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Hydrodynamic effects of spines:

A different spin

Hoa Nguyen,1 Lee Karp-Boss,2 Peter A. Jumars,2 and Lisa Fauci3

Abstract

Many small planktonic organisms bear spines, some of whose potential functions have been explored,

for example, in increasing drag during gravitational settling or in defense against predators. Using an

immersed boundary framework, we performed computational fluid dynamic simulations that examine

the rotational dynamics of model diatoms in shear flows with varying spine number, length, and angle.

We found that the motion of spined cells could be accurately predicted from simple theory for motion of

spheroids by applying that theory to the smallest spheroid that could inscribe the cell inclusive of its

spines. The poorest fits were for small numbers or extreme angles of spines that left large volumes of the

inscribing spheroid unoccupied by any spines. Although the present work provides a simple means of

predicting motions of rigid, spined cells in shear flows, the effects of spines on nutrient exchange remain

to be explored.
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Introduction

[1] Spines and other cell projections are com-

mon and notable features in vegetative cells

and cysts of several groups of phytoplankton

(Thomas 1997). These structures, which can

be several times longer than the diameter of

the cell, substantially increase the effective size

of the cell with relatively little addition of mass.

Various functions or adaptive values that are

not mutually exclusive have been posited for

such features in small plankton belonging to

diverse protist and animal taxa. Depending on

the balance between added drag and added ex-

cess density, spines and other protuberances can

slow gravitational settling (Furbish and Arnold

1997; Padisák et al. 2003) and can serve as de-

fense mechanisms against grazers (Stemberger

and Gilbert 1984). Some laboratory experi-

ments, however, have shown higher filtration

rates on cells with spines than on cells of the

same species that lack spines (Gifford et al.

1981), presumably because the added length

or altered behavior of spined cells in feeding

currents may increase the encounter rate with

predators.

[2] In a seminal paper, Jeffery (1922) used

the ratio of the two different axis lengths de-

scribing a spheroid to predict the rate at

which spheroidal particles tumble when placed

in uniform, steady shear. Consequences of such

tumbling are significant because cell encounters

with molecules of nutrients and infochemicals

and with neighboring cells and grazers all de-

pend on the differential motion of the cell from

its surrounding fluid (Karp-Boss et al. 1996;

Kiørboe 2008). Diffusion is enhanced during
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tumbling not by any particular orientation but by rapid

change in orientation that causes fluid exchange near

the cell (Pahlow et al. 1997; Musielak et al. 2009).

[3] Spines are expected to affect such motions of

organisms in natural flows because they can markedly

change the aspect ratio of the cell, literally levering it. In

an in vivo laboratory study, rigid chains of diatoms in a

simple shear flow moved approximately as predicted by

Jeffery (1922), but the motion of flexible chains with

spines deviated from theoretical predictions (Karp-Boss

and Jumars 1998). To represent a common spine mor-

phology, we chose the diatom genus Thalassiosira, which

is widespread in the world’s oceans. Cells are discoidal

or cylindrical, and external siliceous tubes (spines) proj-

ect from each valve (Fig. 1). The tubes are arranged in a

ring around the rim of the valve or in groups on the

valve face, with considerable variation within the genus

(Round et al. 1990). Organic threads may be extruded

from the tube, but in this first study we represented

spines and the cell as being rigid. Also for simplicity,

we refer to all cell projections as spines even though a

variety of terms has been used in the literature to de-

scribe these structures (Zugger et al. 2008). We expected

spines to affect cell motion in natural flows because,

at low particle Reynolds numbers, flow perturbations

propagate large distances and because drag of slender

bodies such as spines depends strongly on their orien-

tation to the flow. We therefore undertook a numerical

study to examine how the number, length, and orien-

tation of spines affect the motion of a discoidal cell in a

flow. We focused on a simple shear flow because of its

predominance in past experiments and because verified

predictive theory exists for spheroids (Jeffery 1922).

Methods

[4] We solved the full, three-dimensional Navier-Stokes

equations that govern incompressible, viscous flow to

model the dynamics of a cell moving in a shear flow.

We used an immersed boundary framework (Peskin

1977, 2002) to capture the interaction of the complex

cell geometry with the surrounding fluid. The surfaces

of the cell and associated spines were discretized as a

network of points connected mechanically by virtual

“springs.” For these first models, spring stiffnesses

were chosen large enough

so that the cell did not

deform in response to

the moving fluid. We

employed an adaptive

and parallel implemen-

tation of the immersed

boundary method,

IBAMR (Griffith et al.

2007), to compute flow

near the cell with high

resolution.

[5] We validated our

numerical approach by

checking whether a mod-

eled ellipsoid immersed in

a shear flow behaved as

predicted by theory (Jeff-

ery 1922) and whether

the period of rotation of

a modeled flat disk im-

mersed in a shear flow

agreed with experimental
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Fig. 1 Thalassiosira punctigera: image of two cells by A. M. Young (for detailed measurements, see Table 2).
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results (Goldsmith and Mason 1962). We examined how

the addition of spines to the flat disk model altered cell

motion in the same simple shear flows.

Spheroid in Shear Flow

[6] A spheroid is an axisymmetric ellipsoid with two

principal axes of equal length. We constructed a model

spheroid by first tessellating a sphere to create a grid

(surface triangulation) that satisfied the conditions of

uniformity and robust discretization at various scales,

using spherical centroidal Voronoi tessellation (Du et al.

1999, 2003). We mapped the surface triangulation

of a unit sphere onto a spheroid surface (Fig. 2A). To

maintain the shape of the spheroid, we connected adja-

cent points on the surface of the spheroid with

virtual linear springs on the edges of the triangulation.

The force between two connected points (xk and x l) was

computed as

fðxkÞ ¼ tk 1 2
dk

kx l 2 xkk

� �
ðx l 2 xkÞ; ð1Þ

where tk is a stiffness constant of the linear spring, dk is

its resting length, the distance between x l and xk when

the surface is initialized at time t ¼ 0, and kxl 2 xkk

represents the Euclidean norm, that is, the positive dis-

tance between the two points.

[7] The spheroid G was modeled as a neutrally

buoyant, elastic surface immersed in a viscous, incom-

pressible fluid (where V is the fluid domain). The full

Navier-Stokes equations were solved, where the force

term F represents the force per unit of volume exerted

on the fluid by the spheroid,

r
›u

›t
þ u�7u

� �
¼ 27pþ mDuþ Fðx; tÞ; ð2Þ

7�u ¼ 0; ð3Þ

Fðx; tÞ ¼

ð
G

fðs; tÞdðx2 Xðs; tÞÞ ds; ð4Þ

with the no-slip condition

›Xðs; tÞ

›t
¼ uðXðs; tÞ; tÞ ¼

ð
V

uðx; tÞdðx2Xðs; tÞÞdx: ð5Þ

Here r is fluid density, u is fluid velocity, p denotes

pressure, m is dynamic viscosity, and s denotes Lagran-

gian coordinates attached to the immersed elastic

boundary G. The Eulerian force density F on the fluid

is a Dirac delta-function d layer of elastic forces f sup-

ported by the triangular elements of the spheroid surface

(refer to equation (4)). In other words, this force is

experienced only by fluid that touches the spheroid sur-

face. Away from these points, the force of the spheroid

on the fluid is zero.

[8] According to Jeffery’s theory, a spheroid sus-

pended in a simple shear flow at a vanishing Reynolds

number rotates in a stable orbit independent of its initial

orientation. The orbit can be described by changes in

azimuthal angle F over time, where F is the angle in the

x,z-plane between the spheroid’s major axis and the

positive z-axis (0 # F # 2p). According to Jeffery

(1922), F ¼ tan 21ðar tan ð2pðt=TÞÞÞ, where ar is the

axis ratio (the ratio of the axis of rotation and the

Fig. 2 Mapping of the spherical centroidal Voronoi tessellation on (A) a unit sphere to a spheroid and (B) a unit sphere to a flat disk (the red points on the sphere mapping to
the edges of the top and bottom of the disk).
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equatorial axis) and T is the period of rotation of the

spheroid. The latter is given by T ¼ 2p=gðar þ ð1=arÞÞ,

where g is the shear rate (Jeffery 1922). To validate our

code, we compared changes in the azimuthal angle and

periods of rotation predicted by theory to the values

obtained from our model of an ellipsoid. The major

axis of the spheroid (the axis of rotation) was orthog-

onal to the flow direction at t ¼ 0, and thus motion of

this axis will remain in a plane. Whereas these calcu-

lations are fully three-dimensional and work with any

initial orientation, we chose to focus on the planar ro-

tation to minimize the complexity of our model results.

Flat Disk in Shear Flow

[9] Although Jeffery orbit theory is restricted to spher-

oids, computational models carry no such restrictions.

In order to gain confidence in our calculations for com-

plex diatom geometries with spines, we examined the

rotational dynamics of a flat disk in a shear flow.

We compared our computed periods of rotation of

modeled flat disks with experimental results (Goldsmith

and Mason 1962). In

this case, the surface

triangulation of a unit

sphere was mapped

onto the surface of a

flat disk (Fig. 2B). As

with the spheroid, the

flat disk was placed in

the middle of a shear

flow field, with model

viscosity matching

that used in Gold-

smith and Mason’s

(1962) experiments with silicone oil. The axis of the

flat disk was set orthogonal to the flow at t ¼ 0.

Model of a Diatom with Spines in Shear Flow

[10] We constructed a model cell of the diatom

(Fig. 3A, Table 1) based on measured dimensions

from electron microscope images of Thalassiosira

punctigera cells that we grew in the lab (Fig. 1, Table

2). When we discretized the cell body with triangular

meshes, we positioned fixed points near the valve sur-

faces to place the centerlines of the spines. The neigh-

boring triangles that share the fixed point as one of

their vertices form the base of the spine, which has a

pyramidal shape (Fig. 3B). The axis of the plankter

disk (squat cylinder) was set orthogonal to the flow

at t ¼ 0.

[11] An important question that we want to

address is whether Jeffery’s (1922) theory for spheroids

can accurately approximate the rotational motion of a

cell with spines, thereby allowing simple computations

of cell motions in flows. We postulated that the
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Fig. 3 (A) A simplified model of a diatom cell with 24 spines; dimensions (£1025 m) are based on measurements provided in Table 2.
(B) Magnified view near the base of a spine (red dots indicate the rim of the valve surface).

Table 1 Characteristic quantities for the spheroid, flat disk, and model diatom.

Characteristic quantity Spheroid Flat disk Model diatom

Fluid domain size in each direction (m) 4.0 £ 1023 8.0 £ 1023 2.8 £ 1024

Length of the equatorial axes (diameter of the disk or diatom) (m) 9.0 £ 1025 8.0 £ 1024 4.25 £ 1025

Length of the axis of rotation (height of the diatom) (m) 18.2 £ 1025 2.0 £ 1024 1.77 £ 1025

Shear rate (s21) 10.0 2.43 10.0

Reynolds number (dimensionless) 3.3 £ 1021 3.0 £ 1024 1.8 £ 1022

Fluid density (kg m23) 10 3 975.0 10 3

Dynamic viscosity (Pa s) 1023 5.0 1023

Stiffness constant (N m21) 2.0 £ 1023 1021 5.0 £ 1025
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minimum-volume spheroid that can inscribe the cell

inclusive of its spines would most closely approximate

its orbit (period of rotation). Depending on spine length

and orientation, the minimum-volume spheroid can be

oblate or prolate (Fig. 4). The procedure for finding it is

detailed in the Appendix.

Results

Validation of the Models

[12] We performed computational simulations that

examined the rotational dynamics of the spheroid and

flat disk in a shear flow, using the parameters in Table 1.

The Reynolds number (Re) of the resulting flow is

computed as Re ¼ rgL2=m, where L is the characteristic

length. For the spheroid, L is the length of the axis of

rotation (Re ¼ 3.3 £ 1021), and for the flat disk, it is

the diameter of the disk (Re ¼ 3.0 £ 1024).

[13] Changes in the azimuthal angle of the mod-

eled spheroid, determined by tracking the trajectories of

the material points that discretize the surface of the

spheroid as it rotates in the background shear flow, fol-

low closely the changes predicted by Jeffery’s theory

(Fig. 5A). The period of rotation of the modeled spher-

oid also agreed well with the theoretical prediction

(1.5872 and 1.5867 s, respectively). The deviation was

smaller than the variance observed for replicate trials

in experimental determinations, which are usually

reported to only two significant figures.

[14] We examined the sensitivity of our results for

a modeled diatom to variations in the resolution of the

underlying fluid grid. For this convergence study, we

chose a diatom with 24 spines and ran the models

using either two or three levels of grid refinement in

the adaptive computational method. The coarsest grid

level used in the fluid domain away from the diatom was

2.0 £ 1025 (two refinement levels) and 1.75 £ 1025 m

(three refinement levels). In particular, the finest

grid spacing that was achieved between the spines was

5.0 £ 1026 m (two refinement levels) and 1.09 £ 1026 m

(three refinement levels). For reference, the diameter of

the cell body is 4.25 £ 1025 m, and the distance between

spines at the base is approximately 5.6 £ 1026 m. Fig. 5B

shows the time course of the azimuthal angle for the

diatom at each of these levels of refinements as a func-

tion of time; the rotational trajectories of the spined

diatoms are very close at these resolutions.

Table 2 Dimensions of Thalassiosira punctigera obtained from scanning electron
microscope images by A. M. Young.

Parameter Mean 6 SD (31026 m) Sample size

Diameter 42.5 ^ 9.7 6

Girdle height 15.5 ^ 3.4 8

Distance from edge of girdle

to valve surface

2.2 ^ 0.7 2

Total cell height 18.5 ^ 4.2 8

# of long spines (one side) 12.0 ^ 4.0 3

Length of long spines 4.9 ^ 1.0 8

Diameter of spines 0.84 ^ 0.22 5

Distance of long spines from

edge of girdle

4.1 ^ 1.1 4

Distance of long spines from

each other

7.1 ^ 1.3 4

Angle above girdle (degrees) 49.1 ^ 2.6 3

5
A B C

0

–5

0

5 –5

0

5

y-a
xisx-axis

z-
ax

is

5

0

–5

0

5 –5

0

5

y-a
xisx-axis

z-
ax

is

5

0

–5
–5–5

–5

0
5 –5

0

5

y-a
xisx-axis

z-
ax

is

Fig. 4 A cell modeled using different spheroids: (A) oblate spheroid, (B) spheroid with minimum volume, and (C) prolate spheroid (dimensions in m £ 1025). Colors are
for visual contrast.
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Model of a Diatom with Spines in Shear Flow

[15] Using the characteristic quantities in Table 1, we

modeled a diatom in a shear flow to examine the effects

of spine number and length on the period of rotation.

Effect of the Number of Spines on the Period of Rotation

[16] To address our first question about the effect of the

number of spines on the period of rotation, we fixed

spine angle and length at intermediate values of 608

and 1.80 £ 1025 m, respectively. We varied the number

of spines from 4 to 24. In general, published, quantita-

tive information on spine number and dimension is

scarce. The range of number of spines chosen here is

based on available images of different species of spiny

diatoms of the genera Thalassiosira, Corethron, and

Chaetoceros. For a given spine length and spine angle,

the addition of spines decreased the period of rotation

very little (see Table 3, where Tsim is the computed

period of rotation). Note that since only the number

of spines was varied, the modeled diatoms have the

same minimal inscribing spheroid whose period of

rotation is 1.27 s.

Effect of Spine Length on the Period of Rotation

[17] To examine whether spine length affects the period

of rotation, we fixed the number of spines at 24 (i.e., 12

spines each on top and bottom) and the spine angle at

608 and varied spine length. We used the minimal in-

scribing spheroids to compare their Jeffery orbits Tsph

with the computed periods of the diatoms Tsim. In this

case, the minimal inscribing spheroid also minimized

the difference in periods of rotation in comparison

with larger inscribing spheroids (Fig. 6). The addition

of short spines resulted in a decrease in the period of

rotation, compared with a spineless cell, until a critical

spine length was reached. A further increase in spine

length slowed the rotation, but the period of rotation

was still shorter than that of the cell without spines.

For the given fixed spine angle and spine number, the

period of rotation of the cell can be approximated by an

effective spheroid (Fig. 6).

[18] Based on the formula used to compute the

period of rotation

T ¼
2p

g
ar þ

1

ar

� �� �
; ð6Þ

it is clear that a sphere with ar ¼ 1 has the shortest
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Fig. 5 Variation of the azimuthal angle, F, of (A) a spheroid and (B) a diatom with spines, as a function of time, t, scaled by the rotational period, T. The two trajectories
in B correspond to the levels of grid refinement used in solving the Navier-Stokes equations.

Table 3 Period of rotation (Tsim) for model diatoms with different number of spines (spine angle 608 and spine length 1.80 £ 1025 m).

Number of spines 0 4 6 8 12 18 24

Tsim (s) 1.40 1.29 1.29 1.29 1.29 1.28 1.28
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period. When the minimal inscribing spheroid is a

sphere or nearly spherical, the period of the correspond-

ing plankter is also smallest (Fig. 6, Table 4). Note that

the axis ratio of the minimal inscribing spheroid

depends on four factors: height of the cell body, diam-

eter of the cell body, spine length, and spine angle. For a

diatom with short spines relative to the body dimen-

sions, the spheroid axis ratio will depend more heavily

on the ratio of body height to diameter (the spines will

have less influence over the shape of the spheroid). If

the spines are long relative to the body, then spine angle

becomes more important in governing the axis ratio of

the spheroid.

Effect of Spine Angle on the Period of Rotation

[19] Spine length was fixed at 1.80 £ 1025 m, and spine

angle was varied for three spine densities (4, 12, and 24

spines per cell). Results from these models suggest that

spine angle affects the period of rotation only at small

angles (,308) and that the effect becomes more pro-

nounced as spine number increases (Fig. 7). For this

range of angles, and for angles approaching 90o, the

period of rotation of a cell with spines cannot be ap-

proximated well by Jeffery’s theory for spheroids. The

poorest agreement between the modeled cell and the

minimal inscribing spheroid was observed when angles

were at their most extreme, 0 and 908 (Fig. 7).

Discussion

[20] The average period of rotation of the modeled disk

was slightly lower than that obtained in Goldsmith and

Mason’s (1962) laboratory experiments (6.5 and 7.6 s,

respectively). For reference, the predicted period of ro-

tation for a spheroid with the same height and diameter

is T ¼ 11 s (Jeffery 1922). Sharp edges on modeled and

manufactured cylinders and disks reduce their periods

of rotation relative to smoother spheroids of compa-

rable aspect ratios (Karp-Boss and Jumars 1998).

[21] The fit of our numerical results to Jeffery

orbits of spheroids and to experimental results for

disks indicates that the underlying computational ap-

proach is sound. The addition of stiff spines to a disk

has a substantial effect on its period of rotation. Results

from these models suggest that the bulk of the variation

in rotational frequency in shear can be predicted by
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Fig. 6 Effect of spine length on the period of rotation of the model diatom
compared with the minimal-volume inscribing spheroid model.

Table 4 The effect of spine length on the period of rotation of minimum-volume
inscribing spheroids (Tsph ), the corresponding period for model diatoms (Tsim ), and
the axis ratio (ar).

Spine length ( £ 1025 m) 0.00 0.49 0.75 1.01 1.28 1.54

Tsim (s) 1.40 1.30 1.28 1.28 1.28 1.28

Tsph (s) 1.45 1.31 1.27 1.26 1.26 1.26

ar 0.58 0.76 0.87 0.94 1.00 1.09

Spine length ( £ 1025 m) 1.80 2.06 2.32 2.58 2.84 3.11

Tsim (s) 1.28 1.28 1.28 1.30 1.31 1.32

Tsph (s) 1.27 1.28 1.29 1.30 1.31 1.32

ar 1.14 1.20 1.25 1.30 1.33 1.38
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Fig. 7 Effect of spine angle on the periods of rotation of a model diatom with 4, 12,
and 24 spines compared with the minimal inscribing spheroid.
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using results for the minimum-volume, rigid spheroid

that inscribes the cell and its spines. Spines facilitate

motion that would otherwise be associated with a

change in shape (i.e., rotational frequency), without

changing the underlying body shape and with substan-

tially less material than would be needed to fill the in-

scribing spheroid. Not surprisingly, the minimal inscrib-

ing spheroid showed poorest fits when small numbers

or extreme angles of spines left large volumes of the

inscribing spheroid unoccupied by spines.

[22] These results are reminiscent of those ex-

plored by Hill and Power (1956). They proved a theorem

that no matter how complex an object’s geometry, its

drag in Stokes (creeping) flow must be larger than that

of any inscribed object but smaller than that of any

circumscribing object. Hence, the drag on our minimal

inscribing spheroid gives an upper bound on the total

drag on the spined diatom relative to the lower drag on

an unspined cell. Consequently, the rich literature on

motion and drag of spheroids (e.g., Clift et al. 1978;

Happel and Brenner 1983; Kim and Karilla 1991) should

provide a rich resource for anticipating motions by and

forces on bodies of complex shapes.

[23] Although overall body motion is simple to

summarize, especially for intermediate to large numbers

of spines and moderate spine angles, consequences for

nutrient exchange may be more complex. Spines may

substantially alter the relative motion of the fluid in the

regions closest to the valve surface where concentration

gradients from uptake or release of diffusing solutes are

steepest. If they carry no absorptive sites, we would ex-

pect spines to reduce the effective Sherwood number

(the ratio of advective to diffusive flux) for nutrient

delivery relative to the same cell without spines. Cell

motion, however, will be altered by the spines. The deliv-

ery of nutrients to spined cells remains to be explored,

but the Hill and Power (1956) results suggest that an

upper bound on delivery could be calculated as that of a

minimum-volume, inscribing, spheroidal absorber.

[24] It is relevant to note that the cells investigated

were radially symmetric and also bilaterally (or reflec-

tively) symmetric about the midpoint of their radial

axis. Poorer fits to the spheroidal approximation and

more diverse motions can be expected with departures

from these symmetries. Our results also highlight the

need to examine the topology of absorptive surfaces

on the cell in order to understand the degree to which

spines may restrict fluid motion close to the cell body

and thereby reduce the potential for nutrient gain from

tumbling motions (Pahlow et al. 1997; Musielak et al.

2009). Because of the complex geometries, such under-

standing likely will come through further numerical

modeling. Our results are also limited to rigid, passive

particles. More complex interactions between flow and

structure will result when structures are flexible enough

to be bent by ambient flows. These interactions remain

accessible to immersed boundary methods, where the

stiffness parameters used in the model may be matched

to stiffness in vivo. The effects of ambient flow on

spined, motile plankton, such as species in the dinofla-

gellate genus Ceratium, also remain to be examined but

may provide a partial explanation of its seasonal cyclo-

morphosis in some environments (Dodson 1974).

Significance to Aquatic Environments

[25] Relations between form and function in the diverse

morphologies found in plankton remain challenging to

decipher. We identified a surprisingly simple means to

approximate the motion of complexly shaped cells by

using the minimum-volume, inscribing spheroid to pre-

dict Jeffery orbits (i.e., the motion that an ellipsoidal

particle undergoes in shear flow). This simple solution

should prove useful for predicting trophic encounters in

shear flows produced by grazers (e.g., Visser and

Jonsson 2000) and cell-cell encounters in shear coagu-

lation (e.g., Kiørboe et al. 1994). Although our models

of single cells do not quantify this effect, plankton span a

broader range of flow velocities and present larger cross-

sectional areas to the flow when they tumble and thus

should be more prone to coagulation and other encoun-

ters. This methodology should also be useful for pre-

dicting fluid torques on spined bodies whose spines are

induced as predator defense mechanisms. Those torques

applied by ambient turbulent flows may represent costs
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additional to the known effects of induced spines on

drag during swimming (e.g., Lagergren et al. 1997).

Appendix

How to Find an Associated Spheroid for a Given Diatom

[A1] Assume that the discoidal cell body of a diatom has

diameter a and height b. Let r ¼ a/2 and h ¼ b/2. We

denote l as the spine length from the tip to the base and

a as the angle between the spine and the girdle plane.

Associate the spined diatom with a spheroid (either ob-

late or prolate; Fig. A1), where �a is half of the length of

the spheroid along the x-axis and �b is half of the length

of the spheroid along the z-axis.

[A2] The spheroid must satisfy the following con-

ditions: (a) the tips of the diatom spines are on the

surface of the spheroid, and (b) the foci of the spheroid

are on the plane equidistant from the top and bottom

surfaces of the diatom. Denote this spheroid as an oblate

spheroid (see Fig. A1A). If the foci are placed along the

axis of the cylindrical cell, the spheroid is a prolate

spheroid (see Fig. A1B).

[A3] For the oblate spheroid, we can simplify this

problem by finding an ellipse on the x,z-plane such that

the foci are F1 ¼ ð2br; 0Þ, F2 ¼ ðbr; 0Þ with b $ 0 and

jPF1j þ jPF2j ¼ 2�a (where P represents the tip of a

spine). b is a nonnegative real parameter used to adjust

the distances of the foci from the center of the ellipse

(b ¼ 0 returns a sphere). Then

�a¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2ð1þbÞ2þh2þ l2þ2l½rð1þbÞcosaþhsina�

q

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r 2ð12bÞ2þh2þ l2þ2l½rð12bÞcosaþhsina�

q

ðA1Þ

As a result, half of the length of the minor axis (along the

z-axis) is

�b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�a2 2 ðbrÞ2

q
ðA2Þ

Similarly, for the prolate spheroid with the foci

F1 ¼ ð0;2bhÞ, F2 ¼ ð0;bhÞ with b $ 0, half of the

length of the major axis along the z-axis is:

�b¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð1þbÞ2þr 2þ l2þ2l½hð1þbÞsinaþrcosa�

q

þ
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2ð12bÞ2þr 2þ l2þ2l½hð12bÞsinaþrcosa�

q
:

ðA3Þ

As a result, half of the length of the minor axis (along

x-axis) is

�a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�b2 2 ðbhÞ2

q
: ðA4Þ

How to Find the Minimum-Volume Spheroid for a Given

Diatom

[A4] The above section shows how to find a single in-

scribing spheroid for a given plankter by choosing a

parameter b $ 0. The minimum-volume spheroid is

the inscribing spheroid that minimizes the difference

between the volumes of itself and the plankter. Compu-

tationally, this means finding the parameter b that mini-

mizes the volume difference; hence, the minimum-vol-

ume spheroid can be oblate or prolate.
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