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ABSTRACT

Fractional Brownian motion (fBm) is a Gaussian, stationary-
increment process whose self-similarity property is governed by
the so-named Hurst parameter H ∈ (0, 1). FBm is one of the most
widely used models of scale invariance, and its instance H = 1/3
corresponds to the classical Kolmogorov spectrum for the inertial
range of turbulence. Tempered fractional Brownian motion (tfBm)
was recently introduced as a new canonical model that displays the
so-named Davenport spectrum, a model that also accounts for the
low frequency behavior of turbulence. The autocorrelation of its
increments displays semi-long range dependence, i.e., hyperbolic
decay over moderate scales and quasi-exponential decay over large
scales. The latter property has now been observed in many phe-
nomena, from wind speed to geophysics to finance. This paper
introduces a wavelet framework to construct the first estimation
method for tfBm. The properties of the wavelet coefficients and
spectrum of tfBm are studied, and the estimator’s performance is
assessed by means of Monte Carlo experiments. We also use tfBm
to model geophysical flow data in the wavelet domain and show that
tfBm provides a closer fit than fBm.

Index Terms— Wavelets, semi-long range dependence, tem-
pered fractional models, geophysical turbulence

1. INTRODUCTION

Turbulence modeling and fractional Brownian motion. Classi-
cal models of turbulence describe how kinetic energy at the largest
length scales is progressively transferred down to smaller scales. In
the complete Kolmogorov spectral model for turbulence [1–3], large
eddies are produced in the low frequency range of scales, whereas in
the inertial range (moderate frequencies), larger eddies are continu-
ously broken down into smaller eddies, until they eventually dissi-
pate (high frequencies). In particular, the energy spectrum f in the
inertial range decreases according to a power law f(x) ∝ |x|−5/3.

In their landmark paper [4], Mandelbrot and Van Ness revis-
ited Kolmogorov’s model by proposing fractional Brownian motion
(fBm) as a framework for the analysis of scale invariant (non-
Markovian) phenomena. A system is called scale invariant if its
dynamics are driven by a continuum of time scales instead of a few
characteristic scales. FBm is defined as a Gaussian, self-similar
stochastic process with stationary increments [5] and it is among
the most widely used scale invariance models. Its stochastic be-
havior is essentially characterized by the so-named Hurst parameter
H ∈ (0, 1), where the instance H = 1/3 corresponds to the
Kolmogorov spectrum.
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Tempered fractional models and applications. In [6], a modifi-
cation of the Kolmogorov spectrum, nowadays called the Davenport
spectrum, is proposed that accounts for the low frequency behavior
of turbulence (not included in Kolmogorov’s model for the inertial
range). Such framework has been successfully used in wind speed
modeling [7–9]. Accordingly, [10–12] introduced a new canonical
model, called tempered fractional Brownian motion (tfBm), which
displays the Davenport spectrum. TfBm exhibits semi-long range
dependence, i.e., the correlation between increments decays ap-
proximately like a power law over fine/moderate scales (fractional
behavior or scale invariant), but exponentially over large scales [13].
This is a consequence of an extra (tempering) parameter λ > 0
that controls the deviation from a fBm spectrum at low frequencies.
TfBm and, more generally, tempered fractional processes (ART-
FIMA, tempered diffusion, tempered stable motions, tempered Lévy
flights) have recently been studied and used in a wide range of
modern applications such as in the modeling of transient anomalous
diffusion [14], geophysical flows [15] and finance [16].

Scale-free dynamics and wavelets. The wavelet transform is a
powerful tool for the analysis of scale invariant phenomena. Given
an observed fractional time series X , estimation of the parameter H
can be conducted by a log-regression procedure that draws upon the
scaling property of the sample wavelet variance [17–19], i.e.,
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X(j, k) ' C2j(2H+1), (1)

where C > 0 is a constant and dX(j, k), k = 1, . . . , nj , is the
wavelet transform at scale 2j and shift k. Wavelet-based statistical
inference has well-documented benefits, such as: (i) computational
efficiency [19]; (ii) robustness with respect to contamination by
trends [20]; (iii) modeling of stationary or stationary increment pro-
cesses of any order in the same framework; (iv) quasi-decorrelation
of several families of stochastic processes [21,22], which often leads
to Gaussian confidence intervals. However, little work has been
done, in general, on statistical methodology for tempered fractional
processes. In [15], turbulence data is modeled in the Fourier domain
within an ARTFIMA framework. In [23], a wavelet log-regression
method is constructed for a subclass of tempered fractional processes
assuming the tempering parameter λ is known. In sharp contrast to
the situation for fBm, to the best of our knowledge no estimator has
been proposed for tfBm. Moreover, for any tempered process, the
literature lacks a wavelet-based method that tackles jointly the Hurst
parameter H and the tempering parameter λ.

Goals, contributions and outline. In this paper, we construct the
first (wavelet-based) estimator for tfBm. We establish the wavelet
analysis of tfBm and for the first time describe the phenomenon



of semi-long range dependence in the wavelet domain. The finite
sample and asymptotic performance of the estimator is assessed and
compared to Fourier-domain (Whittle) estimation. This includes the
characterization of the estimable range of λ for given sample sizes.
We also use tfBm to model geophysical flow data from the Red
Cedar River in Michigan and compare the fit with that obtained from
fBm. For space reasons, all theoretical results will be detailed in a
forthcoming paper [32].

2. TEMPERED FRACTIONAL BROWNIAN MOTION

Definition. For λ,H > 0, TfBm is the stochastic process defined
by the harmonizable representation

BH,λ(t) =
Γ(H + 1

2
)

√
2π

∫
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eixt − 1

(λ+ ix)H+ 1
2

B̃(dx), t ∈ R, (2)

where B̃(dx) is a complex-valued Gaussian random measure such

that B̃(−dx) = B̃(dx) and E|B̃(dx)|2 = σ2dx.
Expression (2) implies that tfBm is Gaussian and has stationary

increments. Moreover, starting from its corresponding moving aver-
age representation [10], it can be shown that its covariance function
γ(s, t) = Cov(BH,λ(s), BH,λ(t)) can be expressed as

γ(s, t) =
σ2

2
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Kν(z) is the modified Bessel function of the second kind, and C2
0 =

0. When 0 < H < 1, and λ = 0, the representation (2) reduces to
a fBm with Hurst parameter H . Unlike fBm, when λ > 0, tfBm is
not a self-similar process, but instead satisfies the scaling relation

{BH,λ(ct)}t∈R
L
=
{
cHBH,cλ(t)

}
t∈R

,

where L= denotes equality of finite-dimensional distributions. No-
tably, even though nonstationary, tfBm converges almost surely to
a stationary process as t → ∞. This property of tfBm makes it
suitable for modeling data that looks stationary or converges to sta-
tionarity. The increment process of tfBm, namely, {X(t)}t∈Z :=
{BH,λ(t + 1) − BH,λ(t)}t∈Z, is called tempered fractional Gaus-
sian noise (tfGn). Its covariance function γX(h) = EX(t)X(t+h),
h ∈ Z, has decay

γX(h) ∼
σ2Γ(H + 1

2
)(e−λ + eλ − 2)

(2λ)H+1/2

hH−1/2

eλh
, h→∞,

i.e., its decay is hyperbolic for small lags values h but quasi-
exponential for large h when λ > 0 is small (semi-long range
dependence).

3. WAVELET-BASED ESTIMATION

Following seminal work on estimation methodology for fractional
stochastic processes (e.g., [17, 18, 24, 25] to cite just a few refer-
ences), we construct a wavelet estimation framework for tfBm. With
classical fBm and related processes, only coarse scale information is
generally of interest, which is given by the Hurst parameter H . By
contrast, with tfBm, fine/moderate scale information is also relevant
and is provided byH , whereas on coarse scales it is given by bothH

and λ. This calls for parametric estimation. In view of the fact that
only finitely many observations are available in practice, for greater
accuracy we construct the wavelet analysis directly in discrete time,
in lieu of its more elegant continuous time approximation.
Discrete wavelet transform (DWT) in discrete time. A mother
wavelet ψ ∈ L2(R) is a function satisfying

∫
R t
pψ(t)dt = 0 for

p = 0, 1, . . . , Nψ − 1 and
∫
R t
Nψψ(t)dt 6= 0, where Nψ is called

the number of vanishing moments. Considering a Daubechies mul-
tiresolution analysis (MRA) of L2(R) [19], the dilations and transla-
tions {ψj,k(t)}j,k∈Z, ψj,k(t) := 2−j/2ψ(2−jt− k), of the wavelet
function form an orthonormal basis of L2(R).

Given a time series {BH,λ(k)}k∈Z, we initialize Mallat’s algo-
rithm with the sequence a0,k := BH,λ(k), k ∈ Z, also called the
approximation coefficients at scale 20 = 1. At coarser scales 2j , the
algorithm is characterized by the iterative procedure

aj+1,k =
∑
k′∈Z

uk′−2kaj,k′ , dj+1,k =
∑
k′∈Z

vk′−2kaj,k′ ,

j ∈ N, k ∈ Z, where the filter sequences {uk := 2−1/2
∫
R φ(t/2)φ(t−

k)dt}k∈Z, {vk := 2−1/2
∫
R ψ(t/2)φ(t − k)dt}k∈Z are called low-

and high-pass MRA filters, respectively. Due to the compactness of
the supports of ψ and the associated scaling function φ, only a finite
number of filter terms is nonzero, which is computationally conve-
nient [26]. The wavelet coefficients d(j, k) can then be expressed
as

d(j, k) =
∑
l∈Z

BH,λ(l)hj,2jk−l, (3)

where hj,l := 2−j/2
∫
R φ(t + l)ψ(2−jt)dt. From the above as-

sumptions, it can be shown that, for fixed scales j and j′ and some
constant CNψ ,

|Cov(d(j, k), d(j′, k′))| ≤ CNψ2(j+j′)/2 |2jk − 2j
′
k′|H−

1
2

eλ|2jk−2j
′
k′|

, (4)

i.e., semi-long range dependence carries over to the wavelet domain.

Wavelet analysis and semi-long range dependence. LetHj(x) =∑
l∈Z hj,le

ixl ∈ C be the discrete Fourier transform of the sequence
{hj,l}l∈Z appearing in (3). The harmonizable representation of tfBm
(2), expression (3) and the periodicity ofHj imply that

Ed2(j, k) =
σ2

2π

∫ π

−π

∑
l∈Z

Γ2
(
H + 1

2

)
|Hj(x)|2

|λ2 + (x+ 2πl)2|H+ 1
2

dx, (5)

regardless of k ∈ Z. The wavelet spectrum of tfBm is depicted in
Figure 1. The semi-long range dependence phenomenon manifests
itself as follows. For small λ > 0, the wavelet spectrum of BH,λ(t)
mimics that of fBm for moderate scales 2j , namely, it is approxi-
mately linear with slope 2H + 1. However,

lim
j→∞

Ed2(j, 0) =
∑
l∈Z

σ2Γ2(H + 1
2
)

|λ2 + (2πl)2|H+ 1
2

, (6)

i.e., it tends to a constant at large octaves, where the transition from
linearity to constancy is controlled by the tempering parameter λ >
0.
Parameter estimation. An M -estimator [27] can be constructed
based on the (whole) wavelet spectrum of tfBm. For a number n of
observations of a tfBm, define the sample wavelet variance W (j) =
1
nj

∑nj
k=1 d

2(j, k), nj = n
2j

, j = j1, . . . , j2, for some octave range
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Fig. 1. Semi-long range dependence in the wavelet spectrum.
The smaller the value of λ > 0, the wider the range of octaves j
over which the wavelet spectrum of tfBm resembles that of fBm.

1 ≤ j1 ≤ j2 ≤ blog2(n)c, where the sample wavelet coeffi-
cients d(j, k) are computed by means of the expression (3). Let
θ = (H,λ, σ2) be the parameter vector. We define a wavelet-based
estimator by means of a weighted nonlinear log-regression

θ̂ := arg min
θ

j2∑
j=j1

wj (log2 W (j)− ηj(θ))2 , (7)

where the octaves j1 and j2 are chosen so as to capture both the
fine/moderate-scale behavior and the limiting behavior (6). In (7),
ηj is an appropriate choice of log-wavelet spectrum function. There
are two effects to consider when picking ηj andwj . First, estimation
based on minimizing the distance betweenW (j) and log2 Ed

2(j, 0)
is biased due to the fact that E log2 d

2(j, 0) 6= log2 Ed
2(j, 0). Sec-

ond, the variance of the sample wavelet variance W (j) changes
across scales. In view of the near decorrelation property (4), we
propose using bias-corrected and rescaled wavelet spectrum expres-
sions in (7) by applying standard approximations to E logW (j)
and Var logW (j) [18, 28]. More precisely, on one hand we set the
wavelet spectrum functions to

ηj(θ) = log2 Ed
2(j, 0) +B(j), j = j1, . . . , j2,

where B(j) =
Ψ(nj/2)

log 2
− log2

(
nj
2

)
for Ψ(z) = Γ′(z)/Γ(z), z >

0. On the other hand, we choose the weights wj = 1/2(j−1)/2,
j = j1, . . . , j2.
Estimation implementation and performance. Computational
experiments show that assuming σ2 is known does not qualitatively
change the results, so for convenience we set it to 1. The perfor-
mance of the estimator (Ĥ, λ̂) is assessed by means of Monte Carlo
experiments performed over 5000 independent realizations of tfBm.
Even though tfBm is well-defined for H ≥ 1, for physical reasons
we focus on the range H ∈ (0, 1). The chosen range of parameter
values is (H,λ) ∈ {0.15, 0.35, 0.65, 0.85}× {0.001, 0.01, 0.1, 1}.
The sample size values n = 212 and 220 were picked as to reflect
a realistic time series length and the asymptotic regime, respec-
tively. The generation of tfBm is done based on circulant matrix
embedding for tfGn [29, 30]. To implement the wavelet variances
appearing in the objective function on the right-hand side of (7),

wavelet, n = 212

H = 0.15 H = 0.35 H = 0.65 H = 0.85

λ = 0.001
(.1523, .0031) (.3564, .0025) (.6584, .0020) (.8576, .0017)
(.0041, .0048) (.0124, .0037) (.0206, .0030) (.0199, .0025)

λ = 0.01
(.1503, .0102) (.3499, .0101) (.6495, .0101) (.8494, .0101)
(.0034, .0073) (.0110, .0057) (.0231, .0046) (.0244, .0039)

λ = 0.1
(.1504, .1003) (.3501, .1002) (.6500, .1003) (.8504, .1002)
(.0031, .0170) (.0070, .0128) (.0184, .0111) (.0349, .0129)

λ = 1
(.1504, 1.016) (.3502, 1.004) (.6502, 1.001) (.8505, 1.000)
(.0046, .1648) (.0090, .0715) (.0161, .0417) (.0220, .0318)

wavelet, n = 220

H = 0.15 H = 0.35 H = 0.65 H = 0.85

λ = 0.001
(.1504, .0010) (.3502, .0010) (.6501, .0010) (.8501, .0010)
(.0003, .0001) (.0008, .0001) (.0013, .0001) (.0013, .0001)

λ = 0.01
(.1504, .0100) (.3503, .0100) (.6500, .0100) (.8500, .0100)
(.0002, .0002) (.0006, .0002) (.0013, .0002) (.0014, .0001)

λ = 0.1
(.1504, .1000) (.3503, .1000) (.6501, .1000) (.8501, .1000)
(.0002, .0009) (.0004, .0006) (.0011, .0006) (.0019, .0007)

λ = 1
(.1504, .9995) (.3504, .9998) (.6501, 1.000) (.8500, 1.000)
(.0002, .0082) (.0005, .0039) (.0009, .0023) (.0013, .0017)

Whittle, n = 212

H = 0.15 H = 0.35 H = 0.65 H = 0.85

λ = 0.001
(.1505, .0016) (.3508, .0018) (.6507, .0018) (.8509, .0018)
(.0028, .0019) (.0056, .0016) (.0086, .0012) (.0102, .0010)

λ = 0.01
(.1504, .0065) (.3501, .0083) (.6494, .0091) (.8492, .0094)
(.0029, .0041) (.0055, .0031) (.0103, .0023) (.0107, .0020)

λ = 0.1
(.1504, .0658) (.3499, .0827) (.6486, .0905) (.8468, .0924)
(.0028, .0306) (.0057, .0187) (.0102, .0120) (.0129, .0098)

λ = 1
(.1573, .6100) (.3628, .7989) (.6664, .8961) (.8680, .9252)
(.0060, .3070) (.0127, .1906) (.0189, .1093) (.0227, .0833)

Table 1. Estimation of H and λ. Each of the entries in the above
tables corresponds to the Monte-Carlo averages (top row of each
cell) and standard deviations (bottom row of each cell), based on
5000 independent realizations per (H,λ) pair.

we truncate the summation in (5) at |l| ≤ 10. Noting that for K
sufficiently large we have

∑
|l|>K |λ

2 + (x+ 2πl)2|−(H+ 1
2

) ≈∑
|l|>K |λ

2 + (2πl)2|−(H+ 1
2

) for all x ∈ [−π, π], we approx-
imate the remaining terms in the summation using the integral
2
∫∞

10
Γ2(H + 1

2
)(2π)−1|λ2 + (2πl)2|−(H+ 1

2
)dl. Minimization of

the objective function (7) was carried out by means of the Matlab
routine fmincon with constraints 0 < H < 1, 0 < λ < 5 and
initial values (Ĥinit, λ̂init) = (1/2, 0.03). In all cases, we set j1 = 1.
The value j2 plays an important role in determining what range of λ
can be estimated; larger values of j2 correspond to improved estima-
tion of increasingly smaller λ > 0. However, inclusion of additional
scales in the M -estimator (7) also adds to the computational cost
of the optimization. Thus, for the large sample size n = 220 we
set j2 = 12, and for the moderate sample size n = 212, we set
j2 = jmax, where jmax is the largest available octave in the sample.
Similarly to classical fBm (c.f. [31]), numerical results indicate that
Nψ = 2 is optimal for H > 1/2 when λ is small due to the semi-
long range dependence phenomenon. For other parameter values,
other choices for Nψ performed similarly. So, we set Nψ = 2 for
this study, giving jmax = 10 for n = 212.

Figure 2 shows the asymptotic normality of the estimators Ĥ
and λ̂. As the sample size increases, the qq-plots reflect convergence
to normal distributions. In fact, it can be shown that, under mild as-



sumptions, the estimator (Ĥ, λ̂) is asymptotically normal (hence,

consistent), i.e.,
√
n
(

(Ĥ, λ̂) − (H,λ)
)

d→ N(0,Σ), n → ∞, for
some symmetric positive semidefinite matrix Σ depending on the
parameters. This results, in part, from the summability in k, k′ of
the wavelet covariance structure (see (4)). The finite sample perfor-
mance results are shown in Table 1. For λ ≥ 0.01, the wavelet esti-
mator displays very small biases and good MSE performance in the
estimation of (H,λ) for n = 212, and the biases tend to disappear
for the very large sample size 220 for any value of λ or H . Inter-
estingly, together Figure 1 and Table 1 visually and computationally
indicate that the value .001 is a lower bound on the estimable λ pa-
rameter range at n = 212 (and j2 = 10), since tfBm with λ = .001
is almost indistinguishable from fBm at this sample size. Unreported
results indicate that, on the other side, an upper bound on estimable
values of λ is 3.

Since no other estimator is available for tfBm, to gauge the
comparative performance of the wavelet estimator we further imple-
mented Whittle estimation (for tfGn). The latter requires minimiza-
tion of a Fourier domain objective function domain involving the
spectral density of the process [33]. For the sake of comparison, we
also truncate the Whittle objective function at |l| ≤ 10 terms, and
approximate the remaining terms using the same integral as in the
wavelet-based method. The Whittle estimator is significantly faster
than the wavelet estimator, clocking 0.7 seconds per run, compared
to 3.9 seconds of the latter. Statistically, the Whittle and wavelet
method perform very similarly in the estimation of the parameterH .
However, as compared to the wavelet method, the Whittle seems to
consistently underestimate λ ≥ 0.01 especially for smaller values
of H . It is an open question whether Whittle-type estimation can be
improved – perhaps at a greater computational cost –, but this study
serves to illustrate the general difficulty in estimating the parameter
λ.
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Ĥ, n = 2
15

-2 0 2

-2

0

2
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Fig. 2. Asymptotic normality of (Ĥ , λ̂). For fixed true parame-
ter values (H,λ) = (0.75, 0.1), the qq-plots show progress toward
normality for sample sizes n = 210, 215, 220 (left to right column,
respectively).

4. DATA MODELING

Geophysical flow data. As an application, we conduct wavelet
domain analysis and modeling of velocity data associated with turbu-
lent supercritical flow in the Red Cedar River, a fourth-order stream
in Michigan (Coordinates: 42.72908N, 84.48228W). The data was

kindly provided by Prof. Mantha S. Phanikumar, from Michigan
State University. This data set contains flow features over a range
of spatial and temporal scales associated with turbulent flows in the
natural environment and is believed to be appropriate for the analy-
sis of energy spectra. The measurements (n = 46080 points) were
made at a sampling rate of 50 Hz using a 16 MHz Sontek Micro-
ADV (Acoustic Doppler Velocimeter) on May 26, 2014. The same
data set is modeled in [15] in the Fourier domain.

Figure 3 depicts the wavelet analysis of the Red Cedar River.
The sample spectrum is close to that of a tfBm, and significantly
deviates from that of a fBm. All three parameters were fitted, and the
estimated values (Ĥ, λ̂) are well within the range studied in Table
1. Moreover, Ĥ is strikingly close to the theoretical value H = 1/3
from Kolmogorov’s model for the inertial range (note that, in [15],H
was set to 1/3 and only the tempering parameter λ was estimated).
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Fig. 3. Sample wavelet spectrum for the Red Cedar River data.
As evidenced by the sample wavelet spectrum, tfBm provides a close
fit for turbulent flow data. The wavelet-based estimates are Ĥ =
0.329, λ̂ = 0.121, σ̂2 = 24.825. Note that Ĥ ≈ 1

3
, which is

consistent with Kolmogorov scaling in the inertial range.

5. CONCLUSION AND PERSPECTIVES

Tempered fractional Brownian (tfBm) motion is a recently intro-
duced canonical model that displays the so-named Davenport spec-
trum. For tfBm, in addition to the Hurst parameter, a tuning param-
eter λ is used that controls the range of the inertial spectrum. In this
paper, we construct for the first time the wavelet analysis of tfBm and
propose a new nonlinear log-regression wavelet estimator. The esti-
mator is consistent and asymptotically normal. Monte Carlo studies
show that it has very good finite sample performance as compared
to Fourier-domain estimation at an acceptable computational cost.
Wavelet analysis of turbulent flow data collected from the Red Cedar
River in Michigan shows that the tfBm spectrum is a good approx-
imation, and the estimated parameter values are rather close to the-
oretical predictions stemming from Kolmogorov’s model. MATLAB
routines will be made available at the time of publication. Future
methodological work includes the mathematical characterization of
the asymptotic distribution of the wavelet estimator (7), as well as
further testing of tfBm vs fBm or stationary alternatives.
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