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Abstract—In the modern world, systems are routinely mon-
itored by multiple sensors. This generates “Big Data” in the
form of large collections of time series. On the other hand, scale-
invariant (fractal) systems are of great interest in signal process-
ing since they naturally emerge in several fields of application.
In this work, we put forward an algorithm for the statistical
identification of high-dimensional self-similarity. In the threefold
limit as dimension, sample size and scale go to infinity, the method
builds upon spectral clustering applied to large wavelet random
matrices to consistently estimate the Hurst modes (exponents)
and, hence, characterize high-dimensional self-similarity. Monte
Carlo simulations show that the proposed methodology is efficient
for realistic sample sizes.

I. INTRODUCTION

Context: scale invariance. Scale invariance has been
observed in signals obtained from a wide variety of contexts
in physics and engineering [1], [2]. Unlike with many
classical statistical mechanical systems, a signal X is called
scale-invariant, or fractal, when its temporal dynamics lack
a characteristic scale. In this case, modeling revolves around
scaling exponents, since they characterize how the behavior
of the system is related across a continuum of scales. A
cornerstone model of scale invariance is fractional Brownian
motion (fBm) [3]. FBm is the only Gaussian, stationary-
increment, self-similar process. The latter property means that
its finite-dimensional distributions (f.d.d.) are scale-invariant,
i.e., {BH(t)}t∈R

f.d.d.
= {aHBH(t/a)}t∈R, a > 0, where the

scaling exponent 0 < H < 1 is called the Hurst parameter.
The estimation of H plays a key role in signal processing
tasks such as characterization, diagnosis, classification and
detection. The so-named wavelet transform provides the
analytical basis for well-established estimation methodologies
for H [4].
Challenge: high-dimensional time series. The modeling
of self-similarity in applications has remained so far based
on the univariate fBm model. Yet, in the modern world
of “Big Data,” a plethora of sensors monitor natural and
artificial systems, generating large data sets in the form of
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several joint time series. In neuroscience, for example, the
number of macroscopic brain activity time series ranges from
hundreds (MEG data) to several tens of thousands (fMRI
data) [2]. In climate studies, dealing with large numbers of
measured components has become standard [5]. For such
high-dimensional data, a multitude of scaling laws – i.e.,
Hurst multimodality – implies distinct large-scale behavior
along possibly non-canonical coordinate axes. Ignoring Hurst
multimodality in data may also lead to arbitrarily large
estimation biases [6], [7].

Related work: self-similarity in high dimensions. The re-
cently proposed operator fractional Brownian motion (ofBm)
[8]–[10] provides the fundamental scale-invariant model in a
high-dimensional time series setting [6]. The use of ofBm in
applications leads to a critical question: how many different
scaling laws exist in the possibly very large number of time
series? The so-named wavelet eigenanalysis methodology [6],
[7] is founded in the behavior of the eigenvalues of wavelet
random matrices. It was shown that the methodology provides
efficient and robust estimation of Hurst exponents in both
multivariate and high-dimensional settings – i.e., respectively,
for a fixed number p of time series and as p(n) → ∞ as the
sample size n grows [7], [11], [12].

In the statistical signal processing literature, the problem
of identifying the number and properties of sources in multi-
variate or high-dimensional noisy signals has been studied for
decades [13]–[16]. Examples of the proposed techniques in-
clude principal component analysis, factor analysis and sparse
graphical Gaussian models [17]. Nevertheless, there has been a
paucity of estimation methodologies for both high-dimensional
and scale-invariant signals. Efforts in this direction include
[18], [19]. The study of high-dimensional limits is a key issue
both in theory and in applications involving scale invariance.
In fact, in multiscale analysis, the ratio between the sample
size and the scale of analysis is inherently not large compared
to the number of components at coarse scales. A key related
difficulty is the study of random matrices under temporal
dependence [20]–[22].
Spectral clustering and wavelet random matrices. Part of



the motivation for this article is finite-sample performance.
It is well-known that the graph Laplacian (matrix) bridges
the gap between useful low-dimensional representations, such
as graphs, and complex objects, such as manifolds [23].
In the context of wavelet random matrices, even though
the logarithmic empirical spectral distribution (log-e.s.d.)
ultimately converges to a measure π(dH) [24], in modeling
such convergence can be a delicate issue both in statistical and
numerical senses. Nevertheless, the graph Laplacian-based
spectral clustering method, from the Machine Learning
literature [25], [26], holds promise as a way of tackling
the issue. This is so because it can be used in converting
the estimation of the measure π(dH) into the quantifiable
detection of a finite number of (Hurst) modes.

Goal, contributions and outline. The goal of this work is
to put forth and study the properties of a spectral clustering-
based algorithm for identifying high-dimensional fractality as
characterized by the distribution of Hurst exponents. This is
done in the context of the three-way limit as the sample size,
the number of components and the scale go to infinity at a fixed
rate. To this end, the definitions and properties of ofBm and
the high-dimensional model are summarized in Sections II-A
and II-B. Wavelet eigenanalysis-based estimation is briefly
sketched in Section II-C. The proposed three-step algorithm
is described in Section II-D. Section III contains the core
contribution of this work. There we explain, first, how the
incorporation of multiscale behavior calls for a modification
of the high-dimensional limits used in random matrix theory.
Second, we describe the high-dimensional behavior of the log-
e.s.d. of wavelet random matrices. Third, we establish the
consistency of the proposed algorithm.

Furthermore, these theoretical results are tested in practice
by means of extensive Monte Carlo simulations based on
synthetic ofBm sample paths (Section IV-A). First, we use
simulations to visualize high-dimensional fractality and ob-
serve the clustering problem at hand (Section IV-B). Second,
we test the proposed algorithm’s practical performance (Sec-
tion IV-C). The reported results demonstrate that the proposed
algorithm has satisfactory performance over samples of the
sizes typically encountered in neuroscience (cf. [2]) and can
be readily applied to real-world high-dimensional data.

II. SELF-SIMILARITY ANALYSIS AND MODELING

A. Operator fractional Brownian motion

Operator fractional Brownian motion (ofBm) is a canonical
model for multidimensional scale-invariant structures in real-
world data. We briefly recall its definition and some properties
(see [9] for the general definition and properties of ofBm).

Let BH,Σ(t) =
(
BH1

(t), . . . , BHp
(t)

)
t∈R denote a col-

lection of p possibly correlated fBm components defined by
their individual self-similarity exponents H = (H1, . . . ,Hp),
0 < H1 ≤ . . . ≤ Hp < 1. Let Σ be a pointwise
covariance matrix with entries (Σ)ℓ,ℓ′ = σℓσℓ′ρℓ,ℓ′ , where σ2

ℓ

are the variances of the components and ρℓ,ℓ′ their (pairwise)
correlation coefficients. We define ofBm as the stochastic
process BP,H,Σ(t) := PBH,Σ(t), where P is a real-valued,

p×p invertible matrix that mixes the components (changes the
scaling coordinates) of BH,Σ(t). OfBm consists of a multivari-
ate Gaussian self-similar process with stationary increments.
Moreover, it satisfies the (operator) self-similarity relation

{BP,H,Σ(t)}t∈R
f.d.d.
= {aHBP,H,Σ(t/a))}t∈R, (1)

∀a > 0. In (1), the matrix (Hurst) exponent is given by H =

Pdiag(H)P−1, and aH :=
∑+∞
k=0 log

k(a)Hk/k!, where f.d.d.
=

stands for the equality of finite-dimensional distributions.
B. High-dimensional model

To model the complexity of a high-dimensional fractal
system, and also to reflect the modellers’ ignorance, we
assume Hurst exponents trickle into the system randomly,
based on some unknown distribution. So, let π(dH) be a
discrete distribution of Hurst exponents with ordered support
{H1, . . . ,Hr}, r ∈ N. Given a vector H ∈ (0, 1)p of i.i.d.
samples from π(dH), the process

Y (t) := BP,H,I(t) (2)

as defined in Section II-A is, conditionally on H , a p-
variate ofBm with Hurst matrix H. Given a time series
{Y (t)}t=1,...,n, we further assume p = p(n) → ∞ as
n→ ∞, under which (2) is a high-dimensional model and has
p = p(n) → ∞ Hurst exponents (on models of the general
form (2) under weak dependence, see, for instance, [27]).
C. Scaling in the wavelet domain
Multivariate wavelet transform. Let ψ be a mother wavelet,
i.e., a real-valued function such that

∫
R ψ

2(t)dt = 1. For
all k, j ∈ Z, the multivariate DWT of {Y (t)}t∈R is de-
fined as DY (2

j , k) := (DY1
(2j , k), . . . , DYp

(2j , k)), where
DYℓ

(2j , k) := ⟨2−j/2ψ(2−jt − k)|Yℓ(t)⟩ ∈ R for ℓ ∈
{1, . . . , p}. For a detailed introduction to wavelet transforms,
see [28]. It can be shown that the wavelet coefficients
{DY (2

j , k)}k∈Z of p-variate ofBm Y = BP,H,Σ satisfy,
for every fixed octave j, the operator self-similarity relation
{DY (2

j , k)}k∈Z
f.d.d.
= {2j(H+ 1

2 I)DY (1, k)}k∈Z [6], [7].
Wavelet random matrices and high-dimensional eigenanal-
ysis. Given any p-variate process {Y (t)}t∈R (in particular,
model (2)), the sample wavelet spectrum (variance) at octave
j = j1, . . . , j2 is given by the p× p wavelet random matrices

SY (2
j) =

1

nj

nj∑
k=1

DY (2
j , k)DY (2

j , k)∗ (3)

where n is the time series (sample) size and nj ≃ n/2j

is the number of wavelet coefficients available at scale 2j .
It was shown in [6], [7] that, in general, estimation based
on the entrywise multiscale behavior of SY (2

j) is arbitrarily
biased and effectively meaningless. So, let λ1(2j), . . . , λp(2j)
be the eigenvalues of the random matrix SY (2

j) as in (3).
Notably, it was further shown in [6], [7] that the vector of
Hurst exponents H can be efficiently estimated by means of
the weighted wavelet log-eigenvalues

H̃ℓ =
( j2∑
j=j1

wj log2 λℓ(2
j)
)/

2− 1

2
, ℓ = 1, . . . , p, (4)



where
∑
j wj = 0 and

∑
j jwj = 1. In fact, (4) has good

statistical performance in both Gaussian and non-Gaussian
frameworks [6], [7], [11], [12].

D. Algorithm for the estimation of Hurst modes

In this work, we propose an algorithm for Hurst distri-
bution estimation that comprises three steps. So, let H̃ =
{H̃1, . . . , H̃p} (see (4)). For a fixed threshold ε > 0, we define
Gε(H̃) = (V,E) to be the graph induced by a ε–threshold
where V = H̃ and E = {eH̃i,H̃j

|{|H̃i − H̃j |) < ε, i ̸= j}.

That is, Gε(H̃) is the graph obtained by connecting points H̃i

and H̃j that lie within a distance ε of one another. In particular,
Gε(H̃) has graph Laplacian

Lε(H̃) := Dε(H̃)−Aε(H̃). (5)

In (5), Aε(H̃) :=
[
1{|H̃i−H̃j |<ε, i̸=j}

]
1≤i≤j≤p is the adja-

cency matrix. Also, the degree matrix Dε(H̃) is given by
a diagonal matrix with entries Dε(H̃)ii :=

∑p
j=1Aε(H̃)ij ,

i = 1, . . . , p. Step 1 of the algorithm, depicted next as
pseudocode, uses (5) to construct clusters of estimated Hurst
exponents H̃1, . . . , H̃p.

Step 1 : s p e c t r a l c l u s t e r i n g
Input : ε > 0 and H̃ = {H̃1, ..., H̃p} .
• Compute t h e e i g e n v a l u e s , {θℓ}1≤ℓ≤p , and
c o r r e s p o n d i n g e i g e n v e c t o r s {uℓ}1≤ℓ≤p of Lε(H̃) (5)
• Let r̂ = |{θℓ = 0|1 ≤ ℓ ≤ p}|
• Let U ∈ Rp×r̂ be a m a t r i x wi th columns u1, ...,ur̂

• For i = 1, ..., p , l e t yi ∈ Rr̂ be t h e v e c t o r
c o r r e s p o n d i n g t o t h e i− t h row of U
• Use t h e k−means a l g o r i t h m ( e . g . , [29] )
t o o r g a n i z e t h e p o i n t s {yi}1≤i≤p i n t o c l u s t e r s
C′

1, ..., C
′
r̂

Output : c l u s t e r s C1, ..., Cr̂ wi th Cj = {H̃i|yi ∈ C′
j}

Step 2 of the algorithm, shown next in the form of pseudocode,
constructs an estimate of the Hurst distribution by taking
averages over clusters.

Step 2 : H u r s t d i s t r i b u t i o n e s t i m a t i o n
Input : ε > 0 , c l u s t e r s C1, ..., Cr̂ from Step 1

• For each Ci l e t Ĥi = mean(Ci) and π(Ĥi) = |Ci|/p
Output : e s t i m a t e s Ĥ1, ..., Ĥr̂ and π(Ĥ1), ..., π(Ĥr̂)

Note that Steps 1 and 2 depend on the initial choice of thresh-
old ε > 0. In Step 3, this choice is converted into a model
selection procedure. Given the clusters Cε = {C1, ..., Cr̂}
obtained in Step 2, the criterion for model selection is given
by the so-called intra-cluster standard deviation ICSD(Cε).
More precisely, for mini |Ci| > 1,

ICSD(Cε) =
r̂∑
i=1

( 1

|Ci| − 1

∑
H̃ℓ∈Ci

(H̃ℓ − Ĥi)
2
)1/2

. (6)

Step 3 is described next in the form of pseudocode.

Step 3 : model s e l e c t i o n
Input : M > 0 and m ∈ N .
• For k = 1, ...,m and εk := kM/m , s e t ε = εk and
f o l l o w Steps 1 and 2 t o o b t a i n c l u s t e r s

Cεk = {C1,k, ..., Crk,k} and ICSD(Cεk )
Output : εk∗(n) wi th t h e s m a l l e s t c o r r e s p o n d i n g
ICSD(Cεk )

III. HIGH-DIMENSIONAL LIMITS

A. High dimensions: wavelet log-e.s.d. in the three-way limit

This work involves high-dimensional limits. To be more
precise, recall that in a classical statistical setting the sample
size goes to infinity whereas the number of components
remains fixed, i.e., n→ ∞ and p = p0. By contrast, in high-
dimensional settings one often considers the two-way limit
limn→∞ p(n)/n = c ∈ [0,∞), e.g., for sample covariance
matrices [30].

On the other hand, modeling scale-invariance by means of
(4) further calls for the scaling limit (j1, j2) → ∞. Hence,
overall the analysis of high-dimensional fractal behavior by
means of large wavelet random matrices involves considering
the nonstandard, three-way limit

n, p, j → ∞,
p

n/2j
→ c ∈ [0,∞) (7)

(see [7], [24], [31]). Providing results in the framework of (7)
is a non-trivial contribution of this paper, both theoretically
and numerically.

B. High-dimensional fractality: the Hurst exponents distribu-
tion

Mathematical results in [7], [24], [31] imply that, in the
three-way limit (7) and under (2), the eigenvalues of the
sample wavelet spectrum behave as

log2 λℓ(2
j)

j
= 2Hℓ + 1 + oP(1), (8)

ℓ = 1, . . . , p, where oP(1) vanishes in probability. In fact,
eigenvalue scaling relations of the type (8) are shown to hold
for several high-dimensional instances, such as in the case of
the wavelet eigenvalue bulk behavior for (2) (see [24]) as well
as for non-Gaussian signal-plus-noise models (see [7], [31]).

Recall the fundamental properties of the graph Laplacian L,
namely: (GL1) if the underlying graph G is a disjoint union of
simple graphs G1, . . . , Gκ, then dim Ker(G) = κ; (GL2) the
number of non-zero entries of each eigenvector uℓ in Ker(L)
is equal to the number of vertices in Gℓ.

So, assume measurements are given by the high-
dimensional model (2). Fix ε > 0. Because of (8) as well as
of (GL1) and (GL2), Steps 1 and 2 of the algorithm generate
clusters of wavelet log-eigenvalues that, with probability going
to 1, eventually decouple and coalesce around each Hurst
mode H1, . . . ,Hr. Moreover, based on Step 3, choosing
ε > 0 by means of minimizing ICSD(Cε) enforces near-
optimal clustering over finite n. This way, we obtain the key
result of this paper [32].
Fundamental property of the Hurst distribution estimation
algorithm: The dimension r̂ of the kernel of the graph
Laplacian converges in probability to the number r of Hurst
modes. Moreover, for each eigenvector u1, . . . ,ur̂ in the
kernel of Lεk∗(n)

(H̃), the proportion of non-zero entries of



Fig. 1. Distribution of weighted wavelet log-eigenvalues H̃q in the three-
way limit limn→∞ p 2j/n. The measurements are given by a p−variate
ofBm conditionally on the Hurst matrix H = Pdiag(H1, . . . , Hp)P−1 ∈
Rp2 . (Top row, bimodal) Left and right plots, respectively: H1, . . . , Hp are
sampled from π(dH) supported on {0.25, 0.29} and {0.25, 0.32}. For a
small difference in Hurst modes, ∆ = 0.04, although bimodal, visually the
distribution appears unimodal (left). However for a sufficiently large difference
in Hurst modes, ∆ = 0.07, a bimodal distribution appears (right). (Bottom
row, trimodal) Left and right plots, respectively: H1, . . . , Hp are sampled
from π(dH) supported on {0.25, 0.29, 0.7} and {0.25, 0.32, 0.7}. For small
minimum difference in Hurst modes, H2 − H1 = 0.03, although trimodal,
visually the distribution appears bimodal (left). However for a sufficiently
large difference in Hurst modes, H2 − H1 = 0.07, a trimodal distribution
appears (right).

ui, i = 1, . . . , r, converges in probability to π(Hi), and also
Ĥi

P→ Hi.
This key theoretical result is further inspected by means of

simulations in Section IV-C and is illustrated in Fig. 2.

IV. FINITE-SAMPLE PERFORMANCE ASSESSMENT

A. Monte Carlo simulation setting

To assess the practical relevance of the theoretical results
stated in Section III, we make use of Monte Carlo simulations
based on 1000 independent realizations of p-variate measure-
ments BP,H,I = PBI,H,I , where P is a randomly chosen or-
thogonal matrix and {BI,H,I(t)}t∈R made up of independent
univariate fBms with n = 214 (such sample sizes are realistic,
for example, in the context of the analysis of infraslow brain
activity [2]). The univariate fBms are generated using the R
package somebm (see [33]). The p-dimensional vector H is
obtained by drawing p i.i.d. samples from Unif(H1, H2), for
each realization independently. Here, we limit ourselves to
the consideration of H1 = 0.25, and H2 = 0.25 + ∆, with
∆ ∈ [0.0, 0.10]. The wavelet transformation is generated by
means of Mallat’s algorithm based on a Daubechies filter with
Nψ = 2. In our simulations, we set the dimension to p = 26.
The range of regression scales is chosen to be j1 = 2 to
j2 = 5. Hence, p/nj < 1 for j = j1, . . . , j2, implying that all
the wavelet random matrices used in the regression procedure
have full rank. In Step 3, m = 10 and M is heuristically
picked to be M := log2

(
λp(2

1)
λ1(21)

)
1
j2

. From [24] it follows that
such an M is a reasonable upper bound for the width of the
wavelet log-e.s.d.

Fig. 2. Algorithm performance analysis (top plot). Proportion of correct
identification of the number of Hurst modes over 1000 Monte Carlo runs.
(Blue) The proposed method (Red) Gaussian mixture model-based clustering.
Optimal ε > 0 chosen via model selection (bottom plot). The average
ε computed over 1000 Monte Carlo simulations chosen by means of model
selection that provides the smallest ICSD.

B. High-dimensional fractality in practice

To illustrate the practical relevance of the property (8) and
the clustering problem at hand, Fig. 1 provides an example
of the high-dimensional behavior of the wavelet log-e.s.d. In
both plots, top row, the true distribution of Hurst exponents
is bimodal. However, for small ∆ (∆ = 0.04), the wavelet
log-eigenvalue distribution visually appears unimodal. This
contrasts with large ∆ (∆ = 0.07). There, a strikingly bimodal
distribution emerges in the wavelet eigenspectrum (right). An
analogous phenomenon is observed for trimodal instances
(Fig. 1, bottom row).

C. Estimation performance

To evaluate the performance of the proposed algorithm, we
test it for a variety of bimodal Hurst distributions π(dH).
For each distribution, we compute the accuracy of spectral
clustering by means of verifying if r̃ = r := |supp π(dH)|.
We compare the proposed spectral clustering-based method
with the so-named Gaussian mixture mode-based clustering
(GMM) [34]. The R package mclust [35] is used to im-
plement GMM-based clustering. GMM is based on parame-
terized finite univariate Gaussian mixture models. Models are
estimated by EM algorithm (Expectation-Maximization) ini-
tialized by hierarchical model-based agglomerative clustering.
The optimal model is then selected according to BIC.

For π(dH) = Unif(H1, H2), the results are reported in
Fig. 2. They show that the proposed method begins to correctly
identify two modes near ∆ = 0.05, and consistently identifies
two modes when ∆ ≥ 0.075. This stands in contrast to GMM’s
capabilites. That is, GMM begins to correctly identify two
modes near ∆ = 0.07, and consistently identifies two modes
when ∆ ≥ 0.085.



The choice of threshold ε > 0, following Step 3, is reported
in Fig. 2. The results are consistent with Fig. 1. In fact,
for ∆ < 0.05 the proposed algorithm consistently fails to
correctly identify r. Accordingly, from Fig. 1 (top left) the
wavelet log-e.s.d. is visually unimodal (i.e., unimodality is
the “best” model). Hence, a larger ε is necessary to capture
this unimodality. By contrast, for ∆ > 0.7, the proposed
method identifies r correctly as the wavelet log-e.s.d. appears
appropriately bimodal (Fig. 1, right). Accordingly, the model
selection procedure (Step 3) picks a smaller ε.

Overall, these results confirm that the proposed algorithm
is operational, has satisfactory statistical performance and can
be readily applied in the study of high-dimensional fractality.

V. CONCLUSIONS AND PERSPECTIVES

In this paper, we build upon wavelet random matrices
and the spectral clustering method to construct a three-step
algorithm for the identification of high-dimensional fractal
systems. In the threefold limit as dimension, sample size and
scale go to infinity, the method consistently estimates the
Hurst modes. In addition, Monte Carlo simulations for realis-
tic sample sizes demonstrate that the proposed methodology
displays efficient and robust finite-sample performance in the
estimation of the Hurst distribution.

Real data modeling calls for the investigation of the more
general case where the components of Y (t) in (2) are not
conditionally Gaussian, or are perturbations thereof. This
requires further mathematical efforts beyond the scope of this
article. Future work also includes applications in the analysis
of neuroscientific data, following up on studies such as [36].
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B. Rudolf, V. Pavan, C. Cacciamani, G. Antolini, S. M. Ratto, and
M. Munari, “The climate of daily precipitation in the Alps: development
and analysis of a high-resolution grid dataset from pan-Alpine rain-
gauge data,” Int. J. Climatol., vol. 34, no. 5, pp. 1657–1675, 2014.

[6] P. Abry and G. Didier, “Wavelet estimation for operator fractional
Brownian motion,” Bernoulli, vol. 24, no. 2, pp. 895–928, 2018.

[7] P. Abry and G. Didier, “Wavelet eigenvalue regression for n-variate
operator fractional Brownian motion,” J. Multivar. Anal., vol. 168, pp.
75–104, November 2018.

[8] J. D. Mason and Y. Xiao, “Sample path properties of operator-self-
similar Gaussian random fields,” Theory Probab. Appl., vol. 46, no. 1,
pp. 58–78, 2002.

[9] G. Didier and V. Pipiras, “Integral representations and properties of
operator fractional Brownian motions,” Bernoulli, vol. 17, no. 1, pp.
1–33, 2011.

[10] G. Didier and V. Pipiras, “Exponents, symmetry groups and classifica-
tion of operator fractional Brownian motions,” J. Theor. Probab., vol.
25, pp. 353–395, 2012.

[11] P. Abry, H. Wendt, and G. Didier, “Detecting and estimating multivariate
self-similar sources in high-dimensional mixtures,” in IEEE Stat. Signal
Process. Workshop, 2019, pp. 1–5.

[12] B.C. Boniece, H. Wendt, G. Didier, and P. Abry, “On multivariate
non-Gaussian scale invariance: fractional Lévy processes and wavelet
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