independent realizations, for the exponentsHm corre-
sponding to theM = 4 largest eigenvalues Λ(2j) ofZ, as a function
of SNR and mixture dimension L: bias (left), standard deviations
(std, center) and root-mean squared errors (rmse, right); results are
given as the square root of the averaged (over the M = 4 compo-
nents) squares of the quantities and lead to the following comple-
mentary conclusions. First, estimates Ĥm are also more accurate for
large L, which mirrors the results of Section 4.2: the standard de-
viations of estimates for L = 10 are up to twice as large as those
yielded for L = 100. This has never been reported before and in-
dicates that the multivariate estimation procedure benefits from ex-
tra robustness when the ofBm components are embedded in a high-
dimensional (L � M ) mixture (cf. [24] for a related analysis in a
different context). Second, for a small SNR and L, estimation accu-
racy is limited by biased estimates (because ofBm components are
drowned in noise). Finally, for large SNR, estimation variances be-
come independent of the noise level because they converge to the
variance of Ĥ for the noise-free case (essentially controlled by the
effective sample size, i.e., N , j1 and j2).

5. CONCLUSIONS

In this work, we propose a method for estimating the number of mul-
tivariate self-similar components (sources) M in L ≥M noisy time
series. The method relies on the ofBm model for multivariate self-
similarity, on a multivariate estimation method for the Hurst eigen-
values H of ofBm, and on the use of classical information theoretic
criteria applied to the multiscale eigenstructure of the wavelet spec-
tra of the noisy observations. To the best of our knowledge, this work
reports for the first time i) that the estimation of H when L > M
based on multivariate procedures has satisfactory performance, and
ii) an operational procedure for the estimation of M in multivariate
self-similarity with considerable accuracy, including in large dimen-
sional situations. In the model selection procedure, wavelet spectra
are combined across scales using averages or majority votes; alter-
native strategies will be studied in future work; similarly, different
model selection criteria could be employed, e.g., using more accu-
rate models for the eigenvalue distributions - classical AIC was used
to provide a proof of concept. In future work, the proposed tools will
be used in the modeling of multivariate scale-free dynamics in data
from macroscopic brain activity (M/EEG, fMRI).
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