Spaces of ordered commuting elements in Lie groups

Mentor Stafa

Tulane University, New Orleans, USA

Centro de Giorgi, Pisa - February 17, 2015

- Introduction
- **2** Basic properties and examples
- 3 Known results
- Our approach
- **6** Right-angled Artin groups
- 6 Conclusions

Joint with Fred Cohen.

Let G be a Lie group and π be a finitely generated discrete group. Consider the set of homomorphisms $Hom(\pi, G)$.

Topology: If π has n generators x_1, \ldots, x_n , then $Hom(\pi, G)$ can be identified as a subset of G^n as follows:

$$f \in Hom(\pi, G) \hookrightarrow G^n$$

 $f \sim f(x_1, \ldots, x_n) = (g_1, \ldots, g_n).$

This can also be seen from the inclusion induced by a quotient $F_n \rightarrow \pi$.

Therefore, we can endow $Hom(\pi, G)$ with the subspace topology.

- Let $\pi = F_n$ be the free group on *n* letters. Then $Hom(F_n, G) = G^n$. $(\pi = F_n$ has no relations)
- Q Let π = Zⁿ. Hom(Zⁿ, G) can be identified with the set of elements in Gⁿ whose coordinates pairwise commute:

$$f \in Hom(\mathbb{Z}^n, G) \subseteq G^n$$

$$f \sim f(x_1,...,x_n) = (g_1,...,g_n)$$
, such that $g_ig_j = g_jg_i$, all i,j .

We call $Hom(\mathbb{Z}^n, G)$ the space of ordered pairwise commuting *n*-tuples in *G*.

3 If $\pi = \mathbb{Z}^n$ and G is abelian, then $Hom(\mathbb{Z}^n, G) = G^n$.

Remark: G acts by conjugation on $Hom(\pi, G)$. The space $Hom(\pi, G)/G = R(\pi, G)$ is also widely studied (not considered here). $R(\pi, G)$ is called the *representation space*.

- The spaces $Hom(\mathbb{Z}^n, G)$ "appear in physics":
 - $Hom(\mathbb{Z}^n, G)/G$ is the moduli space of flat G-bundles over the compact n-torus $(S^1)^n$.
 - These moduli spaces form critical level sets of Lagrangians for important quantum-field theories such as the Chern-Simons and Yang-Mills theories.
 - Connections to work of E. Witten in quantum-field theory.
- The study of the spaces $Hom(\mathbb{Z}^n, G)$ for finite groups G, leads to problems as hard as the Feit-Thompson theorem.

- (Goldman) If π is finitely generated, then $Hom(\pi, G)$ is a real algebraic variety.
- (Adem & Cohen) If G is a closed subgroup of $GL_n(\mathbb{C})$, then there is a homotopy equivalence

$$\Sigma$$
Hom $(\mathbb{Z}^n, G) \to \bigvee_{1 \le k \le n} \Sigma \bigvee^{\binom{n}{k}}$ Hom $(\mathbb{Z}^k, G)/S_k(G).$

 (G. H. Rojo) Computes the number of connected components of Hom(ℤ^k, O(n)) and Hom(ℤ^k, SO(n)) (formulas upon request).
 • (Sjerve & Torres-Giese) The homotopy type of $Hom(\mathbb{Z}^k, SO(3))$ is given by

$$Hom(\mathbb{Z}^k, SO(3)) \to Hom(\mathbb{Z}^k, SO(3))_1 \bigsqcup (\bigsqcup_{\# < \infty} S^3/Q_8).$$

- (Pettet & Souto) If G is a reductive algebraic group and K ⊂ G is a maximal compact subgroup, then Hom(Z^k, K) is a strong deformation retract of Hom(Z^k, G).
 - There is a homotopy equivalence $Hom(\mathbb{Z}^k, O(n)) \simeq Hom(\mathbb{Z}^k, GL_n(\mathbb{R})).$
 - There is an isomorphism $\pi_1(Hom(\mathbb{Z}^k, G)) = \pi_1(G)^k$.
- (Bergeron) If Γ is a finitely generated nilpotent group, then there is a strong deformation retract of Hom(Γ, G) onto Hom(Γ, K).
- (Adem & Gomez) The space B(2, G) is an infinite loop space.

Connectedness

Recall the following classical definitions:

The group $T \subset G$ is a **maximal torus** of G if it is a compact, connected torus of maximal rank.

For some special Lie groups G, T has the additional property that "every abelian subgroup of G is conjugate to a subgroup of T". Such groups include U(n), SU(n), Sp(n). Groups that do not have this property include SO(2n + 1), G_2 etc.

Theorem (Adem & Cohen)

If G has a maximal torus T with the property that every abelian subgroup of G is conjugate to a subgroup of T, then $Hom(\mathbb{Z}^n, G)$ is path connected for all n.

For any $f \in Hom(\mathbb{Z}^n, G)$ we can apply the classifying space functor to obtain $Bf \in Map_*(B\mathbb{Z}^n, BG)$. If we pass to the path components we obtain

$$B_0: \pi_0(\operatorname{Hom}(\mathbb{Z}^n, G)) \to [(S^1)^n, BG],$$

where $[(S^1)^n, BG]$ classifies principal *G*-bundles over the *n*-torus $(S^1)^n$.

A classical method for studying $Hom(\mathbb{Z}^n, G)$

For A an abelian subgroup of G, there is a map

 $\Theta: G \times A^n \longrightarrow Hom(\mathbb{Z}^n, G)$

$$(g,t_1,...,t_n)\mapsto (t_1^g,...,t_n^g)$$

 Θ is A-invariant, so it factors through $G \times_A A^n$, where A acts by conjugation, i.e. trivially, on A^n and acts by left multiplication on G. We get a map $\widehat{\Theta} : G \times_A A^n \longrightarrow Hom(\mathbb{Z}^n, G)$.

Definition

Let T be a maximal torus of G. Then the **Weyl group** of G is the group W = NT/T, where NT is the normalizer of T in G.

Then W acts on $G \times_T T^n = G/T \times T^n$ by conjugation on T^n and by left multiplication on the cosets G/T. $\widehat{\Theta}$ is W-invariant, so it factors through $G/T \times_W T^n = G \times_{NT} T^n$ and we get

$$\widetilde{\Theta}: G \times_{NT} T^n \longrightarrow Hom(\mathbb{Z}^n, G).$$

- Problems involving $Hom(\mathbb{Z}^k, G)$ are delicate, in general.
- Instead we construct a space called Comm(G) that assembles all the spaces Hom(Z^k, G) into a single one.
- Comm(G) is more tractable.
- There is a decomposition of Comm(G) which tells that this space is the smallest space containing all spaces Hom(Zⁿ, G).

The space Comm(G) (cnt'd)

From now on G is a compact and connected Lie group.

Recall the James reduced product on a pointed CW-complex, denoted by J(X). The space J(X) is given by

$$J(X) := \bigsqcup_{n \ge 1} X^n / \sim,$$

where \sim is generated by $(x_1,...,*,...,x_n) \sim (x_1,...,\widehat{*},...,x_n)$.

Definition

Let G be a Lie group. Then Comm(G) is defined by

$$Comm(G) := \bigsqcup_{n \ge 1} Hom(\mathbb{Z}^n, G) / \sim,$$

where \sim is generated by the same relation.

We now obtain a map

$$G \times_{NT} J(T) \longrightarrow Comm(G).$$

Let

$$Comm(G)_1 = \bigsqcup_{n \ge 1} Hom(\mathbb{Z}^n, G)_1 / \sim,$$

where $Hom(\mathbb{Z}^n, G)_1$ is the path component of (1, ..., 1). Then the following is a surjection

$$\widetilde{\Theta}: G \times_{NT} T^n \longrightarrow Hom(\mathbb{Z}^n, G)_1,$$

which gives a surjection

$$G \times_{NT} J(T) \longrightarrow Comm(G)_1.$$

In the special case where G has the property that every abelian subgroup can be conjugated to T, it follows that $Comm(G) = Comm(G)_1$ and we have a surjection

$$G \times_{NT} J(T) \longrightarrow Comm(G).$$

Theorem

Let G be a compact Lie group with maximal torus T and NT acting on T by conjugation. There is a homotopy equivalence

$$\Sigma(G \times_{NT} J(T)) \simeq \Sigma(G/NT \vee (\bigvee_{n \geq 1} G \times_{NT} \widehat{T}^n/G \times_{NT} \{1\})).$$

Theorem

Let G be a compact and connected Lie group. There is a stable homotopy equivalence

$$\Sigma Comm(G) \simeq \Sigma \bigvee_{n \ge 1} \widehat{Hom}(\mathbb{Z}^n, G),$$

where $\widehat{Hom}(\mathbb{Z}^n, G) = Hom(\mathbb{Z}^n, G)/S(Hom(\mathbb{Z}^n, G)).$

The homology of Comm(G)

Recall the map $\Theta : G \times T^n \longrightarrow Hom(\mathbb{Z}^n, G)$. Now, let $R = \mathbb{Z}[|W|^{-1}]$. (For simplicity one can also work over \mathbb{Q}).

Lemma

The reduced homology of $\Theta^{-1}(g_1, ..., g_n)$ with coefficients in R is trivial, i.e.

$$\widetilde{H}_k(\Theta^{-1}(g_1,...,g_n);R)=0.$$

Theorem

Let G be compact and connected with maximal torus T and Weyl group W. Then there is an isomorphism

 $H_*(G \times_{NT} J(T); R) \cong H_*(Comm(G)_1; R).$

There is a short exact sequence of groups

$$1 \longrightarrow T \longrightarrow NT \longrightarrow W \longrightarrow 1$$

and thus a fibration

$$(G \times J(T))/T \longrightarrow (G \times J(T))/NT = G \times_{NT} J(T) \longrightarrow BW.$$

There is a spectral sequence

$$E_{p,q}^2 = H_p(BW; H_q(G/T \times J(T); R))$$

which converges to $H_*(G \times_{NT} J(T); R)$.

If
$$p>0$$
 then $E^2_{p>0,q}=0$ and
$$E^2_{0,q}=E^\infty_{0,q}=H_q(G/T imes J(T);R)_W$$

Therefore,

$$H_*(G \times_{NT} J(T); R)) \cong H_*(G/T \times J(T); R)_W$$

and

$$H_*(G/T \times J(T); R)_W$$

$$\cong (H_*(G/T; R) \otimes H_*(J(T); R))_W$$

$$\cong (H_*(G/T; R) \otimes T[V])_W,$$

where V is the reduced homology of T as a W-module, and T[V] is the tensor algebra of V.

Therefore the we have the following:

Theorem

Let G be a compact and connected Lie group with maximal torus T and Weyl group W. Then the homology of $Comm(G)_1$ with coefficients in R is given by

 $H_*(Comm(G)_1; R) \cong (H_*(G/T; R) \otimes T[V])_W$

As a corollary we have:

Theorem

If G has a maximal torus T with the property that every abelian subgroup of G is conjugate to a subgroup of T, then the homology of Comm(G) with coefficients in R is given by

 $H_*(Comm(G); R) \cong (H_*(G/T; R) \otimes T[V])_W.$

- This theorem works for any compact and connected Lie group *G*, including the exceptional groups *G*₂, *F*₄, *E*₆, *E*₇, *E*₈.
- The representation theory of W gives the homology for these spaces (Classical representation theory).
- The same construction does not inform on finite groups G.

Let H^U_* denote ungraded homology and $T_U[V]$ denote the ungraded tensor algebra of V. Then the following theorem holds:

Theorem

Let G be a compact and connected Lie group with maximal torus T and Weyl group W. Then the ungraded homology of $Comm(G)_1$ with coefficients in R is given by

 $H^U_*(Comm(G); R) \cong T_U[V].$

Example 1: SO(3)

E. Torres Giese and D. Sjerve prove that

$$Hom(\mathbb{Z}^n; SO(3)) = Hom(\mathbb{Z}^n; SO(3))_1 \bigsqcup (\bigsqcup_{m < \infty} S^3/Q_8).$$

Therefore,

Proposition

There is a homeomorphism

$$Comm(SO(3)) = Comm(SO(3))_1 \bigsqcup (\bigsqcup_{\infty} S^3/Q_8),$$

where $Comm(SO(3))_1 = \bigsqcup_{n \ge 1} Hom(\mathbb{Z}^n; SO(3))_1 / \sim$.

The homology of $Comm(SO(3))_1$ is given by

 $H_*(Comm(SO(3)); \mathbb{Z}[2^{-1}]) \cong (H_*(SO(3)/S^1; \mathbb{Z}[2^{-1}]) \otimes T[V])_{\Sigma_2}.$

If G = U(2), then $T = S^1 \times S^1$ and every abelian subgroup of U(2) is conjugate to a subgroup of T. Therefore,

$$H_*(Comm(U(2));\mathbb{Z}[2^{-1}]) \cong \left(H_*(U(2)/S^1 \times S^1;\mathbb{Z}[2^{-1}]) \otimes T[V]\right)_{\Sigma_2},$$

where $H_*(U(2)/S^1 \times S^1; \mathbb{Z}[2^{-1}]) = \mathbb{Z}[2^{-1}]\Sigma_2$, the group ring (ungraded).

Hilbert-Poincaré series

Assume there is a tri-graded series $\sum_{i,j,k} A(i,j,k)q^is^jt^k$, where A(i,j,k) is the rank of the sub-module in $H_*(Comm(G)_1; R)$ equal to the tensor product of the *i*-th homology in G/T, and *k*-th homology in J(T) which is given by *j*-tensors. If we consider cohomology, A(i,j,k) is the rank of

$$\sum_{\substack{\alpha=r_1+\cdots+r_j\\r_q>0}} (H^i(G/T)\otimes\wedge^{r_1}\mathbb{Q}^n\otimes\cdots\otimes\wedge^{r_j}\mathbb{Q}^n).$$

Using methods in algebra V. Reiner proved the following in an appendix:

Theorem

If G is a compact, connected Lie group with maximal torus T, and Weyl group W, then

$$\begin{aligned} \text{Hilb}\left(\left(H^*(G/T;R)\otimes\mathcal{T}^*[\widetilde{E}]\right)^W,q,s,t\right)\\ &=\frac{\prod_{i=1}^n(1-q^{2d_i})}{|W|}\sum_{w\in\mathcal{W}}\frac{1}{\det(1-q^2w)\left(1-t(\det(1+sw)-1)\right)}.\end{aligned}$$

Example

Let G = U(2):

- **1** The Weyl group W is Σ_2 with elements 1, and $w \neq 1$.
- ② The homology of the space $G/T = U(2)/T = S^2$ is ℝ in degrees zero and two, and is {0} otherwise.

• The degrees (d_1, d_2) in the theorem are given by $(d_1, d_2) = (1, 2)$. Then using the formula

$$\operatorname{Hilb}\left(\left(C^*\otimes T^*[\widetilde{E}]\right)^W,q,s,t\right)=\frac{(1-q^2)(1-q^4)}{2}(A_1+A_w),$$

where

$$A_1 = rac{1}{(1-q^2)^2(1-t[(1+s)^2-1])}$$

and

$${\mathcal A}_w = rac{1}{(1-q^2)(1+q^2)(1-t[(1+s)(1-s)-1])}.$$

Example (cnt'd)

Thus

$$\frac{(1-q^2)(1-q^4)}{2}(A_1) = \frac{1+q^2}{2(1-t(s^2+2s))}, \text{ and}$$
$$\frac{(1-q^2)(1-q^4)}{2}(A_w) = \frac{1-q^2}{2(1+s^2t)}.$$

The Hilbert-Poincaré series is then given by

$$\mathsf{Hilb}\left(\left(C^*\otimes T^*[\widetilde{E}]\right)^W,q,s,t\right)=\frac{1+q^2}{2(1-t(s^2+2s))}+\frac{1-q^2}{2(1+s^2t)}.$$

From this information, it follows that the coefficient of $t^m, m > 0$, is

$$\frac{1}{2} \left[(1+q^2)(s^2+2s)^m + (1-q^2)(-s^2)^m \right]$$

= $\sum_{1 \le j \le m} 2^{j-1} \binom{m}{j} s^{2m-j} + \begin{cases} s^{2m} & \text{if } m \text{ is even, and} \\ q^2 s^{2m} & \text{if } m \text{ is odd.} \end{cases}$

Corollary

Then there are additive isomorphisms

$$\widetilde{H}^{d}(Hom(\mathbb{Z}^{m},G);\mathbb{R}) \to \sum_{1 \leq s \leq m} \sum_{i+j=d} \left(\sum_{\substack{j=k_{1}+\cdots+k_{s} \\ i \geq 0}} \oplus_{\binom{m}{s}} (M_{(i,j,s)})^{W} \right)$$

A right-angle Artin group can be described as the fundamental group of a polyhedral product

$$\pi(K) := \pi_1\left(Z_K(S^1,*)\right),$$

where K is a simplicial complex with n vertices. We can study the space of homomorphisms

 $Hom(\pi(K), G).$

Theorem

There is a homotopy equivalence

$$\Sigma$$
Hom $(\pi(K), G) \to \Sigma X \lor \bigvee_{\sigma \in M} \Sigma(Hom(\mathbb{Z}^{m(\sigma)}, G))$

for the space $X = Hom(\pi(K), G) / (\bigvee_{\sigma \in M} (Hom(\mathbb{Z}^{m(\sigma)}, G))).$

Define the space

$$G[\sigma] = \{(g_1,\ldots,g_n) \in G^n : [g_i,g_i] = 1 \text{ if } (ij) \in \sigma\}.$$

Then

$$Hom(\pi(K), G) = \bigcap_{\sigma \in K} G[\sigma],$$

and

$$G^m - Hom(\pi(K), G) \approx \bigcup_{\sigma \in K} (G^m - G[\sigma]).$$

gives a Mayer-Vietoris spectral sequence abutting to the homology of $G^m - Hom(\pi(K), G)$.

- Analogous approaches for finitely generated discrete groups π , other than \mathbb{Z}^n .
- Further decompositions of $Hom(\mathbb{Z}^n, G)$.
- The integer homology of the spaces $Hom(\mathbb{Z}^n, G)$.
- The number of path components π₀(Hom(Zⁿ, G)) for compact and connected G.
- Prove the equivalent form of the Feit-Thompson theorem.

THANK YOU