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Abstract

Operator fractional Brownian motions (OFBMs) are zero mean, operator self-similar
(o.s.s.), Gaussian processes with stationary increments. They generalize univariate fractional
Brownian motions to the multivariate context. It is well-known that the so-called symmetry
group of an o.s.s. process is conjugate to subgroups of the orthogonal group. Moreover, by
a celebrated result of Hudson and Mason, the set of all exponents of an operator self-similar
process can be related to the tangent space of its symmetry group.

In this paper, we revisit and study both the symmetry groups and exponent sets for the
class of OFBMs based on their spectral domain integral representations. A general description
of the symmetry groups of OFBMs in terms of subsets of centralizers of the spectral domain
parameters is provided. OFBMs with symmetry groups of maximal and minimal types are
studied in any dimension. In particular, it is shown that OFBMs have minimal symmetry
groups (as thus, unique exponents) in general, in the topological sense. Finer classification
results of OFBMs, based on the explicit construction of their symmetry groups, are given in
the lower dimensions 2 and 3. It is also shown that the parametrization of spectral domain
integral representations are, in a suitable sense, not affected by the multiplicity of exponents,
whereas the same is not true for time domain integral representations.

1 Introduction

This work is about the class of operator fractional Brownian motions (OFBMs). Denoted by
BH = {BH(t)}t∈R = {(BH,1(t), . . . , BH,n(t))′ ∈ Rn, t ∈ R}, these are multivariate zero mean
Gaussian processes with stationary increments which are operator self-similar (o.s.s.) with a
matrix exponent H. Operator self-similarity means that, for any c > 0,

{BH(ct)}t∈R
L= {cHBH(t)}t∈R, (1.1)
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where =L stands for the equality of finite dimensional distributions and cH := eH ln c :=∑∞
k=0 Hk(ln c)k/k!. It is also assumed that OFBMs are proper, in the sense that the support

of the distribution of BH(t) is Rn for every t ∈ R. OFBMs play an important role in the analysis
of multivariate time series, analogous to that of the usual fractional Brownian motion (FBM) in
the univariate context. They have been studied more systematically by Mason and Xiao (2002),
Bahadaron, Benassi and Dȩbicki (2003), Lavancier, Philippe and Surgailis (2009), Didier and Pipi-
ras (2010), and others. Regarding o.s.s. processes in general, see Hudson and Mason (1982), Laha
and Rohatgi (1981), Sato (1991), Maejima and Mason (1994), Maejima (1996, 1998), Meerschaert
and Scheffler (1999), Section 11 in Meerschaert and Scheffler (2001), Chapter 9 in Embrechts and
Majima (2002), Becker-Kern and Pap (2008). For related work on operator stable measures, see,
for instance, Sharpe (1969), Jurek and Mason (1993), Meerschaert and Veeh (1993, 1995), Hudson
and Mason (1981), among others.

In particular, Didier and Pipiras (2010) showed that, under the mild assumption

0 < <(hk) < 1, k = 1, . . . , n, (1.2)

on the eigenvalues hk of the matrix exponent H, any OFBM BH admits the so-called integral
representation in the spectral domain,

{BH(t)}t∈R
L=

{∫

R

eitx − 1
ix

(x
−(H− 1

2
I)

+ A + x
−(H− 1

2
I)

− A)B̃(dx)
}

t∈R
. (1.3)

Here, x± = max{±x, 0},
A = A1 + iA2 (1.4)

is a complex-valued matrix with real-valued A1, A2, A indicates the complex conjugate of A,
B̃(x) = B̃1(x) + iB̃2(x) is a complex-valued multivariate Brownian motion satisfying B̃1(−x) =
B̃1(x), B̃2(−x) = −B̃2(x), and B̃1 and B̃2 are independent with induced random measure
B̃(dx) satisfying EB̃(dx)B̃(dx)∗ = dx. Thus, according to (1.3), OFBMs are characterized
(parametrized) by the matrices H and A.

In this work, we continue the systematic study of OFBMs started in Didier and Pipiras
(2010). We now tackle the issues of the symmetry structure of OFBMs and of the non-uniqueness
(multiplicity) of the exponents H, which, in our view, are essentially unexplored. Such issues are
strongly connected. Since the fundamental work of Hudson and Mason (1982), it is well known
that one given o.s.s. process X may have multiple exponents. More specifically, if we denote the
set of exponents of X by E(X), we have that

E(X) = H + T (GX), (1.5)

where H is any particular exponent of the process X. Here,

GX =
{

C ∈ GL(n) : {X(t)}t∈R
L= {CX(t)}t∈R

}
(1.6)

is the so-called symmetry group of the process X (where GL(n) is the multiplicative group of
invertible matrices), and

T (GX) =
{

C : C = lim
n→∞

Cn − I

dn
, for some {Cn} ⊆ GX , 0 < dn → 0

}
(1.7)

is the tangent space of the symmetry group GX . By a result for compact groups (e.g., Hoffman
and Morris (1998), p. 49, or Hudson and Mason (1982), p. 285), it is known that

GX = WO0W
−1 (1.8)
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for some positive definite matrix W and some subgroup O0 of the orthogonal group. As a conse-
quence, the knowledge about (1.5) is subordinated to that about the symmetry group GX of X.
For example, the exponent is unique for the process X if and only if the symmetry group GX is
finite.

The description and study of symmetry groups beyond the decomposition (1.8) is a reputedly
difficult and interesting problem (see, for instance, Billingsley (1966), p. 176, and Jurek and Mason
(1993), p. 60, both in the context of random vectors; see also Meerschaert and Veeh (1993, 1995)).
In this paper, we take up and provide some answers for this challenging problem in the context
of OFBMs. The main goal of this paper is two-fold: to study the symmetry groups of OFBMs
in as much detail as possible, and based on this, to closely examine (1.5) for OFBMs X = BH .
We emphasize again that, to the best of our knowledge, this is the first work where symmetry
groups are examined for any large class of o.s.s. processes (e.g., for the notion of symmetry groups
of Markov processes, see Liao (1992) and references therein). Indeed, since its publication, the
scope of the work of Hudson and Mason (1982) appears to have remained only of general nature,
the same being true for the main result (1.5).

The integral representation (1.3) provides a natural and probably the only means to consider
(almost) the whole class of OFBMs. Section 3 is dedicated to the reinterpretation and explicit
representation of symmetry-related constructs in terms of the spectral parametrization H, A.
One of our main results provides a decomposition of the symmetry groups of OFBMs into the
intersection of (subsets of) centralizers, i.e., sets of matrices that commute with a given matrix.
For example, in the case of time reversible OFBMs (corresponding to the case when AA∗ = AA∗),
we show that the symmetry group GBH

is conjugate to
⋂

x>0

G(Πx). (1.9)

Here, G(Π) denotes the centralizer of a matrix Π in the group O(n) of orthogonal matrices, i.e.,

G(Π) = {O ∈ O(n) : OΠ = ΠO}, (1.10)

and the matrix-valued function Πx has the frequency x as the argument and is parametrized by
H and A. Moreover, which is key for many technical results in this paper, we actually express the
positive definite conjugacy matrix W in (1.8) in terms of the spectral parametrization. This is a
substantial improvement over previous works on operator self-similarity, where only the existence
of such conjugacy is obtained, e.g., as in (1.8).

In view of (1.9) and (1.10), it is clear that the symmetry structure of OFBM is rooted in
centralizers. The characterization of the commutativity of matrices is a well-studied algebraic
problem (e.g., MacDuffee (1946), Taussky (1953), Gantmacher (1959), Suprunenko and Tyshke-
vich (1968), Lax (2007)). We apply the available techniques in a variety of ways to provide a
detailed study of the symmetry groups and the associated tangent spaces (Sections 4 and 5), as
well as of the consequences of the non-uniqueness of the parametrization for integral representa-
tions (Section 6).

Our study of the symmetry structures of OFBMs is carried out from two perspectives: first,
by looking at the extremal cases, i.e., maximal and minimal symmetry for arbitrary dimension,
and second, by conveying a full description of all symmetry groups in the lower dimensions n = 2
and n = 3.

Section 4 is dedicated to the first perspective. We completely characterize OFBMs with
maximal symmetry, i.e., those whose symmetry groups are conjugate to O(n). We establish
the general form of their covariance function and of their spectral parametrization. However,
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as intuitively clear, maximal symmetry corresponds to a strict subset of the parameter space
of OFBMs. In view of this, one can naturally ask what the most typical symmetry structure
for OFBMs is, in a suitable sense. A related question is whether the multiplicity of exponents
(and, thus, the non-identifiability of the parametrization) is a general phenomenon. Section 4
contains our answer to both questions, which is, indeed, one of our main results. We prove that,
in the topological sense, OFBMs with minimal symmetry groups (i.e., {I,−I}) form the largest
class within all OFBMs. As a consequence, in the same sense, OFBMs generally have unique
exponents. To establish this result, in our analysis of the centralizers G(Πx), we bypass the need
to deal with the major complexity of the eigenspace structure of the function Πx by looking at its
behavior at the origin of the Lie group (i.e., as x → 1), where a great deal of information about
Πx is available through the celebrated Baker-Campbell-Hausdorff formula.

Section 5 contains a full description of the symmetry structure of low-dimensional OFBMs,
namely, for dimensions n = 2 and n = 3. We provide a classification of OFBMs based on their
symmetry groups. For example, when n = 2, the symmetry group of a general OFBM can be, up
to a conjugacy, of only one of the following types:

(i) minimal: {I,−I};
(ii) trivial: {I,−I, R,−R}, where R is a reflection matrix;

(iii) rotational: SO(2) (the group of rotation matrices);

(iv) maximal: O(2).

Such classification of types for n = 2 stands in contrast with the situation with random vectors,
for which SO(n) cannot be a symmetry group (Billingsley (1966)). Nevertheless, we show that
the latter statement is almost true for OFBMs, since SO(n) cannot be a symmetry group if n ≥ 3.
In both n = 2 and n = 3, we provide examples of OFBMs in all identified classes, and also discuss
the structure of the resulting exponent sets E(BH).

In Section 6, we examine the consequences of non-identifiability for integral representations of
OFBMs. We show that the multiplicity of the exponents H does not affect the parameter A in
(1.3) in the sense that the latter can be chosen the same for any of the exponents. Intriguingly,
this turns out not to be the case for the parameters in the time domain representation of OFBMs,
and points to one advantage of spectral domain representations.

In summary, the structure of the paper is as follows. Some preliminary remarks and notation
can be found in Section 2. Section 3 concerns structural results on the symmetry groups of
OFBMs. OFBMs with maximal and minimal symmetry groups are studied in Section 4. The
classification of OFBMs according to their symmetry groups in the lower dimensions n = 2 and
n = 3 can be found in Section 5. Section 6 contains results on the consequences of the non-
uniqueness of the parametrization for integral representations. The appendix contains several
auxiliary facts for the reader’s convenience.

2 Preliminaries

2.1 Notation

We shall use throughout the paper the following notation for finite-dimensional operators (matri-
ces). All with respect to the field R, M(n) or M(n,R) is the vector space of all n× n operators
(endomorphisms), GL(n) or GL(n,R) is the general linear group (invertible operators, or auto-
morphisms), O(n) is the orthogonal group of operators O such that OO∗ = I = O∗O (i.e., the
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adjoint operator is the inverse), SO(n) ⊆ O(n) is the special orthogonal group of operators (ro-
tations) with determinant equal to 1, and so(n) is the vector space of skew-symmetric operators
(i.e., A∗ = −A). Similarly, M(m,n,R) is the space of m × n real matrices. The notation will
indicate the change to the field C. For instance, M(n,C) is the vector space of complex endo-
morphisms. Whenever it is said that A ∈ M(n) has a complex eigenvalue or eigenspace, one is
considering the operator embedding M(n) ↪→ M(n,C). U(n) is the group of unitary matrices, i.e.,
UU∗ = I = U∗U . We will say that two endomorphisms A, B ∈ M(n) are conjugate (or similar)
when there exists P ∈ GL(n) such that A = PBP−1. In this case, P is called a conjugacy. The ex-
pression diag(λ1, . . . , λn) denotes the operator whose matrix expression has the values λ1, . . . , λn

on the diagonal and zeros elsewhere. We make no conceptual distinction between characteristic
roots and eigenvalues. We also write Sn−1 := {v ∈ Rn : ‖v‖ = 1}. 0 represents a matrix of zeroes
of suitable dimension. Unless otherwise stated, we consider the so-called spectral matrix norm
‖·‖, i.e., ‖A‖ is the square root of the largest eigenvalue of A∗A. For {An}n∈N, A ∈ M(n,C), we
write An → A when ‖An −A‖ → 0.

Throughout the paper, we set

D = H − 1
2
, (2.1)

for an operator exponent H. We shall also work with the real part <(AA∗) = A1A
∗
1 + A2A

∗
2 and

the imaginary part =(AA∗) = A2A
∗
1 −A1A

∗
2 of AA∗. For the real part, in particular, we will use

the decomposition
<(AA∗) = SRΛ2

RS∗R = W 2, (2.2)

with an orthogonal SR, a diagonal ΛR and a positive (semi-)definite

W = SRΛRS∗R. (2.3)

We shall use the assumption that

<(AA∗) has full rank, (2.4)

in which case ΛR in (2.2) has the inverse Λ−1
R . As shown in Didier and Pipiras (2010), the condition

(2.4) is sufficient (though not necessary) for the integral in (1.3) to be proper and hence to define
an OFBM.

All through the paper, we assume n ≥ 2.

2.2 Remarks on the multiplicity of matrix exponents

In this section, we make a few remarks to a reader less familiar with the subject of this work.
It may appear a bit surprising that an o.s.s. process may have multiple exponents, as formalized
in (1.5). This can be understood from at least two inter-related perspectives: the properties of
operator (matrix) exponents and the distributional properties of o.s.s. processes. From the first
perspective, consider for example matrices of the form

Ls =
(

0 s
−s 0

)
∈ so(2), (2.5)

where s ∈ R. Being normal, these matrices can be diagonalized as Ls = U2ΛsU
∗
2 , where U2 ∈ U(2)

and Λs = diag(is,−is). In particular, exp(L2πk) = I, k ∈ Z, since ei2πk = 1. Since Ls and Ls′

commute for any s, s′ ∈ R, this yields

exp (Ls) = exp (L2πk) exp (Ls) = exp (L2πk + Ls), (2.6)
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and shows the potential non-uniqueness of operator exponents stemming from purely operator
(matrix) properties. Note also that the situation here is quite different from the 1-dimensional
case: in the latter, the same is possible but only with complex exponents, whereas here the
matrices L2πk have purely real entries.

From the perspective of distributional properties, we can illustrate several ideas through the
following simple example. The OFBMs in this example will appear again in Section 4 below.

Example 2.1 (Single parameter OFBM) Consider an OFBM BH with covariance function
EBH(t)BH(s)∗ =: Γ(t, s) = Γh(t, s)I, where Γh(t, s) is the covariance function of a standard
univariate FBM with parameter h ∈ (0, 1). This process is o.s.s. with exponent H = hI,
and will be called a single parameter OFBM. Since BH is Gaussian, O ∈ GBH

if and only if
OΓ(t, s)O∗ = Γ(t, s). In the case of a single parameter OFBM, this is equivalent to OO∗ = I or,
since O has an inverse (BH is assumed proper), OO∗ = O∗O = I. In other words, GBH

= O(n)
and

E(BH) = H + T (O(n)) = H + so(n).

Thus, a single parameter OFBM has multiple exponents. From another angle, for a given c > 0
and L ∈ so(n), we have L log(c) ∈ so(n) and hence exp(L log(c)) = cL ∈ O(n) = GBH

. Then,

{BH(ct)}t∈R
L= {cHBH(t)}t∈R

L= {cHcLBH(t)}t∈R
L= {cH+LBH(t)}t∈R,

which also shows that the exponents are not unique.
For later use, we also note that an equivalent way to define a single parameter OFBM is to

say that it has the spectral representation

{BH(t)}t∈R
L=

{
C

∫

R

eitx − 1
ix

|x|−(h− 1
2
)B̃(dx)

}
t∈R

, (2.7)

where C is an appropriate normalizing constant and B̃(dx) is as in (1.3).

2.3 Basics of matrix commutativity

We now recap some key facts and results about matrix commutativity that are repeatedly used
in the paper. To put it shortly, two matrices A,B ∈ M(n,C) commute if and only if they share
a common basis of generalized eigenvectors (see Lax (2007), p. 74). This means that there exists
a matrix P ∈ GL(n,C) such that we can write A = PJAP−1 and B = PJBP−1, where JA and
JB are in Jordan canonical form. In particular, if A, B are diagonalizable, then they must share
a basis of eigenvectors. When, for example, A = I, we can interpret that A commutes with any
B = PJBP−1 ∈ M(n,C) because for (any) P ∈ GL(n,C), A = PIP−1.

A related issue is that of the characterization of the set of all matrices that commute with a
given matrix A, the so-called centralizer C(A). In particular, one is often interested in constructing
the latter based on the Jordan decomposition of A.

Before enunciating the main theorem on C(A), we look at an example adapted from Gant-
macher (1959).

Example 2.2 Assume the matrix A ∈ M(10,C), with Jordan representation A = PJAP−1, has
the elementary divisors (i.e., the characteristic polynomials of the Jordan blocks)

(λ− λ1)3, (λ− λ1)2, (λ− λ2)2, (λ− λ3), (λ− λ3), (λ− λ3), (2.8)
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where the eigenvalues λ1, λ2, λ3 are pairwise distinct. Then, C(A) is made up of matrices of the
form X = PX̃P−1, where

M(10,C) 3 X̃ =




a | | | | |
b a | f | | | |
c b a | g f | | | |
− − − | − − | − − | − | − | −
d | h | | | |
e d | i h | | | |
− − − | − − | − − | − | − | −

| | j | | |
| | k j | | |

− − − | − − | − − | − | − | −
| | | l | m | n

− − − | − − | − − | − | − | −
| | | o | p | q

− − − | − − | − − | − | − | −
| | | r | s | t




. (2.9)

and the blocks on the diagonal correspond to the Jordan blocks of JA.

We now turn to the structure of the blocks for the general case, and (2.9) serves as an illus-
tration of the latter. We say that a matrix X ∈ M(pα, qβ,C) has regular lower triangular form
(e.g., as each of the blocks in (2.9) with letters a through j) if it can be written as

Xαβ =
{

(Tpα ,0), if pα ≤ qβ,

(0
′
, T

′
qβ

)
′
, if pα > qβ,

(2.10)

where Tpα ∈ M(pα,C) is a Toeplitz lower triangular matrix. Also denote by Npα ∈ M(pα,C) the
nilpotent matrix

Npα =




0
1 0

. . . . . .
1 0


 .

The next theorem characterizes C(A). The proof can be found in Gantmacher (1959), p. 219
(see also pp. 220-224).

Theorem 2.1 Let A ∈ M(n,C), where A = PJAP−1 and JA is in Jordan canonical form, i.e.,

JA = diag(λ1Ip1 + Np1 , . . . , λuIpu + Npu)

with not necessarily distinct eigenvalues λ1, . . . , λu. Then, the general solution to the equation
AX = XA is given by the formula X = PXJA

P−1, where XJA
is the general solution to the

equation JAXJA
= XJA

JA. Here, XJA
can be decomposed into blocks Xαβ ∈ M(pα, qβ,C), α, β =

1, . . . , u, where

Xαβ =
{

0, if λα 6= λβ,
as in (2.10), if λα = λβ.
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In view of Theorem 2.1, it is intuitively clear that, if a matrix Γ commutes with two matrices
A and B which exhibit completely different sets of eigenvectors, then Γ can only be a multiple
of the identity. This is accurately stated in the next lemma, which is used several times in the
paper.

Lemma 2.1 Let A,B,Γ ∈ M(n,C), where both A and B have pairwise different eigenvalues,
and A and B do not have any eigenvector in common. If Γ commutes with both A and B, then
Γ = λI, λ ∈ C.

The proof of Lemma 2.1 can be found in Appendix A, together with some additional results
on matrix commutativity.

3 Symmetry groups of OFBMs

Consider an OFBM BH with the spectral representation (1.3). In this section, we provide some
structural results on the nature of the symmetry group GBH

(see (1.6)). In particular, we explicitly
express it as an intersection of subsets of centralizers.

For notational simplicity, denote GBH
by GH . Since OFBMs are Gaussian and two Gaussian

processes with stationary increments have the same law when (and only when) their spectral
densities are equal a.e., we obtain that

GH = {C ∈ GL(n) : EBH(t)BH(s)∗ = E(CBH(t))(CBH(s))∗, s, t ∈ R}
= {C ∈ GL(n) : (x−D

+ A + x−D
− A)(x−D

+ A + x−D
− A)∗

= C(x−D
+ A + x−D

− A)(x−D
+ A + x−D

− A)∗C∗, x ∈ R}
= {C ∈ GL(n) : x−DAA∗x−D∗ = Cx−DAA∗x−D∗C∗, x > 0}
= GH,1

⋂
GH,2, (3.1)

where

GH,1 = {C ∈ GL(n) : x−D<(AA∗)x−D∗ = Cx−D<(AA∗)x−D∗C∗, x > 0}, (3.2)
GH,2 = {C ∈ GL(n) : x−D=(AA∗)x−D∗ = Cx−D=(AA∗)x−D∗C∗, x > 0}. (3.3)

Consider first the set GH,1. Using the decomposition (2.2) and working under the assumption
(2.4), we have that

GH,1 = {C ∈ GL(n) : x−DSRΛ2
RS∗Rx−D∗ = Cx−DSRΛ2

RS∗Rx−D∗C∗, x > 0}
= {C ∈ GL(n) : (Λ−1

R S∗RxDCx−DSRΛR)(Λ−1
R S∗RxDCx−DSRΛR)∗ = I, x > 0}

= {C ∈ GL(n) : Λ−1
R S∗RxDCx−DSRΛR ∈ O(n), x > 0}. (3.4)

Taking x = 1 and using the fact that SR is orthogonal, C ∈ GH,1 necessarily has the form

C = SRΛRS∗ROSRΛ−1
R S∗R = WOW−1 (3.5)

with O ∈ O(n) (see also Remark 3.1 below). Substituting (3.5) back into (3.4), we can now
express GH,1 as

GH,1 = W{O ∈ O(n) :
O(W−1x−D<(AA∗)x−D∗W−1) = (W−1x−D<(AA∗)x−D∗W−1)O, x > 0}W−1

= W
⋂

x>0

G(Πx)W−1, (3.6)
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where we use the definition (1.10) of G(Πx), and

Πx := W−1x−D<(AA∗)x−D∗W−1 = x−Mx−M∗
(3.7)

with
M = W−1DW. (3.8)

Remark 3.1 A simpler way to write (3.5) and (3.6) would be to replace W = SRΛRS∗R by SRΛR.
Note that, with our choice, W is positive definite. The relation (3.6) then takes the form (1.8).

The relation (3.6) describes the first set GH,1 in the intersection (3.1). Instead of describing
the second set GH,2 separately, it is more convenient to think of the latter as imposing additional
conditions on the elements of GH,1. In this regard, observe first that, for any y > 0,

GH,1 = yDGH,1y
−D, (3.9)

which simply follows by observing that the condition

x−D<(AA∗)x−D∗ = Cx−D<(AA∗)x−D∗C∗, x > 0,

defining the set GH,1, is equivalent to

x−D<(AA∗)x−D∗ = (yDCy−D)x−D<(AA∗)x−D∗(y−D∗C∗yD∗), x > 0.

Using the relation (3.9), all C ∈ GH,1 satisfy the relation

x−D=(AA∗)x−D∗ = Cx−D=(AA∗)x−D∗C∗, x > 0, (3.10)

defining the set GH,2, if and only if all C ∈ GH,1 satisfy the same relation with x = 1. Considering
the form (3.5) of C ∈ GH,1, this imposes additional conditions on the orthogonal matrices O.
Substituting (3.5) into the relation (3.10) with x = 1, we obtain that

=(AA∗) = WOW−1=(AA∗)W−1O∗W,

i.e.,
OW−1=(AA∗)W−1 = W−1=(AA∗)W−1O,

or
O ∈ G(ΠI), (3.11)

where
ΠI = W−1=(AA∗)W−1. (3.12)

By the expressions (3.1), (3.6) and the discussion above, we arrive at the following general result
on the structure of symmetry groups of OFBMs, and in particular, on the form of the conjugacy
matrix W .

Theorem 3.1 Consider an OFBM given by the spectral representation (1.3), and suppose that
the matrix A satisfies the assumption (2.4). Then, its symmetry group GH can be expressed as

GH = W
( ⋂

x>0

G(Πx) ∩G(ΠI)
)
W−1, (3.13)

where W is defined in (2.3), and Πx and ΠI are given in (3.7) and (3.12), respectively.
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The intersection over uncountably many x > 0 in (3.13) can be replaced by a countable
intersection in a standard way. We have O ∈ ∩x>0G(Πx) if and only if

Ox−Mx−M∗
= x−Mx−M∗

O, x > 0. (3.14)

Writing x−M =
∑∞

k=0 Mk(− ln x)k/k!, the relation (3.14) is equivalent to

∞∑

k1=0

∞∑

k2=0

OMk1(M∗)k2
(− lnx)k1

k1!
(− ln x)k2

k2!
=

∞∑

k1=0

∞∑

k2=0

Mk1(M∗)k2O
(− lnx)k1

k1!
(− ln x)k2

k2!

or, with k1 = k, k1 + k2 = m,
∞∑

m=0

O
m∑

k=0

Mk(M∗)m−k 1
k!(m− k)!

(− ln x)m =
∞∑

m=0

m∑

k=0

Mk(M∗)m−kO
1

k!(m− k)!
(− ln x)m.

Equivalently,
OΠ(m) = Π(m)O, m ≥ 1, (3.15)

where

Π(m) =
m∑

k=0

(
m

k

)
Mk(M∗)m−k. (3.16)

Theorem 3.1 can now be reformulated as follows.

Theorem 3.2 Consider an OFBM given by the spectral representation (1.3), and suppose that
the matrix A satisfies the assumption (2.4). Then, its symmetry group GH can be expressed as

GH = W
( ∞⋂

m=1

G(Π(m)) ∩G(ΠI)
)
W−1, (3.17)

where W is defined in (2.3), and Π(m) and ΠI are given in (3.16) and (3.12), respectively.

Remark 3.2 Note that the matrix Πx in (3.7) is positive definite. On the other hand, the matrix
Π(m) in (3.16) is symmetric because so are the terms

(
m

k

)
Mk(M∗)m−k +

(
m

m− k

)
Mm−k(M∗)k

defining Π(m). However, Π(m) is not positive definite in general. For example, with <(AA∗) = I
and normal D, we have

Π(m) = (D + D∗)m, (3.18)

which is not positive definite (not even for m = 1). Note also that ΠI is skew-symmetric, hence
normal and diagonizable.

4 On maximal and minimal symmetry groups

An operator self-similar process X is said to be of maximal type, or elliptically symmetric, if its
symmetry group GX is conjugate to O(n). At the other extreme, a zero mean (Gaussian) o.s.s.
process is said to be of minimal type if its symmetry group is {I,−I}. We shall examine here
these symmetry structures in the case of OFBMs. First, we characterize maximal symmetry in
terms of the spectral parametrization of OFBMs. Second, we analyze minimal symmetry OFBMs
through a topological lens.
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4.1 OFBMs of maximal type

The following theorem is the main result of this subsection. Recall the definition of single param-
eter OFBMs in Example 2.1.

Theorem 4.1 Consider an OFBM given by the spectral representation (1.3), and suppose that
the matrix A satisfies the assumption (2.4). If an OFBM is of maximal type, then it is a single
parameter OFBM up to a conjugacy by a positive definite matrix. Moreover, this happens if and
only if

=(AA∗) = 0, −(D − dI)<(AA∗) = <(AA∗)(D∗ − dI), (4.1)

for some real d.

Remark 4.1 Conversely, an OFBM which is a single parameter OFBM (up to a positive definite
conjugacy) is of maximal type (see Example 2.1). We also point out that we have a proof of the
first claim in Theorem 4.1 which does not make use of spectral representations and dispenses with
the assumption (2.4). In the proof of Theorem 4.1 we use spectral representations in order to
illustrate how the main results of Section 3 can be used.

Proof: In view of Proposition A.1 and (3.13), maximal type occurs if and only if

Πx = λxI, x > 0, ΠI = λI, λx, λ ∈ R. (4.2)

Note that

ΠI = λI ⇔ =(AA∗) = λ<(AA∗) ⇔ λ = 0 ⇔ =(AA∗) = 0. (4.3)

Moreover,
Πx = λxI, x > 0 ⇔ λx<(AA∗) = x−D<(AA∗)x−D∗ , (4.4)

which implies that, for any x1, x2 > 0,

λx1x2<(AA∗) = (x1x2)−D<(AA∗)(x1x2)−D∗ = x−D
2 λx1<(AA∗)x−D∗

2 = λx1λx2<(AA∗).

Hence, under assumption (2.4), λx1x2 = λx1λx2 , x1, x2 > 0. Moreover, the function log(λexp(·))
is additive over R, and it is measurable (since it is continuous). As a consequence, by Theorem
1.1.8 in Bingham et al. (1987), p. 5, there exists a real d such that log(λexp(·)) = −2d(·), i.e.,
λx = x−2d. In particular,

x−D<(AA∗)x−D∗ = x−2d<(AA∗). (4.5)

Relations (4.3) and (4.5) imply that the covariance structure of OFBM can be written as

EBH(t)BH(s)∗ =
∫

R

eitx − 1
ix

e−isx − 1
−ix

|x|−2d<(AA∗)dx.

In view of <(AA∗) = W 2 and (2.7), this shows that BH is a single parameter OFBM up to a
conjugacy.

Finally, note from above that Πx = λxI, x > 0, is equivalent to x−D<(AA∗)x−D∗ =
x−2d<(AA∗) or xD−dI<(AA∗) = <(AA∗)x−(D∗−dI) for x > 0 and some real d. The latter is
equivalent to (D − dI)<(AA∗) = −<(AA∗)(D∗ − dI) for some real d. 2

Remark 4.2 Theorem 6 in Hudson and Mason (1982) shows that every maximal symmetry o.s.s.
process has an exponent of the form hI, h ∈ R. For the case of OFBMs, the proof of Theorem
4.1 retrieves this result (see expression (4.5)). Moreover, it is clear that, for a maximal symmetry
OFBM BH (or, as a matter of fact, for any maximal symmetry o.s.s. process), for any H ∈ E(BH),
W−1HW is normal, since W−1(H − hI)W ∈ so(n) (see also Section 5 for further results on the
structure of exponents for dimensions n = 2 and n = 3).

11



4.2 OFBMs of minimal type: the topologically general case

In view of Theorem 3.1, an OFBM is of minimal type if and only if
⋂

x>0

G(Πx) ∩G(ΠI) = {I,−I},

and, in particular, if ⋂

x>0

G(Πx) = {I,−I}. (4.6)

We shall focus here on the relation (4.6) with the following related goals in mind.
The first goal is to provide (practical) conditions for (4.6) to hold and, hence, for an OFBM to

be of minimal type. This is a non-trivial problem. The structure of G(Πx) depends on both the
eigenvalues and the eigenspaces of Πx, which are arbitrary in principle. Moreover, their explicit
calculation becomes increasingly difficult with dimension. To shed light on (4.6), we take up an
idea from Lie group theory: a lot of information about M in the expression Πx = x−Mx−M∗

(see (3.7)) is available at the vicinity of the identity in the Lie group, i.e., as x → 1. The
general approach we take is to study the behavior of the logarithm of Πx through the Baker-
Campbell-Hausdorff formula, valid in a vicinity of the origin of the associated Lie algebra. The
characterization of the behavior of the eigenspaces of Πx will then be retrieved by turning back
to the Lie group through the exponential map.

Initially, our conditions for the relation (4.6) to hold are in terms of the matrix M , and not
directly in terms of H and A. Our second goal in this section is to show that these conditions on
M yield “most” OFBMs in terms of the parametrization M , and then relate them back to H and
A. The term “most” is in the topological sense, i.e., except on a meager set. This result should not
be surprising: if ∩x>0G(Πx) has non-trivial structure, then this imposes extra conditions on M
(or D, W ) as in Section 4.1. Though not surprising, formalizing this fact is not straightforward,
as shown here. This second goal leads to the main result of this section, which, for the sake of
clarity, we now briefly describe. In analogy with the assumption (1.2), consider the set

D =
{

D ∈ M(n,R) : −1
2

< <(dk) <
1
2
, k = 1, . . . , n

}
, (4.7)

where d1, . . . , dn denote the charateristic roots of D. Theorem 4.2 below states the existence of a
set M⊆ M(n,R) such that, for all D and positive definite W such that W−1DW ∈M∩D, the
OFBM with spectral parametrization D and <(AA∗) := W 2 has minimal symmetry. Moreover,
M∩D is an open set (of parameters), and it is dense in D. Therefore, Mc ∩ D is a meager set.
Conversely, every M ∈M∩D gives a minimal symmetry OFBM through an appropriate spectral
parametrization.

The rest of this section is dedicated to developing these ideas, as well as the framework behind
them. Hereinafter, unless otherwise stated, we impose no restrictions on the eigenvalues of M ,
i.e., the expression Πx = x−Mx−M∗

is taken for any M ∈ M(n,R). Consider the decomposition
of the latter space into the direct sum

M(n,R) = S(n,R)⊕ so(n), (4.8)

where S(n,R) is the space of symmetric matrices. For M ∈ M(n,R), denote

M = S + L, (4.9)

12



where S = (M + M∗)/2, L = (M −M∗)/2 are, respectively, the symmetric and skew-symmetric
parts of M . Let also

S 6= := {S ∈ S(n,R) : S has pairwise different eigenvalues}, (4.10)
L 6= := {L ∈ so(n) : L has pairwise different eigenvalues}. (4.11)

The next proposition shows that for an appropriately chosen M , the centralizer of the family
Πx is minimal. In the proof, the symbol [·, ·] denotes the commutator. Since the point x = 1 is a
singularity in the sense that all the information about M from Πx = x−Mx−M∗

is lost at it, the
idea is to analyze the behavior of Πx for x in a close vicinity of 1.

Proposition 4.1 Let M = S + L ∈ M(n,R) as in (4.9) and suppose that S ∈ S6=. Assume also
that S and [L, S] do not share eigenvectors. Then, the relation (4.6) holds, that is,

⋂

x>0

G(Πx) = {I,−I}.

Proof: Note that M + M∗ = 2S, and that

[M, M∗] = MM∗ −M∗M = (S + L)(S − L)− (S − L)(S + L) = 2[L, S].

Since the mapping M 7→ exp(M) is a C∞ homeomorphism of some neighborhood of 0 in the Lie
algebra of GL(n,R) onto some neighborhood U of the identity I in GL(n,R), then its inverse
function Log is well-defined on U . Therefore, by the Baker-Campbell-Hausdorff formula, for small
enough log(x) we have

Log(exp(− log(x)M) exp(− log(x)M∗)) = − log(x)(M + M∗) +
1
2
[− log(x)M,− log(x)M∗]

+O(log3(x)) = − log(x)(M + M∗) + log2(x)
1
2
[M, M∗] + O(log3(x))

(see Hausner and Schwartz (1968), p. 63 and pp. 68-69). We claim that, for some δ > 0, the
family

(M + M∗)− 1
2

log(x)[M, M∗] + O(log2(x)), x ∈ B(1, δ)\{1}, (4.12)

does not share eigenvectors with M + M∗. In fact, assume by contradiction that, for a sequence
xk → 1, there exists a sequence {vk} of unit norm vectors which are eigenvectors of (4.12),
associated with the eigenvalues λk, and of M + M∗, associated with the eigenvalues λS

k . By
passing to a subsequence if necessary, we can assume λS

k = λS . Then,

(M + M∗)vk − 1
2

log(xk)[M, M∗]vk + O(log2(xk))vk = λkvk.

Therefore,

−1
2

log(xk)[M, M∗]vk + O(log2(xk))vk = (λk − λS)vk,

or

−1
2
[M,M∗]vk + O(log(xk))vk =

λk − λS

log(xk)
vk. (4.13)

Since {vk} is a sequence in Sn−1, we can pass to a subsequence if necessary to obtain vk → v0 ∈
Sn−1.
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Therefore, regarding the left-hand side of expression (4.13), we have

−1
2
[M,M∗]vk + O(log(xk))vk → −1

2
[M, M∗]v0.

As a consequence, regarding the right-hand side of expression (4.13), λk−λS

log(xk) must have a limit,
which we denote by λ. Therefore, v0 is an eigenvector of [M, M∗] associated with the eigenvalue
λ. Now note that {vk} is a sequence of eigenvectors of M + M∗, all of them associated with the
eigenvalue λS . Therefore, v0 is also an eigenvector of M + M∗, which implies that S and [L, S]
share an eigenvector (contradiction). Therefore,

Log(exp(− log(x)M) exp(− log(x)M∗))

does not share eigenvectors with − log(x)(M + M∗), x ∈ B(1, δ)\{1}.
By taking another δ′ < δ if necessary, we know that the eigenvalues of the matrix (M +M∗)−

1
2 log(x)[M, M∗] +O(log2(x)), x ∈ B(δ′, 1)\{1}, are pairwise different, since they are approaching
those of M + M∗ (Lemma B.1). Thus, we may take x0 ∈ B(1, δ′)\{1} such that the eigenvalues
of Πx0 are pairwise different.

From the development above, the matrices (M + M∗) − 1
2 log(x0)[M,M∗] + O(log2(x0)) and

M + M∗ have no eigenvectors in common. However, since by Lemma B.2 the eigenvectors of
(M + M∗) − 1

2 log(x)[M, M∗] + O(log2(x)) converge to those of M + M∗ as x → 1 (in the sense
specified in Lemma B.2), there must exist x1 ∈ B(1, δ′)\{1}, x1 6= x0, such that Log(Πx0) and
Log(Πx1) also share no eigenvectors, and Log(Πx1) also has pairwise different eigenvalues.

Since exp(Log(Πx)) = Πx (for x close enough to 1), then it is also true that Πx0 , Πx1 each
has pairwise different eigenvalues and that they share no eigenvectors. Thus, for O ∈ O(n) to
commute with both Πx0 and Πx1 , it must be a multiple of the identity, by Lemma 2.1. 2

The following technical lemmas will be used in the sequel.

Lemma 4.1 Let L ∈ L6=. If n is even, then L has no real eigenvectors.

Proof: Let

U2 =
√

2
2

(
1 1
i −i

)
∈ U(2). (4.14)

Any L ∈ L6= ⊆ so(n) can be written in the form L = OUdiag(ia1,−ia1, . . . , ian/2,−ian/2)U∗O∗,
for some O ∈ O(n), where ak ∈ R, k = 1, . . . , n/2, and U = diag(U2, . . . , U2) ∈ U(n), where n/2
blocks U2 are used. Denote by oj the jth column of O. Since the eigenvalues of L are pairwise
different, the eigenvectors of L necessarily have the form

z
(
oj

√
2

2
± ioj+1

√
2

2

)
, z ∈ C\{0}, j = 1, 3, . . . ,

n

2
− 1.

However, z(oj

√
2

2 ± ioj+1

√
2

2 ) ∈ Rn would imply that

<(z)oj+1 = ∓=(z)oj ,

i.e., either z = 0 or oj , oj+1 are linearly dependent, both of which lead to a contradiction. 2

Lemma 4.2 Consider S ∈ S6= and L ∈ so(n). If S and [L, S] share a (real) eigenvector v, then
v is an eigenvector of L.
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Proof: Without loss of generality, assume v ∈ Sn−1, and denote by λS the eigenvalue of S with
which v is associated. Since v is also an eigenvector of [L, S], there exists λ such that

(LS − SL)v = λv,

i.e.,
λSLv − SLv = λv.

Since S ∈ S(n,R), then
v∗S = (Sv)∗ = (λSv)∗ = v∗λS .

Thus,
0 = λSv∗Lv − v∗λSLv = λ.

Therefore,
(λSI − S)Lv = 0 ∈ Rn.

Note that
(λSI)(Lv) = S(Lv).

Since the eigenvalues of S are pairwise different, then Lv is in the eigenspace generated by v.
Thus, L acts on v by multiplying it by a real scalar, i.e., v is also a (real) eigenvector of L. 2

The following result is an immediate consequence of Lemmas 4.1 and 4.2.

Corollary 4.1 Let S ∈ S6=, L ∈ L6=. If n is even, then S and [L, S] share no eigenvectors.

The next result introduces a set (expression (4.15) below) that will be important in the sub-
sequent development.

Lemma 4.3 Let n be odd. Let S ∈ S6=, and denote by o1, . . . , on a collection of n orthonormal
eigenvectors of S. Then, the set of L ∈ L6= such that S and L share a (real) eigenvector v has
the form

n⋃

j=1

L(oj), (4.15)

where

L(oj) = {L ∈ L6= : oj is an eigenvector of L associated with the eigenvalue 0}. (4.16)

Proof: For every L ∈ L6=, there exist O ∈ O(n) and aj ∈ R\{0}, j = 1, ..., (n− 1)/2, such that
L = OUdiag(ia1,−ia1, . . . , ia(n−1)/2,−ia(n−1)/2, 0)U∗O∗, where U = diag(U2, . . . , U2, 1) ∈ U(n)
and U2 is as in expression (4.14). Since the eigenvectors induced by the first n−1 columns of OU
necessarily have non-trivial imaginary parts, then for S and L to share an eigenvector, it must be
the one in the space induced by the last column of OU , which is associated with the eigenvalue
0. 2

Example 4.1 For the sake of concreteness, we now briefly describe the form of a set L(·) in the
lowest-dimensional non-trivial setting, i.e., n = 3. Assume S is diagonal, and that the canonical
vector e3 = (0, 0, 1)′ is an eigenvector S and L share. Then, since

L =




0 a b
−a 0 c
−b −c 0


 ,
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the equality Le3 = 0 implies that b = c = 0, which is the general form of the matrices in the
subspace L(e3) ∪ {0} of so(3). It is clear that an analogous argument applies when one picks
either e1 or e2 as the common eigenvector, and the general case treated in Lemma 4.3 follows by
considering a suitable change of coordinates O ∈ O(3).

Proposition 4.2 below establishes the topological properties of the class of “well-behaved”
exponents M , i.e., those that will eventually be associated with minimal symmetry OFBMs. Its
proof is based on the next two lemmas.

Lemma 4.4 (i) The set S 6= is an open, dense set in (the relative topology of) S(n,R).

(ii) Let n be odd. For any orthonormal vectors o1, . . . , on in Rn, the set

( n⋃

j=1

L(oj)
)c
∩ L 6=,

is an open, dense set in (the relative topology of) so(n).

Proof: We only prove (ii), since (i) can be handled with a similar, but simpler, argument.
First, we show openness. Let L0 ∈ (∪n

j=1L(oj))c ∩ L6=. Assume by contradiction that there
exists a sequence Lk ∈ (∪n

j=1L(oj)) ∪ (L6=)c such that Lk → L0. Since by Lemma B.1, the
eigenvalues of Lk converge to those of L0, then without loss of generality we can assume that the
latter are pairwise distinct, i.e., Lk ∈ ∪n

j=1L(oj). By passing to a subsequence if necessary, we
can assume that, for all k, Lk ∈ L(oj) for some fixed j, i.e., Lkoj = 0. Since, by assumption,
Lk → L0, then L0oj = 0 (contradiction).

We now show denseness. Take L ∈ so(n), and fix the orthonormal vectors
o1, . . . , on ∈ Rn. Consider the case when L ∈ ∪n

j=1L(oj). Without loss of general-
ity, we can make the further assumption that L ∈ L(on). Then, we can write L =
OUdiag(ia1,−ia1, . . . , ia(n−1)/2,−ia(n−1)/2, 0)U∗O∗, where on is the last column of the matrix
O, and U = diag(U2, . . . , U2, 1), with U2 being as in (4.14). Consider a sequence Ok ∈ O(n)
whose columns are all not in the subspace generated by any column of O, and, additionally, such
that Ok → O. Then,

Lk = OkUdiag(ia1,−ia1, . . . , ia(n−1)/2,−ia(n−1)/2, 0)U∗O∗
k → L,

and Lk ∈ (∪n
j=1L(oj))c ∩ L6=.

For the case when L has repeated eigenvalues, we may use the argument above but choosing
an appropriate sequence of eigenvalues for Lk that converge to the eigenvalues of L. 2

We now define a correspondence (set-valued function) that maps the set S6= to the set of
skew-symmetric matrices used in Lemma 4.4 above.

Definition 4.1 Let P denote the class of all subsets of a set. Define the correspondence (set-
valued function)

l : S6= → P(so(n)),

S 7→ l(S) =
{

(
⋃n

j=1 L(oj))c ∩ L6=, n is odd,

so(n), n is even,

where o1, . . . , on represent orthonormal eigenvectors of S.
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Regarding the case when n is odd, the correspondence l is well-defined because, for a given S ∈ S6=,
any orthonormal eigenvectors o1, . . . , on of S give the same image l(S).

The following lemma sheds light on the graph of the correspondence l(·) from a topological
standpoint.

Lemma 4.5 Let l(·) be the correspondence in Definition 4.1. Then, Graph(l) := {(S,L) : S ∈
S6=, L ∈ l(S)} is open and dense in (S(n,R), so(n)).

Proof: Openness is a consequence of the fact that, if S0 ∈ S6=, then, as Sk → S0, the eigenvalues
of Sk converge to those of S0 (in the sense of Lemma B.1). Indeed, assume by contradiction that
there exists (S0, L0) ∈ Graph(l) such that, for some sequence (Sk, Lk) /∈ Graph(l),

(Sk, Lk) → (S0, L0).

Note that there cannot be a subsequence {Sk′} ⊆ Sc
6= such that Sk′ → S0 (since this contradicts

the openness of S 6= established in Lemma 4.4). Thus, if n is even, this is a contradiction with
the fact that (Sk, Lk) /∈ Graph(l), and the proof ends here. On the other hand, if n is odd, this
implies that we must have Lk /∈ l(Sk), k ∈ N. Since L0 ∈ L6=, then by Lemma B.1 we can assume
without loss of generality that Lk ∈ L6=. Thus, there exists jk ∈ {1, . . . , n} such that

Lk(ok
jk

) = 0,

i.e., some eigenvector ok
jk
∈ Sn−1 of Sk is in the kernel of Lk. By Lemma B.1, we can assume

that the associated sequence of eigenvalues {λjk
} of Sk converges to some eigenvalue λ1 of S0.

Moreover, since ok
jk
∈ Sn−1, by passing to a subsequence if necessary, we have that ok

jk
→ o1,

where o1 is some vector in Sn−1. Then,

Sko
k
jk

= λjk
ok
jk

,

where Sko
k
jk
→ S0o1 and λjk

ok
jk
→ λ1o1. Consequently, o1 is an eigenvector of S0. Moreover,

0 = Lk(ok
jk

) → L0(o1).

Therefore, L0 ∈ (l(S0))c (contradiction).
Denseness comes immediately from Lemma 4.4. 2

The next proposition puts Graph(l) back into the original space M(n,R) in the form of a
direct sum, rephrases the topological statement of Lemma 4.5, and connects the latter to the
problem of proving (4.6).

Proposition 4.2 Let
M = {M ∈ M(n,R) : M ∈ S6= ⊕ l(S 6=)}. (4.17)

Then,

(i) M is an open, dense subset of M(n,R). Consequently, Mc is a meager set and M is a
n2-dimensional C∞ manifold in Rn2 ∼= M(n,R).

(ii) relation (4.6) holds for all M ∈M.
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Proof: We first show part (i). Define the norm ‖M‖⊕ = ‖S‖+ ‖L‖, where ‖·‖ is the spectral
matrix norm. Expression (4.8) implies that ‖·‖⊕ is well-defined. By the equivalence of matrix
norms, it suffices to show (i) with respect to ‖·‖⊕. Assume by contradiction that there is some
M0 = S0 + L0 ∈ M and a sequence {Mk} ⊆ Mc such that ‖Mk −M0‖⊕ → 0. However, such
convergence holds if and only if ‖Sk − S0‖ → 0 and ‖Lk − L0‖ → 0. Since, for each k, either
Sk /∈ S6= or Lk /∈ l(Sk), then this contradicts the openness of Graph(l) (Lemma 4.5). Denseness
can be addressed in a similar fashion, and the geometric statement is immediate.

Part (ii) is a consequence of Proposition 4.1, Corollary 4.1 and Lemma 4.3. 2

Example 4.2 To construct an example of M ∈ M, we turn again to the case when n = 3
(see Example 4.1). Take S = diag(s1, s2, s3), where the (real) eigenvalues are pairwise different.
Then, take any L ∈ so(3)\{0} not having one of the Euclidean canonical vectors e1, e2, e3 in its
unidimensional kernel. In other words, we cannot take a matrix L of one of the forms




0 a 0
−a 0 0
0 0 0


 ,




0 0 b
0 0 0
−b 0 0


 ,




0 0 0
0 0 c
0 −c 0


 ,

where a, b, c 6= 0. Now set M = S + L.

In order to make the claim about the general minimality of the symmetry groups of OFBMs,
we need to restrict the parameter space, as in (1.2). For this purpose, we consider the set D in
(4.7). The following is the main result of this section. It shows that, except possibly when the
parametrization is taken on a meager set, OFBMs are of minimal symmetry.

Theorem 4.2 For all D, W ∈ M(n,R), where W is positive definite, and such that

W−1DW ∈M∩D,

the associated OFBM with spectral parametrization D and <(AA∗) := W 2 has minimal symmetry.
The set M∩D is open, and, in particular, it is an n2-dimensional C∞ manifold in Rn2 ∼= M(n,R).
Moreover, it is also a dense subset of D (in the relative topology of D). As a consequence, Mc∩D
is a meager set.

Conversely, every M ∈M∩D gives rise to a minimal symmetry OFBM through the spectral
parametrization D := M , W := I.

Proof: By the convergence of eigenvalues ensured by Lemma B.1, D is an open set. Therefore,
by Proposition 4.2, M ∩ D is also an open set. The geometric statement is straightforward.
Furthermore, since M is dense in M(n,R), then M ∩ D must also be dense in the relative
topology of the open set D.

The converse is an immediate consequence of Proposition 4.2. 2

5 Classification in dimensions n = 2 and n = 3

Theorems 3.1 and 3.2 describe the general structure of symmetry groups of OFBMs. The cases
of maximal and minimal symmetry groups were studied in Section 4. In this section, we are
interested in identifying all the possible “intermediate” symmetry groups. We shall describe their
structure in dimensions n = 2 and n = 3, and make some comments about higher dimensions.
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5.1 Dimension n = 2

When n = 2, the contribution of the term G(ΠI) in Theorems 3.1 and 3.2 can be easily described,
as the next two results show.

Lemma 5.1 If ΠI 6= 0, then G(ΠI) = SO(2).

Proof: Since ΠI is skew-symmetric, we have

ΠI = λ

(
0 1
−1 0

)
, λ 6= 0.

Thus, ΠI/λ is a rotation matrix, and thus G(ΠI) = SO(2). 2

Theorems 3.1 and 3.2 can now be reformulated as follows.

Corollary 5.1 For n = 2, under the assumptions and notation of Theorems 3.1 and 3.2, we have

GH = W

{ ∩x>0G(Πx) ∩ SO(2), if =(AA∗) 6= 0
∩x>0G(Πx), if =(AA∗) = 0

}
W−1 (5.1)

= W

{ ∩m≥1G(Π(m)) ∩ SO(2), if =(AA∗) 6= 0
∩m≥1G(Π(m)), if =(AA∗) = 0

}
W−1. (5.2)

Next, we study the possible structures of the groups G(Π) when Π is symmetric (and hence
potentially positive definite, as the matrix Πx in (5.1)). Let π1, π2 be the two real eigenvalues of
Π. Two cases need to be considered:

Case 2.1: π1 = π2,
Case 2.2: π1 6= π2.

(5.3)

In Case 2.1, Π = π1I and hence
G(Π) = O(2). (5.4)

In Case 2.2, we can write

Π = S

(
π1 0
0 π2

)
S∗ = (p1 p2)

(
π1 0
0 π2

)(
p′1
p′2

)
,

where the columns of the orthogonal matrix S = (p1 p2) consist of the orthonormal eigenvectors
p1, p2 of Π. By Theorem 2.1, B ∈ O(2) commutes with such Π if and only if B = SGS∗ where G
is a diagonal matrix such that G2 = I (G2 = I is a consequence of the fact that B ∈ O(2)), or

B = S

( ±1 0
0 ±1

)
S∗ = (p1 p2)

( ±1 0
0 ±1

)(
p′1
p′2

)
.

We thus have

G(Π) =
{

I,−I, S

(
1 0
0 −1

)
S∗, S

( −1 0
0 1

)
S∗

}

= {I,−I, Ref(p1),Ref(p2)}, (5.5)

where Ref(p) indicates a reflection around the axis spanned by a vector p. The expressions (5.4)
and (5.5) provide the only possible structures for G(Π). Together with Corollary 5.1, this leads
to the following result.
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Theorem 5.1 Consider an OFBM given by the spectral representation (1.3), and suppose that
the matrix A satisfies the assumption (2.4). Then, its symmetry group GH is conjugate to one of
the following:

(2.a) minimal type: {I,−I};
(2.b) trivial type: {I,−I, Ref(p1),Ref(p2)} for a pair of orthogonal p1, p2;

(2.c) rotational type: SO(2);

(2.d) maximal type: O(2).

All the types of subgroups described in Theorem 5.1 are non-empty, as we show next. Since
OFBMs of maximal and minimal types were studied in general dimension n in Section 4, we now
provide examples of OFBMs of only the two remaining types for dimension n = 2.

Example 5.1 (Rotational type) Consider an OFBM with parameters

D = dI,
√

2A1 ∈ SO(2)\{I,−I},
√

2A2 ∈ O(2)\SO(2), (5.6)

where d is real. Then, we have Πx = x−2dI and G(Πx) = O(2). Since =(AA∗) 6= 0, Corollary 5.1
yields that GH = SO(2).

Example 5.2 (Trivial type) Consider an OFBM with parameters

D =
(

d1 0
0 d2

)
, A =

(
a1 0
0 a2

)
, (5.7)

where d1 6= d2 are real. Then,

AA∗ =
( |a1|2 0

0 |a2|2
)

= <(AA∗), =(AA∗) = 0,

and

Πx =
(

x−2d1 0
0 x−2d2

)
,

implying that, for x 6= 1,

G(Πx) =
{

I,−I,

(
1 0
0 −1

)
,

( −1 0
0 1

)}
.

Corollary 5.1 then yields

GH =
{

I,−I,

(
1 0
0 −1

)
,

( −1 0
0 1

)}
. (5.8)

Only OFBMs of rotational and maximal types have multiple exponents. Moreover, in view of
(1.5), in both cases we have

E(BH) = H + Wso(2)W−1, (5.9)

where H is any exponent of the OFBM BH . This relation can be further refined, as the following
proposition shows. For this purpose, we need to consider a so-called commuting exponent H0 ∈
E(BH), i.e., an exponent H0 such that

H0C = CH0 (5.10)

for all C ∈ GH . The existence of this useful exponent is ensured by Lemma 2 of Maejima (1998).
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Proposition 5.1 Consider an OFBM given by the spectral representation (1.3), and suppose
that the matrix A satisfies the assumption (2.4). If E(BH) is not unique, then the commuting
exponents are of the form

H0 = WU2diag(h, h)U∗
2 W−1, (5.11)

where U2 is as in (4.14), and h ∈ C. In particular,

E(BH) = W (U2diag(h, h)U∗
2 + so(2))W−1, (5.12)

H = <(h)I ∈ E(BH) and W−1HW is normal for any H ∈ E(BH).

Proof: If E(BH) is not unique, then by Theorem 5.1, H0 commutes with WSO(2)W−1. In
particular, H0 commutes with WOW−1 for O ∈ SO(2)\{I,−I}. Since such O is diagonalizable
with two complex conjugate eigenvalues, the eigenvectors of WOW−1 are also eigenvectors of
H0. Thus, H0 can be written as WU2diag(h1, h2)U∗

2 W−1. Therefore, since h1, h2 are also the
eigenvalues of U2diag(h1, h2)U∗

2 , which must only have real entries, a simple calculation shows
that h1 = h2, and thus (5.11) holds. This also yields (5.12).

For H ∈ E(BH), (5.12) implies that W−1HW is normal. In particular, we may choose the
exponent H = H0 + WL−=(h)W

−1 = <(h)I, where Ls is defined in (2.5). 2

Remark 5.1 In the case of OFBMs of rotational type, which have multiple exponents, every
exponent is a commuting exponent (compare with Meerschaert and Veeh (1993), p. 721, for the
case of operator stable measures).

Remark 5.2 For general proper Gaussian processes, one can define symmetry sets (groups) in the
same way as for o.s.s. processes, and, in particular, show that they are also compact subgroups of
GL(n,R). By applying the argument of the proof of Theorem 4.5.3 in Didier (2007), which is based
on general commutativity results, instead of spectral filters, one can show that the classification
provided by Theorem 5.1 actually holds for the wide class of proper bivariate Gaussian processes.

5.2 Dimension n = 3

We will make use of the partition of O(3) into the following subsets:

SO(3) = {I} ∪ Rotθ ∪ Rotπ, O(3)\SO(3) = {−I} ∪ Refθ ∪ Ref0,

where for a vector p,

Rotθ :=
⋃

p∈Sn−1

Rotθ(p), Rotπ :=
⋃

p∈Sn−1

Rotπ(p),

Refθ :=
⋃

p∈Sn−1

Refθ(p), Ref0 :=
⋃

p∈Sn−1

Ref0(p),

and

Rotθ(p) = {rotations about the axis spanR(p) by an angle not equal to π},
Rotπ(p) = {rotation about the axis spanR(p) by an angle equal to π},
Refθ(p) = {rotations about the axis spanR(p) by an angle not equal to π, combined with the

reflection in the plane through the origin which is perpendicular to the axis},
Ref0(p) = {reflection in a plane through the origin, where the plane is perpendicular to p}.

(5.13)
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From a matrix perspective, for some p ∈ Sn−1,

Rotθ(p) ∼=



cos θ − sin θ 0
sin θ cos θ 0

0 0 1


 , θ ∈ (0, 2π)\{π}, Rotπ(p) ∼=



−1 0 0
0 −1 0
0 0 1


 ,

Refθ(p) ∼=



cos θ − sin θ 0
sin θ cos θ 0

0 0 −1


 , θ ∈ (0, 2π)\{π}, Ref0(p) ∼=




1 0 0
0 1 0
0 0 −1


 ,

where ∼= indicates conjugacies by orthogonal matrices.

Remark 5.3 The subscript θ in Rotθ or Refθ only indicates that the angle in question is not 0
or π. Here, θ does not refer to a specific angle. Indeed, even in the case of a fixed p, Rotθ(p) and
Refθ(p) are classes of matrices. Also, in the expression Ref0 we use the subscript 0 to indicate
that there is no rotation before reflection through the plane in question.

We first describe the possible structures of G(Π) for symmetric matrices Π (such as the
matrices Πx, x > 0, in (3.13)). Let π1, π2, π3 be the three real eigenvalues of Π. Three cases need
to be considered, namely,

Case 3.1: π1 = π2 = π3,
Case 3.2: π1 = π2 6= π3,
Case 3.3: πi 6= πj , i 6= j, i, j = 1, 2, 3.

(5.14)

The next proposition gives the form of G(Π) in all the above cases.

Proposition 5.2 Let Π ∈ S(3,R). Denote its eigenvectors by pi, i = 1, 2, 3, where S =
(p1 p2 p3) ∈ O(3). Then,

(i) in Case 3.1 in (5.14),
G(Π) = O(3); (5.15)

(ii) in Case 3.2 in (5.14),

G(Π) = {I,−I} ∪ (Rotθ(p3) ∪ Refθ(p3)) ∪ (Rotπ(p3) ∪ Ref0(p3))

∪
⋃

q∈spanR{p1,p2}
(Rotπ(q) ∪ Ref0(q)); (5.16)

(iii) in Case 3.3 in (5.14),

G(Π) = {I,−I, Ref0(p1),Ref0(p2), Ref0(p3), Rotπ(p1), Rotπ(p2), Rotπ(p3)}. (5.17)

Proof: (i) is immediate, so we turn to (ii). In this case, we can write Π = Sdiag(π1, π1, π3)S∗.
By Theorem 2.1, B commutes with such Π if and only if

B = S




c11 c12 0
c21 c22 0
0 0 d


S∗, (5.18)

where C = (cij)i,j=1,2 and d are arbitrary. If we are only interested in orthogonal matrices, this
gives C ∈ O(2), and d = ±1, which corresponds to the subgroup (5.16). Indeed, the matrices
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Rotθ(p3) and Rotπ(p3) in (5.16) account for rotations C ∈ SO(2) and d = 1 in (5.18), Refθ(p3)
and Ref0(p3) in (5.16) account for rotations C ∈ SO(2) and d = −1 in (5.18), and Rotπ(p3) and
Ref0(q), q ∈ spanR{p1, p2}, account for reflections C ∈ O(2)\SO(2) and d = ±1 in (5.18).

Regarding (iii), we can write Π = Sdiag(π1, π2, π3)S∗. By Theorem 2.1, B ∈ O(3) commutes
with such Π if and only if

B = S



±1 0 0
0 ±1 0
0 0 ±1


S∗.

We thus have

G(Π) = {I,−I, Sdiag(−1, 1, 1)S∗, Sdiag(1,−1, 1)S∗, Sdiag(1, 1,−1)S∗,
Sdiag(1,−1,−1)S∗, Sdiag(−1, 1,−1)S∗, Sdiag(−1,−1, 1)S∗},

as stated. 2

The expressions (5.15), (5.16) and (5.17) describe the only possible structures for G(Π), all of
them, as shown below, being symmetry groups of some non-empty subclass of OFBMs. However,
new symmetry groups may arise when one considers intersections of G(Πx) for different values of
x, and also with G(ΠI). In order to provide a full description of symmetry groups of OFBMs in
dimension n = 3, we first consider the case of time reversible OFBMs, before turning to the general
case. As shown in Didier and Pipiras (2010), time reversibility corresponds to the assumption
that

=(AA∗) = 0. (5.19)

Under (5.19), the presence of G(ΠI) in (3.13) and (3.17) can be ignored.

Theorem 5.2 Consider an OFBM given by the spectral representation (1.3), and suppose that the
matrix A satisfies the assumptions (2.4) and (5.19). Then, its symmetry group GH is conjugate
by a positive definite matrix W to one of the following:

(3.a) minimal type: {I,−I};
(3.b) for some vector p,

{I,−I, Ref0(p), Rotπ(p)};

(3.c) for some orthogonal p1, p2, p3,

{I,−I,Ref0(p1), Ref0(p2), Ref0(p3), Rotπ(p1), Rotπ(p2),Rotπ(p3)};

(3.d) for some orthogonal p1, p2, p3,

{I,−I} ∪ (Rotθ(p3) ∪ Refθ(p3)) ∪ (Rotπ(p3) ∪ Ref0(p3)) ∪
⋃

q∈spanR{p1,p2}
(Rotπ(q) ∪ Ref0(q));

(3.e) maximal type: O(3).
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Proof: Recall that, under (5.19), the symmetry group GH is conjugate to ∩x>0G(Πx). By
Proposition 5.2, G(Πx) can only be of the forms (5.15), (5.16) and (5.17). The proof is now split
into the following cases.

Case 1: for some x > 0, G(Πx) has the form (5.17). Since the intersection with some other
G(Πx′) can only reduce the group, ∩x>0G(Πx) can be only of types (3.a), (3.b) or (3.c), where
(3.b) is a consequence of intersecting (5.17) with some appropriate (5.17).

Case 2: all G(Πx) are the same and have the form (5.16). This gives type (3.d).
Case 3: there are x1 6= x2 and two different G(Πx1) and G(Πx2) such that both have the form

(5.16). Let p1,1, p1,2, p1,3 and p2,1, p2,2, p2,3 be the corresponding orthonormal vectors in (5.16).
For G(Πx1) and G(Πx2) to be different, the corresponding axis spanR{p1,3} and spanR{p2,3}
have to be different. Then, G(Πx1) ∩ G(Πx2) is of type (3.a), (3.b) or (3.c), if, respectively,
p2,3 /∈ spanR{p1,1, p1,2}, p2,3 ∈ spanR{p1,1, p1,2}\(spanR{p1,1} ∪ spanR{p1,2}), p2,3 ∈ spanR{p1,1} ∪
spanR{p1,2}. Regarding type (3.b), further intersections may only result in type (3.b) again or
type (3.a). Regarding type (3.c), one is thus back to Case 1.

Case 4: For all x > 0, G(Πx) has the form (5.15). This gives type (3.e). 2

We now provide examples of OFBMs of the types (3.b), (3.c) and (3.d), thereby showing that
all the types described in Theorem 5.2 are non-empty.

Example 5.3 (Type (3.b)) Consider the OFBM with spectral representation parameters A := I
and

D =




d 0 0
1 d 0
0 0 d


 .

By Theorem 3.1, we may assume that the positive definite conjugacy associated with G(BH) is
W = I. Observe that

Πx = x−Dx−D∗ = x−2d




1 − log(x) 0
− log(x) log2(x) + 1 0

0 0 1


 .

Due to the block-diagonal shape of x−Dx−D∗ , it suffices to focus on its 2 × 2 upper left block.
Consider x = e−1, e. The associated 2× 2 blocks, i.e.,

(
1 1
1 2

)
,

(
1 −1
−1 2

)
,

have pairwise different eigenvalues. Moreover, they do not share eigenvectors, since otherwise
they would commute. As a consequence, by Proposition 5.2, they are of the form (3.b) with
p = (0, 0, 1)′.

Example 5.4 (Type (3.c)) Consider the OFBM with spectral representation parameters

D = diag(d1, d2, d3), A = diag(a1, a2, a3), (5.20)

where di 6= dj , i 6= j. Then, AA∗ = diag(|a1|2, |a2|2, |a3|2) = <(AA∗), =(AA∗) = 0 and Πx =
diag(x−2d1 , x−2d2 , x−2d3). This yields

GH = {I,−I, Ref0(e1), Ref0(e2),Ref0(e3), Rotπ(e1), Rotπ(e2),Rotπ(e3)}, (5.21)

where e1 = (1, 0, 0)′, e2 = (0, 1, 0)′, e3 = (0, 0, 1)′.
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Example 5.5 (Type (3.d)) Consider the OFBM with spectral representation parameters

D = diag(d1, d1, d3), A = diag(a1, a2, a3), (5.22)

where d1 6= d3. Then, AA∗ = diag(|a1|2, |a2|2, |a3|2) = <(AA∗), =(AA∗) = 0 and Πx =
diag(x−2d1 , x−2d1 , x−2d3). This yields

GH = {I,−I} ∪ (Rotθ(e3) ∪ Refθ(e3)) ∪ (Rotπ(e3) ∪ Ref0(e3)) ∪
⋃

q∈span{e1,e2}
(Rotπ(q) ∪ Ref0(q)),

(5.23)
where e1, e2, e3 are as in Example 5.4.

We now extend Theorem 5.2 to the general case of OFBMs which are not necessarily time
reversible, i.e., we drop the assumption (5.19). From the perspective of the structural result
provided by Theorem 3.1, the lack of time reversibility manifests itself as an additional constraint
which may reduce the symmetry group, and even generate a new type, as seen in the next theorem.

Theorem 5.3 Consider an OFBM given by the spectral representation (1.3), and suppose that
the matrix A satisfies the assumption (2.4). Then, its symmetry group GH is conjugate by a
positive definite matrix W to the ones described in Theorem 5.2, plus the following:

(3.f) for some vector p,
{I,−I, Ref0(p), Rotπ(p), Refθ(p), Rotθ(p)}.

Proof: If ΠI = 0, then G(ΠI) = O(n). So, assume ΠI 6= 0. Since ΠI ∈ so(3), then there
exists SI := (p1 p2 p3) ∈ O(3) such that ΠI = SIdiag(Ls, 0)S∗I , where Ls 6= 0 has the form (2.5).
Therefore, by Theorem 2.1, we have

G(ΠI) = SIdiag(SO(2),±1)S∗I . (5.24)

For a matrix of the form Odiag(SO(2),±1)O∗ = OUdiag(eiθ, e−iθ,±1)U∗O∗, θ 6= 0, where U =
diag(U2, 1) and U2 is as in (4.14), only the eigenvalue 1 (or −1) is associated with a purely real
eigenvector. As a consequence, the intersection between G(ΠI) and one of the subgroups in
Theorem 5.2 can only be different from (3.a) if the eigenspace associated with 1 or −1 (i.e., the
space generated by the third column of SI) coincides with spanR{p3}.

Thus, by intersecting (5.24) with either (3.b) or (3.c), we obtain (3.b). Moreover, by intersecting
(5.24) with either (3.d) or (3.e), we obtain (3.f). 2

Example 5.6 (Type (3.f)) Analogously to Example 5.1, consider an OFBM with parameters

D = dI, <(AA∗) = I, =(AA∗) = diag(L, 0), L ∈ so(2)\{0},
where d is real. Then, G(Πx) = O(3) and G(ΠI) is as in (5.24).

Theorems 5.2 and 5.3 stand in contrast with Theorem 5.1 in that they show the much greater
wealth of possible symmetry groups in dimension 3 as compared to dimension 2. In a certain sense,
this enhances the claim of Theorem 4.2 in that, notwithstanding the increasing complexity of the
possible symmetry structures as dimension increases, minimal type symmetry groups remain the
topologically general case for any dimension.

We now provide the tangent spaces and exponent sets for each symmetry group with non-
trivial tangent space. The proof is along the lines of that for Proposition 5.1.
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Proposition 5.3 Under the assumptions of Theorem 5.3, for the symmetry groups associated
with non-trivial tangent spaces, the tangent spaces, commuting exponents H0 and sets of exponents
have the form:

(3.d) for some orthonormal p1, p2, p3, and the associated matrix S := (p1 p2 p3),

T (GH) = WSdiag(so(2), 0)S∗W−1,

H0 = WSUdiag(h1, h1, h2)U∗S∗W−1,

E(BH) = WSU(diag(h1, h1, h2) + diag(so(2), 0))S∗W−1,

where U = diag(U2, 1) and U2 is as in (4.14), and h1 ∈ C, h2 ∈ R;

(3.e)
T (GH) = T (SO(3)) = Wso(3)W−1,

H0 = h0I,

E(BH) = h0I + Wso(3)W−1;

(3.f) the same as for (3.d).

Proof: For type (3.d), just note that T (GH) = T (Rotθ(p3)) = WSdiag(so(2), 0)S∗W−1, from
which H0 and E(BH) promptly follow. The same argument holds for type (3.f).

The case of type (3.e) is straightforward, since T (GH) = T (SO(3)). 2

Remark 5.4 In general dimension n, there are no additional difficulties in describing the struc-
ture of groups G(Π) for a fixed symmetric matrix Π. Equivalently, one can generalize Proposition
5.2 to the context of dimension n without much effort. Nevertheless, it is cumbersome to describe
the structure of intersections G(Π1)∩G(Π2), which is needed for the full characterization of sym-
metry groups GH as in (3.13) and (3.17). At this point, a full description of symmetry groups in
general dimension n is an open question.

Remark 5.5 The classification given in Theorem 5.1 stands in contrast with the fact that SO(n)
cannot be a symmetry group for Rn-valued random vectors (Billingsley (1966)). In particular,
SO(2) is not a maximal element of its equivalence class of subgroups in the sense of Meerschaert
and Veeh (1995), p. 2 (not to be confused with the symmetry group of maximal type in Theorem
5.1). However, it turns out that Billingsley’s result is actually almost true for OFBMs, and
more generally, proper zero mean Gaussian processes. In other words, for the latter class of
processes, SO(n) can only be a symmetry group when n = 2 (cf. Theorem 5.3). Indeed, without
loss of generality, assume W = I. Then, it suffices to show that SO(n) ⊆ G(X) implies that
O(n) = G(X) when n ≥ 3. However, the latter equivalence is a consequence of Proposition A.1
in the appendix.
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6 On integral representations of OFBMs with multiple exponents

In this section, we show that when an OFBM has multiple exponents, the matrix A in (1.3) can
be chosen the same, no matter what matrix exponent is used in the parametrization. We also
show that, by contrast, such invariance of the parametrization does not hold for the so-called time
domain representation of OFBM.

We first consider the latter point. Under (1.2) and <(h) 6= 1/2 for any eigenvalue h of H, the
OFBM {BH(t)}t∈R also admits an integral representation in the time domain, i.e.,

{BH(t)}t∈R
L=

{∫

R
(((t− u)

H− 1
2
I

+ − (−u)
H− 1

2
I

+ )M+ + ((t− u)
H− 1

2
I

− − (−u)
H− 1

2
I

− )M−)B(du)
}

t∈R
,

(6.1)
where M+, M− ∈ M(n,R), and {B(u)}u∈R is a vector-valued process consisting of independent
Brownian motions and such that EB(du)B(du)∗ = du (Didier and Pipiras (2010)). The following
example shows that, in general, the matrix parameters M+, M− cannot be chosen independently
of the exponent.

Example 6.1 Consider a bivariate OFBM BH with the time domain representation (6.1), where
D = dI, d ∈ (−1/2, 1/2)\{0} (or H = hI, h ∈ (0, 1)\{1/2}), M+ = O ∈ SO(2) and M− = I.
Since rotation matrices commute, it follows directly from (6.1) that

SO(2) ⊆ GH . (6.2)

The relation (6.2) implies that T (SO(2)) = so(2) ⊆ T (GH). Hence, in view of (1.5),

H + Lc, c ∈ R, (6.3)

are the exponents of the OFBM BH , where Lc ∈ so(2) is given in (2.5). Thus, the OFBM BH

has the time domain representation

{BH(t)}t∈R
L=

{∫

R
(((t− u)D+Lc

+ − (−u)D+Lc
+ )M+ + ((t− u)D+Lc− − (−u)D+Lc− )M−)B(du)

}
t∈R

,

(6.4)
where M+ = M+(c), M− = M−(c). We want to show that one cannot generally take the original
parameters M+ = O, M− = I in the representation (6.4).

Arguing by contradiction, suppose that M+ = O, M− = I in (6.4) lead to the same OFBM
for any c ∈ R. In the spectral domain, these processes have the representation

∫

R

eitx − 1
ix

(x−D−Lc
+ A + x−D−Lc− A)B̃(dx), (6.5)

where B̃(dx) is as in (1.3), and

A =
1√
2π

Γ(D + Lc + I)(e−iπ(D+Lc)/2O + eiπ(D+Lc)/2I)

(see Theorem 3.2 and its proof in Didier and Pipiras (2010)). Note that x−Lc commutes with A,
A and hence (−Lc) can be removed from the exponents of x+, x− in (6.5). Then, if (6.5) is the
same process for all c ∈ R, the matrix

(2π)AA∗ = Γ(dI + Lc + I)(e−iπ(dI+Lc)/2O + eiπ(dI+Lc)/2I) ·
·(O∗eiπ(dI+L∗c)/2 + Ie−iπ(dI+L∗c)/2)Γ(dI + Lc + I)∗

= Γ(dI + Lc + I)Γ(dI + Lc + I)∗(e−iπdIO + eiπdIO∗ + e−iπLc + eiπLc) (6.6)
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does not depend on c. Note that

Γ(dI + Lc + I)Γ(dI + Lc + I)∗ = U2diag(|Γ(d + ic + 1)|2, |Γ(d + ic + 1)|2)U∗
2 = |Γ(d + ic + 1)|2I,

where U2 is as in (4.14) and Γ(d+ic+1) is the univariate Gamma function evaluated at d+ic+1 ∈
C. Writing O = U2diag(eiβ, e−iβ)U∗

2 , for some β ∈ (0, 2π)\{π}, the matrix (6.6) becomes

U2diag(f(d, c, β), f(d, c, β))U∗
2 ,

where
f(d, c, β) := |Γ(d + ic + 1)|2

(
e−iπdeiβ + eiπde−iβ + eπc + e−πc

)
.

However, the function f(d, c, β) does depend on c, as can be easily verified (contradiction).

The following result shows that, for a given OFBM, one can take the same parameter A in
the spectral representation (1.3) for all exponents H of the OFBM in question.

Theorem 6.1 Let BH be an OFBM having the spectral representation (1.3). If Hλ,Hη ∈ E(BH)
and Aλ, Aη are the two matrix parameters in (1.3) associated with Hλ, Hη, respectively, then

AλA∗λ = AηA
∗
η. (6.7)

In particular, one may choose the same matrix parameter A in (1.3) for every choice of H ∈
E(BH).

Proof: It is enough to show (6.7) with a commuting exponent Hη := H0 (see (5.10)) and the
associated matrix Aη := A0. For simplicity, let H = Hλ, A = Aλ. We know that

H −H0 = D −D0 =: ∆ ∈ WL0W
−1 = T (GH),

where L0 ⊆ so(n). We can thus write ∆ = WLW−1 with L ∈ so(n). The uniqueness of the
spectral density of OFBM implies that, for x > 0,

x−DAA∗x−D∗ = x−D0A0A
∗
0x
−D∗0 ,

or
x−(D0+∆)AA∗x−(D0+∆)∗ = x−D0A0A

∗
0x
−D∗0 .

Since D0 is a commuting exponent and ∆ ∈ T (G1), then D0 and ∆ commute. Hence,

x−D0x−∆AA∗x−∆∗x−D∗0 = x−D0A0A
∗
0x
−D∗0

and
x−∆AA∗x−∆∗ = A0A

∗
0,

i.e.,
x−LW−1AA∗W−1xL = W−1A0A

∗
0W

−1.

By differentiating with respect to x, we further obtain

L(W−1AA∗W−1) = (W−1AA∗W−1)L,

that is, L and W−1AA∗W−1 commute. Then,

W−1AA∗W−1 = W−1A0A
∗
0W

−1

or AA∗ = A0A
∗
0. The last statement of the theorem follows from (6.7). 2
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A Auxiliary results on matrix commutativity

We begin by proving Lemma 2.1. The argument draws upon Theorem 2.1.

Proof of Lemma 2.1: Since Γ commutes with A, then it is diagonalizable over C. Assume
by contradiction that one of the eigenvalues of Γ, denoted λ1, is different from all the others.
Then, for an associated eigenvector, denoted v1, the one-dimensional eigenspace spanC(v1) is by
Theorem 2.1 an eigenspace of both Γ and A. If Γ also commutes with B, then by the same
argument spanC(v1) must also be an eigenspace of B, i.e., A and B share an eigenvector (contra-
diction). 2

The next proposition is used in Remark 5.5. It shows that, for n ≥ 3, the group SO(n) is so
rich that only a matrix which is a multiple of the identity can contain it in its centralizer. For
n = 2, one needs to consider instead the entire orthogonal group.

Proposition A.1 Let Γ ∈ M(n,R). Then, Γ = λI, λ ∈ R, if one of the following assumptions
holds:

(i) for n = 2, if C(Γ) ⊇ O(n);

(ii) for n ≥ 3, if C(Γ) ⊇ SO(n).

Proof: We only prove (ii). Without loss of generality, assume n is even. We can take some
O1 ∈ SO(n) such that

O1 = PUdiag(eiθ1 , e−iθ1 , eiθ2 , e−iθ2 , ..., eiθn/2 , e−iθn/2)U∗P ∗, θ1, θ2, ..., θn/2 ∈ (0, 2π)\{π},
where P ∈ O(n), U = diag(U2, . . . , U2), and U2 is as in expression (4.14). Now choose another
O2 ∈ SO(n) such that

O2 = QUdiag(eiµ1 , e−iµ1 , eiµ2 , e−iµ2 , ..., eiµn/2 , e−iµn/2)U∗Q∗, µ1, µ2, ..., µn/2 ∈ (0, 2π)\{π},
where no column vector of Q ∈ O(n) can be written as a linear combination of two column vectors
of P (this can be obtained by slightly perturbing the matrix P , since n ≥ 3). By considering the
matrices PU and QU , we can see that

p2j−1 ± ip2j , q2k−1 ± iq2k, j, k = 1, ...,
n

2
, (A.1)

are eigenvectors of O1 and O2, respectively.
We claim that O1 and O2 have no (complex) eigenvectors in common. In fact, if they did,

then for some pair j, k there would exist z ∈ C such that

z(p2j−1 + ip2j) = q2k−1 + iq2k

(without loss of generality, we only take + signs in (A.1)). Thus,

<(z)p2j−1 −=(z)p2j = q2k−1, <(z)p2j + =(z)p2j−1 = q2k,

which contradicts our assumption on Q.
Thus, if some Γ ∈ GL(n) commutes with O1 and O2, then by Lemma 2.1 it must have the

form Γ = λI, λ ∈ R. 2
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B Other results on the convergence of eigenvalues and eigenvec-
tors

The first lemma shows that the convergence of matrices implies the convergence of the eigenvalues.
The second shows that, under more stringent assumptions, it also implies the convergence of the
eigenspaces.

Lemma B.1 Let {Ak}k∈N, A0 ∈ M(n,C), and assume that Ak → A0. Then, the eigenvalues of
Ak converge to those of A0, i.e., one can form a sequence {(λ1

k, . . . , λ
n
k)}k∈N ⊆ Cn of eigenvalues

of Ak, k ∈ N, such that
(λ1

k, . . . , λ
n
k) → (λ1

0, . . . , λ
n
0 ), (B.1)

where the vector on the right-hand side of (B.1) is made up of eigenvalues of A0.

Proof: Define the class of polynomials

fk(λ) = det(Ak − λI), λ ∈ C, k ∈ N ∪ {0}.

Since Ak → A0, then by the continuity of the determinant function, fk → f0 pointwise. Thus,
the roots of the polynomials fk must converge pointwise to those of f0. 2

Lemma B.2 Let {Ak}k∈N, A0 ∈ M(n,C) such that A0 has pairwise different eigenvalues. As-
sume that Ak → A0. Then, for the sequence of eigenvalues in (B.1), there exists a sequence of
conjugacies {Pk}k∈N ⊆ GL(n,C) such that

Ak = Pkdiag(λ1
k, . . . , λ

n
k)P−1

k

and Pk → P for some P ∈ GL(n,C). Moreover, the columns of the limiting matrix P are, in
fact, eigenvectors of A0.

Proof: For j = 1, . . . , n, take an associated eigenvector pj
k ∈ Sn−1, and also denote by pj

0 ∈ Sn−1

an eigenvector of A0 associated with the eigenvalue λj
0. Assume by contradiction that {pj

k}
converges neither to pj

0 nor to −pj
0, i.e., there exists ε0 > 0 and a subsequence {pj

k′} such that
∥∥∥pj

k′ − pj
0

∥∥∥ ≥ ε0,
∥∥∥pj

k′ − (−pj
0)

∥∥∥ ≥ ε0.

Since {pj
k′} ⊆ Sn−1, one can extract a further subsequence {pj

k′′} which is convergent, i.e.,

pj
k′′ → p′′ ∈ Sn−1, p′′ /∈ {pj

0,−pj
0}.

Therefore,
Ak′′p

j
k′′ = λj

k′′p
j
k′′ ,

where
Ak′′p

j
k′′ → A0p

′′, λj
k′′p

j
k′′ → λj

0p
′′.

Thus, p′′ ∈ Sn−1 is an eigenvector of A0 associated with the eigenvalue λj
0. However, since the

eigenvalues of A0 are pairwise different, then p′′ ∈ {pj
0,−pj

0} (contradiction). 2
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