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Abstract. We consider the stochastic Navier-Stokes equations forced
by a multiplicative white noise on a bounded domain in space dimensions
two and three. We establish the local existence and uniqueness of strong
or pathwise solutions when the initial data takes values in H1. In the
two-dimensional case, we show that these solutions exist for all time.
The proof is based on finite-dimensional approximations, decomposition
into high and low modes and pairwise comparison techniques.

1. Introduction

In this article we study the Navier-Stokes equations in space dimension
d = 2, 3, on a bounded domain M forced by a multiplicative white noise

∂tu + (u · ∇)u − νΔu + ∇p = f + g(u)Ẇ , (1.1a)

divu = 0, (1.1b)

u(0) = u0, (1.1c)

u|M = 0. (1.1d)

The system (1.1) describes the flow of a viscous incompressible fluid. Here
u = (u1, . . . , ud), p and ν represent the velocity field, the pressure and the
coefficient of kinematic viscosity respectively. The addition of the white noise
driven terms to the basic governing equations is natural for both practical
and theoretical applications. Such stochastically forced terms are used to
account for numerical and empirical uncertainties and have been proposed
as a model for turbulence.
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The mathematical literature for the stochastic Navier-Stokes equations is
extensive and dates back to the early 1970’s with the work of Bensoussan
and Temam [2]. For the study of well posedness, new difficulties related to
compactness often arise due to the addition of the probabilistic parameter.
For situations where continuous dependence on initial data remains open
(for example in d = 3 when the initial data merely takes values in L2), it
has proven fruitful to consider martingale solutions. Here, one constructs
a probabilistic basis as part of the solution. For this context we refer the
reader to the works of Viot [30], Cruzeiro [10], Capinski and Gatarek [6],
Flandoli and Gatarek [15], and Mikulevicius and Rozovskii [25].

On the other hand, when working in spaces where continuous dependence
on the initial data can be expected, existence of solutions can sometimes
be established on a preordained probability space. Such solutions are re-
ferred to in the literature as “pathwise” solutions. In the two-dimensional
setting, Da Prato and Zabczyk [12] and later Breckner [4] as well as Menaldi
and Sritharan [21] established the existence of pathwise solutions where u
takes values in L∞([0, T ], L2). On the other hand, Bensoussan and Frehse
[3] have established local solutions in 3-d for the class Cβ([0, T ];H2s) where
3/4 < s < 1 and β < 1 − s. The existence of pathwise, global solutions
for the two-dimensional primitive equations of the ocean with multiplica-
tive noise was recently established by Glatt-Holtz and Ziane in [17], for the
case when u and its vertical gradient are initially in L2. In the works of
Brzezniak and Peszat [5] and Mikulevicius and Rozovsky [23], the case of
arbitrary space dimensions for local solutions evolving in Sobolev spaces of
type W 1,p for p > d is addressed. Despite these extensive investigations,
to the best of our knowledge, no one has addressed the case of local, path-
wise, H1−valued (W 1,2) solutions for the 3-d Navier-Stokes equations with
multiplicative noise.

As we are working at the intersection of two fields, we should note that
the terminology may cause some confusion. In th literature for stochastic
differential equations the term “weak solution” is sometimes used synony-
mously with the term “martingale solution” while the designation “strong
solution” may be used for a “pathwise solution”. See the introductory text
of Øksendal [26] for example. The former terminologies are avoided here be-
cause it is confusing in the context of partial differential equations. Indeed,
from the partial differential equations point of view, strong solutions are so-
lutions which are uniformly bounded in H1, while weak solutions are those
which are merely bounded in L2. In this work we are therefore considering
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solutions which are strong in both the probabilistic and partial differen-
tial equations senses, which we shall call “strong pathwise solutions,” often
dropping the pathwise designation when the context is clear.

The exposition is organized as follows. In the first section we review the
basic setting, defining the relevant function spaces and introducing various
notions of pathwise solutions. We then turn to the Galerkin scheme which we
analyze by modifying a pairwise comparison technique [23]. Key estimates
are achieved using decompositions into high and low modes. In this way we
are able to extract a locally strongly convergent subsequence and surmount
the difficult issue of compactness. In the third section, we establish the
existence and uniqueness of a local solution u evolving continuously in H1

up to a maximal existence time ξ. For samples where ξ is finite we show that,
on the one hand, the L2 norm remains bounded and that on the other hand
the H1 norm of the solution blows up. By showing that certain quantities
are under control in the two-dimensional case we are able to use this later
blow-up criteria to give the proof for the global existence of strong solutions
in the two-dimensional case. In the final section, we formulate and prove
some abstract convergence results used in the proof of the main theorem.
We believe these results to be more widely applicable for the study of well
posedness of other non-linear stochastic partial differential equations and
therefore hold independent interest.

2. The abstract functional analytic setting

We begin by reviewing some basic function spaces associated with (1.1). In
what follows d is the spatial dimension, the physical cases d = 2, 3, being the
focus of our attention below. For simplicity, we assume that the boundary
∂M is smooth. Let

V := {φ ∈ (C∞
0 (M))d : ∇ · φ = 0}, (2.1)

and
H := clL2(M)V = {u ∈ L2(M)d : ∇ · u = 0, u · n = 0}. (2.2)

Here, n is the outer pointing unit normal to ∂M. On H we take the L2

inner product and norm

(u, v) :=
∫
M

u · vdM, |u| :=
√

(u, u). (2.3)

The Leray-Hopf projector, PH , is defined as the orthogonal projection of
L2(M)d onto H. Define also

V := clH1(M)V = {u ∈ H1
0 (M)d : ∇ · u = 0}. (2.4)
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On this set we use the H1 norm and inner products

((u, v)) :=
∫
M

∇u · ∇vdM, ‖u‖ :=
√

((u, u)). (2.5)

Note that, due to the Dirichlet boundary condition (cf. (1.1d)), the Poincaré
inequality,

|u| ≤ C‖u‖, ∀u ∈ V, (2.6)

holds, justifying (2.5) as a norm. Take V ′ to be the dual of V , relative to H
with the pairing notated by 〈·, ·〉.

We next define the Stokes operator A. A is understood as a bounded
linear map from V to V ′ via 〈Au, v〉 = ((u, v)) u, v ∈ V. A can be extended
to an unbounded operator from H to H according to Au = −PHΔu with the
domain D(A) = H2(M)∩V . By applying the theory of symmetric, compact,
operators for A−1, one can prove the existence of an orthonormal basis {ek}
for H of eigenfunctions of A. Here, the associated eigenvalues {λk} form an
unbounded, increasing sequence 0 < λ1 < λ2 ≤ . . . ≤ λn ≤ λn+1 ≤ . . . . We
shall also make use of the fractional powers of A. For u ∈ H, we denote
uk = (u, ek). Given α > 0, take

D(Aα) =
{

u ∈ H :
∑

k

λ2α
k |uk|2 < ∞

}
, (2.7)

and define Aαu =
∑

k λα
kukek, u ∈ D(Aα). We equip D(Aα) with the norm

|u|2α := |Aαu|2 =
∑

k λ2α
k |uk|2. Define Hn = span{e1, . . . , en} and take Pn to

be the projection from H onto this space. Let Qn = I − Pn. The following
extension of the Poincaré inequality will be used for the estimates below.

Lemma 2.1. Suppose that α1 < α2. For any u ∈ D(Aα2),

|Qnu|α1 ≤ λα1−α2
n |Qnu|α2 , (2.8)

|Pnu|α2 ≤ λα2−α1
n |Pnu|α1 . (2.9)

Proof. Working from the definitions,

|Qnu|2α1
≤

∞∑
k=n+1

λ
2(α2−α1)
k

λ
2(α2−α1)
n

λ2α1
k |uk|2 =

1

λ
2(α2−α1)
n

|Qnu|2α2
. (2.10)

Similarly,

|Pnu|2α2
≤ λ2(α2−α1)

n

n∑
k=1

λ2α1
k |uk|2 = λ2(α2−α1)

n |Pnu|2α1
. (2.11)
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The non-linear portion of (1.1) is given by

B(u, v) := PH(u · ∇)v = PH(uj∂jv), u, v ∈ V. (2.12)

Here and below, we occasionally make use of the Einstein convention of
summing repeated indices from 1 to d. For notational convenience we will
sometimes write B(u) := B(u, u). For d = 2, 3, the non-linear functional B
can be shown to be well defined as a map from V × V to V ′ according to

〈B(u, v), w〉 :=
∫
M

(u · ∇)v · wdM =
∫
M

uj∂jvkwkdM. (2.13)

We shall need the following classical facts concerning B.

Lemma 2.2. (i) B is continuous from V × V to V ′ with

〈B(u, v), v〉 = 0, (2.14)

and

|〈B(u, v), w〉| ≤ C

⎧⎪⎨
⎪⎩
|u|1/2‖u‖1/2‖v‖|w|1/2‖w‖1/2 in d = 2,

|u|1/2‖u‖1/2‖v‖‖w‖ in d = 3,

‖u‖‖v‖|w|1/2‖w‖1/2 in d = 3,

(2.15)

for all u, v, w ∈ V .
(ii) B is also continuous from V × D(A) to H. If u ∈ V , v ∈ D(A), and

w ∈ H, then

|(B(u, v), w)| ≤ C

{
|u|1/2‖u‖1/2‖v‖1/2|Av|1/2|w| in d = 2,

‖u‖‖v‖1/2|Av|1/2|w| in d = 3.
(2.16)

(iii) If u ∈ D(A), then B(u) ∈ V, and

‖B(u)‖2 ≤ C‖u‖|Au|3 + |u|1/2|Au|7/2 in d = 2, 3. (2.17)

Proof. The items (i) and (ii) are classical and are easily established using
Hölder’s inequality and the Sobolev embedding theorem (see [29] or [8]). For
item (iii), fix u ∈ V. We have

‖B(u)‖2 ≤
∫
M

|∂m(uj∂juk)∂m(ul∂luk)| dM. (2.18)

We prove the case d = 3; the case d = 2 is similar. We have

|φ|L∞ ≤ C|Aφ|3/4|φ|1/4, φ ∈ D(A). (2.19)

This estimate and the embedding of H1 in L6 implies

‖B(u)‖2 ≤ C(|∇u|3L6‖u‖ + |Au||∇u|2L6 |u|L6 + |u|2L∞ |Au|2) (2.20)

≤ C(|Au|3‖u‖ + |Au|7/2|u|1/2). �
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The stochastically driven term in (1.1) can be written formally in the
expansion

g(u)Ẇ =
∑

k

gk(u)β̇k, (2.21)

where βk are independent standard Brownian motions. To make this rigor-
ous, we recall some definitions.

Definition 2.1. A stochastic basis S := (Ω,F , {Ft}t≥0, P, {βk}k≥1) consists
of a probability space (Ω,F , P) equipped with a complete, right-continuous
filtration, namely P(A) = 0 ⇒ A ∈ F0, Ft = ∩s>tFs and a sequence
of mutually independent, standard, Brownian motions βk relative to this
filtration.

We also need to define a class of spaces for g = {gk}k≥1.

Definition 2.2. Suppose U is any (separable) Hilbert space. We define
	2(U) to be the set of all sequences h = {hk}k≥1 of elements in U so that

|h|2�2(U) :=
∑

k

|hk|2U < ∞. (2.22)

For any normed space Y , we say that h : Y × [0, T ]×Ω → 	2(U) is uniformly
Lipschitz with constant KY , if for all x, y ∈ Y

|h(x, t, ω) − h(y, t, ω)|�2(U) ≤ KY |x − y|Y , (2.23)

and
|h(x, t, ω)|�2(U) ≤ KY (1 + |x|Y ). (2.24)

We denote the collection of all such mappings Lipu(Y, 	2(U)).

For the analysis below we shall assume that

g = {gk} : Ω × [0,∞) × H → 	2(H), (2.25)

and that

g ∈ Lipu(H, 	2(H)) ∩ Lipu(V, 	2(V )) ∩ Lipu(D(A), 	2(D(A))). (2.26)

We shall assume moreover that if u : [0, T ] × Ω → H is predictable,1 then
so is g(u). Given an H-valued predictable process u ∈ L2(Ω;L2(0, T ;H)),

1For a given stochastic basis S, let Φ = Ω × [0,∞) and take G to be the σ-algebra
generated by sets of the form (s, t] × F, 0 ≤ s < t < ∞, F ∈ Fs; {0} × F, F ∈ F0. Recall
that a U valued process u is called predictable (with respect to the stochastic basis S) if
it is (Φ,G) − (U,B(U)) measurable.
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the series expansion (2.21) can be shown to be well defined as a stochastic
integral and( ∫ τ

0
g(u)dW, v

)
=

( ∑
k

∫ τ

0
gk(u)dβk, v

)
=

∑
k

∫ τ

0
(gk(u), v)dβk, (2.27)

for all v ∈ H and stopping times τ . See [11] or [27] for detailed constructions.
In order to show that the conditions imposed above for g are not overly

restrictive we now consider some examples of stochastic forcing regimes sat-
isfying (2.26).

Example 2.1. (i) (Independently forced modes) Suppose (κk(t, ω)) is any
sequence uniformly bounded in L∞([0, T ] × Ω). We force the modes inde-
pendently, defining gk(v, t, ω) = κk(t, ω)(v, ek)ek. In this case the Lipschitz
constants can be taken to be

KH = KV = KD(A) = sup
ω,k,t

|κk(t, ω)|. (2.28)

(ii) (Uniform forcing) Given a uniformly square summable sequence ak(t, ω)
we can take gk(v, t, ω) = ak(t, ω)v, with

KH = KV = KD(A) =
(

sup
t,ω

∑
k

ak(t, ω)2
)1/2

as the Lipschitz constants.
(iii) (Additive noise) We can also include the case when the noise term does
not depend on the solution gk(v, t, ω) = gk(t, ω). Here,

KU := sup
t,ω

( ∑
k

|gk(t, ω)|2U
)1/2

for U = H, V, D(A) as desired.

With the above framework in place, we next give a variational definition
for local pathwise solutions of the stochastic Navier-Stokes equations. Given
a Hilbert space X, for p ∈ [1,∞], we denote

Lp
loc([0,∞);X) =

⋂
T>0

Lp([0, T ];X),

Cw([0,∞);X) = {v ∈ L∞
loc([0,∞);X) : (v, x) ∈ C([0,∞); R),∀x ∈ X}.

Definition 2.3. (Weak and Strong Pathwise Solutions) Let S be a fixed sto-
chastic basis. Assume that u0 is F0 measurable with u0 ∈ L2(Ω, V ). Suppose
that f and g are V ′ and 	2(H) valued, predictable processes respectively with

f ∈ L2(Ω;L2([0,∞);H)), (2.29)
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g ∈ Lipu(H, 	2(H)) ∩ Lipu(V,	2(V )) ∩ Lipu(D(A), 	2(D(A))).

(i) We say that the pair (u, τ) is a local weak (pathwise) solution if τ is a
strictly positive stopping time and u(·∧τ) is a predictable process in V ′, with

u(· ∧ τ) ∈ L2(Ω;Cw([0,∞);H)), u11t≤τ ∈ L2(Ω;L2
loc([0,∞);V )), (2.30)

and so that for any t > 0

u(t∧ τ) +
∫ t∧τ

0
(νAu + B(u)) dt = u(0) +

∫ t∧τ

0
f dt +

∫ t∧τ

0
g(u)dW, (2.31)

in V ′. This equality is equivalent to requiring that for all v ∈ V

〈u(t ∧ τ), v〉 +
∫ t∧τ

0
〈νAu + B(u), v〉dt (2.32)

= 〈u(0), v〉 +
∫ t∧τ

0
〈f, v〉 dt +

∞∑
k=1

∫ t∧τ

0
〈gk(u), v〉dβk.

(ii) The pair (u, τ) is a local strong (pathwise) solution if τ is strictly positive
and u(· ∧ τ) is a predictable process in H with

u(· ∧ τ) ∈ L2(Ω;C([0,∞);V )), u11t≤τ ∈ L2(Ω;L2
loc([0,∞);D(A))), (2.33)

and such that u satisfies (2.31) as an equation in H.
(iii) Suppose that u is a predictable process in V ′ and that ξ is a strictly

positive stopping time. The pair (u, ξ) is said to be a maximal (pathwise)
strong solution, if there exists an increasing sequence τn with

τn ↑ ξ a.s., (2.34)

such that each pair (u, τn) is a local strong solution and so that

sup
t≤ξ

‖u‖2 +
∫ ξ

0
|Au|2dt = ∞, (2.35)

on the set {ξ < ∞}. If, in addition

sup
t∈[0,τn]

‖u‖2 +
∫ τn

0
|Au|2ds = n, (2.36)

on the set {ξ < ∞}, then we say that {τn} announces ξ.

Remark 2.1. (i) For the “pathwise” solutions we consider, the stochastic
basis is given in advance. In particular, solutions corresponding to different
initial laws are shown to be driven by the same underlying Wiener pro-
cess. This is in contrast to the theory of martingale solutions considered
for many non-linear systems. In that case, the underlying probability space
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is constructed as part of the solution. See [11], chapter 8 or [24] and the
references in the introduction. Since the context is clear, we will drop the
“pathwise” designation for the remainder of the exposition.
(ii) If (u, τ) is a local strong solution, then (2.33) implies that

E

(
sup

t∈[0,τ ]
‖u‖2 +

∫ τ

0
|Au|2ds

)
< ∞. (2.37)

So far, we are not able to show that E‖u(t)‖2 is finite for any fixed (deter-
ministic) t > 0. This is the case even in the two-dimensional case where we
prove the existence of a global strong solution (cf. Proposition 4.2).
(iii) Suppose that (u, τ) is a local strong solution. By applying an infinite-
dimensional version of the Itô lemma (see [28] or [27]) one can show that on
the interval [0, τ ], for any p ≥ 2, |u|p satisfies

d|u|p + pν‖u‖2|u|p−2dt = p〈f, u〉|u|p−2dt +
p

2

∞∑
k=1

|gk(u)|2|u|p−2dt (2.38)

+
p(p − 2)

2

∞∑
k=1

〈gk(u), u〉2|u|p−4dt + p
∞∑

k=1

〈gk(u), u〉|u|p−2dβk.

Note that the non-linear term B drops out due to the cancellation property.
Similarly for ‖u‖p, we have

d‖u‖p + pν|Au|2‖u‖p−2dt (2.39)

= p〈f − B(u), Au〉‖u‖p−2dt +
p

2

∞∑
k=1

‖gk(u)‖2‖u‖p−2dt

+
p(p − 2)

2

∞∑
k=1

〈gk(u), Au〉2‖u‖p−4dt + p
∞∑

k=1

〈gk(u), Au〉‖u‖p−2dβk.

3. The Galerkin Scheme and Comparison Estimates

The first step to prove the existence of a solution is to approximate the
full equations with a sequence of finite-dimensional stochastic differential
equations, the Galerkin systems.

Definition 3.1. An adapted process un in C([0, T ];Hn) is a solution to the
Galerkin system of order n if, for any v ∈ Hn,

d〈un, v〉 + 〈νAun + B(un), v〉dt = 〈f, v〉dt +
∞∑

k=1

〈gk(un), v〉dβk, (3.1)

〈un(0), v〉 = 〈u0, v〉.
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We can also write (3.1) as an equation in Hn(∼= Rn)

dun + (νAun + PnB(un))dt = Pnfdt +
∞∑

k=1

Pngk(un)dβk, (3.2)

un(0) = Pnu0 := un
0 .

The existence of solutions to (3.1) is classical and relies on a priori bounds
that are established using the cancellation property (2.14). See [16] for de-
tailed proofs. Uniqueness, which is not essential for our purposes, is estab-
lished as below for the full infinite-dimensional system.

We now proceed to establish the main result of the section. Note that
the conditions established hereafter are precisely those needed to apply
Lemma 5.1 in Proposition 4.2 below.

Proposition 3.1. Suppose that d = 2, 3 and let {un} be the sequence of
solutions of (3.1). We assume that for some 0 < M̃ < ∞

‖u0‖ ≤ M̃ a.s., (3.3)

and that

f ∈ L2(Ω; L2([0, T ];H),

g ∈ Lipu(H, 	2(H)) ∩ Lipu(V, 	2(V )) ∩ Lipu(D(A), 	2(D(A))),
(3.4)

where the spaces for g and the associated Lipschitz constants used are given
as in Definition 2.2. Consider the collection of stopping times

T M,T
n =

{
τ ≤ T :

(
sup

t∈[0,τ ]
‖un‖2 + ν

∫ τ

0
|Aun|2dt

)1/2
≤ M + ‖un

0‖
}

, (3.5)

and take T M,T
m,n := T M,T

m ∩ T M,T
n . Then

(i) For any T > 0 and M > 1

lim
n→∞

sup
m>n

sup
τ∈T M,T

m,n

E

(
sup

t∈[0,τ ]
‖um − un‖2 + ν

∫ τ

0
|A(um − un)|2dt

)
= 0. (3.6)

(ii) Moreover, if for n ∈ N, S > 0 and a stopping time τ, if

An(τ, S) =
{

sup
t∈[0,τ∧S]

‖un‖2 + ν

∫ τ∧S

0
|Aun|2dt > ‖un

0‖2 + (M−1)2
}

,

then
lim
S→0

sup
n

sup
τ∈T M,T

n

P(An(τ, S)) = 0. (3.7)
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Proof. Given m > n, we subtract the equation (3.2) for un from that for
um, and let Um,n = um − un . We find that

dUm,n + νAUm,ndt = [PnB(un) − PmB(um) + (Pm − Pn)f ]dt (3.8)

+
∞∑

k=1

[Pmgk(um) − Pngk(un)]dβk

Um,n(0) = (Pm − Pn)u0.

By applying the Itô lemma to (3.8), we derive an evolution system for the
V norm of this difference2

d‖Um,n‖2 + 2ν|AUm,n|2dt = 2〈PnB(un) − PmB(um), AUm,n〉dt (3.9)

+ 2〈(Pm − Pn)f, AUm,n〉dt +
∞∑

k=1

‖Pmgk(um) − Pngk(un)‖2dt

+ 2
∞∑

k=1

〈Pmgk(um) − Pngk(un), AUm,n〉dβk.

Fix an arbitrary τ ∈ T M,T
m,n , and let the stopping times τa and τb with 0 ≤

τa ≤ τb ≤ τ be given with τ ∈ T M,T
m,n ; we integrate (3.9) from τa to r and

take a supremum over [τa, τb]. After taking expected values we obtain

E

(
sup

t∈[τa,τb]
‖Um,n‖2 + 2ν

∫ τb

τa

|AUm,n|2dt
)

≤ E‖Um,n(τa)‖2 + 2E

∫ τb

τa

|〈(Pm − Pn)f, AUm,n〉|dt (3.10)

+ 2E

∫ τb

τa

|〈PmB(um) − PnB(un), AUm,n〉|dt

+ E

∫ τb

τa

∞∑
k=1

‖Pmgk(um) − Pngk(un)‖2dt

+ E

(
sup

r∈[τa,τb]

∣∣2 ∞∑
k=1

∫ r

τa

〈Pmgk(um) − Pngk(un), AUm,n〉dβk

∣∣).

With the aim of employing Lemma 5.3 below, we estimate each of the terms
on the right-hand side of (3.10). For the first term, we merely split

|2〈(Pm − Pn)f, AUm,n〉| ≤ ν

2
|AUm,n|2 + Cν |Qnf |2. (3.11)

2Compare to (2.39) with p = 2.
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Note that

‖Pmgk(um) − Pngk(un)‖2 ≤ 2‖gk(um) − gk(un)‖2 + 2‖Qngk(un)‖2.

Therefore, using the Lipschitz conditions in (3.4) and Lemma 2.1, we have
∞∑

k=1

‖Pmgk(um) − Pngk(un)‖2 (3.12)

≤ C
(
‖Um,n‖2 +

1
λn

∞∑
k=1

|Agk(un)|2
)
≤ C

(
‖Um,n‖2 +

1
λn

(1 + |Aun|2)
)
.

For the stochastically forced term, we apply the Burkholder-Davis-Gundy
inequality (c.f. [19])

E

(
sup

r∈[τa,τb]

∣∣∣2 ∞∑
k=1

∫ r

τa

〈Pmgk(um) − Pngk(un), AUm,n〉dβk

∣∣∣) (3.13)

≤ CE

( ∫ τb

τa

∞∑
k=1

〈Pmgk(um) − Pngk(un), AUm,n〉2 ds
)1/2

≤ CE

( ∫ τb

τa

‖Um,n‖2
∞∑

k=1

‖Pmgk(um) − Pngk(un)‖2 ds
)1/2

≤ CE

( ∫ τb

τa

‖Um,n‖2
(
‖Um,n‖2 + 1

λn
(1 + |Aun|2)

)
ds

)1/2

≤ 1
2

E

(
sup

t∈[τa,τb]
‖Um,n‖2

)
+ CE

∫ τb

τa

(
‖Um,n‖2 + 1

λn
(1 + |Aun|2)

)
ds,

where the constant C is independent of n, m, τa, and τb. It remains to study
the non-linear term which we split as follows:

〈PmB(um) − PnB(un), AUm,n〉 (3.14)

= 〈B(Um,n, um) + B(un, Um,n) + (Pm − Pn)B(un), AUm,n〉
:= T1 + T2 + T3.

For T1 in (3.14), we apply (2.16). If d equals either 2 or 3 we estimate

|T1| ≤ C‖Um,n‖|Aum||AUm,n| ≤ ν

6
|AUm,n|2 + Cν‖Um,n‖2|Aum|2. (3.15)

Regarding T2, (2.16) yields

|T2| ≤ ‖un‖‖Um,n‖1/2|AUm,n|3/2 ≤ ν

6
|AUm,n|2 + Cν‖Um,n‖2‖un‖4. (3.16)
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For the final term T3, we apply (2.17) in conjunction with Lemma 2.1, and
infer (m > n)

T3 ≤ ν

6
|AUm,n|2 + Cν |QnB(un)|2 ≤ ν

6
|AUm,n|2 +

Cν

λn
‖QnB(un)‖2 (3.17)

≤ ν

6
|A(um − un)|2 +

Cν

λn
(‖un‖|Aun|3 + |un|1/2|Aun|7/2)

≤ ν

6
|A(um − un)|2 +

Cν

λ
1/4
n

‖un‖2|Aun|2,

which is once again valid for d = 2, 3. Combining the estimates (3.15),(3.16)
and (3.17) and using the fact that τa, τb ∈ T M,T

m ∩ T M,T
n (c.f. (3.5)) we infer

that ‖un‖ ≤ M + M̃ on the intervals under consideration, and therefore

E

∫ τb

τa

|〈PmB(um) − PnB(un), AUm,n〉|dt ≤ νE

∫ τb

τa

|AUm,n|2ds (3.18)

+ CνE

∫ τb

τa

(
‖Um,n‖2(|Aum|2 + ‖un‖4) + λ−1/4

n ‖un‖2|Aun|2
)

ds

≤νE

∫ τb

τa

|AUm,n|2ds+CE

∫ τb

τa

(
‖Um,n‖2(1+ |Aum|2) + λ

− 1
4

n (1 + |Aun|2)
)
ds.

Applying the estimates (3.11)–(3.18) and rearranging gives

E

(
sup

t∈[τa,τb]
‖Um,n‖2 + ν

∫ τb

τa

|AUm,n|2dt
)

(3.19)

≤ CE‖Um,n(τa)‖2 + CE

( ∫ τb

τa

(1 + |Aum|2)‖um − un‖2dt
)

+ CE

∫ τb

τa

(
1

λ
1
4
n

(1 + |Aun|2) + |Qnf |2
)
dt.

Note that C = Cν,M,M̃,KV ,KD(A)
does not depend on τa and τb. Also∫ τ

0
1 + |Aum|2dt ≤ 1

ν
(M + M̃)2 + T a.s. (3.20)

We now apply the Gronwall lemma (Lemma 5.3) with X = ‖Um,n‖2, Y =
ν|AUm,n|2, Z = λ

−1/4
n (1+ |Aun|2)+ |Qnf |2, and R = 1+ |Aum|2. We obtain

E

(
sup

t∈[0,τ ]
‖Um,n‖2+ν

∫ τ

0
|AUm,n|2dt

)
(3.21)

≤CE

(
‖Qnu0‖2 +

∫ T

0
|Qnf |2dt +

1

λ
1/4
n

)
.
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Observe that the constant C = Cν,M,M̃,KV ,KD(A),T
does not depend on n, m

or the choice of τ ∈ T M,T
m ∩ T M,T

n . Thus, (3.21) implies (3.6) after taking
the supremum over τ ∈ T M,T

m,n , then over m > n and finally taking the limit
as n → ∞.

By application of the Itô formula we find an evolution equation for ‖un‖2.
(This is similar to (2.39) but can be justified on more elementary terms since
we are in finite dimensions.)

d‖un‖2 + 2ν|Aun|2dt =
(
2〈f − B(un), Aun〉 +

∞∑
k=1

‖Pmgk(un)‖2
)
dt (3.22)

+ 2
∞∑

k=1

〈gk(un), Aun〉dβk.

Fix τ ∈ T M,T
n and S > 0. Integrating (3.22) from 0 to τ ∧ S yields

sup
r∈[0,S∧τ ]

‖un‖2 +
∫ S∧τ

0
2ν|Aun|2 dr ≤ ‖un

0‖2 +
∫ S∧τ

0
2|〈f − B(un), Aun〉| dr

+
∫ S∧τ

0

∞∑
k=1

‖Pmgk(un)‖2 dr + sup
r∈[0,S∧τ ]

∣∣∣ ∞∑
k=1

∫ r

0
2((gk(un), un)) dβk

∣∣∣. (3.23)

Applying (2.16) we see that in both cases d = 2, 3

|〈B(un), Aun〉| ≤ ‖un‖3/2|Aun|3/2 ≤ Cν‖un‖6 +
ν

4
|Aun|2. (3.24)

Using this observation and the Lipschitz conditions imposed on g, one finds
that

sup
r∈[0,S∧τ ]

‖un‖2 +
∫ S∧τ

0
ν|Aun|2 dr (3.25)

≤ ‖un
0‖2 + Cν,Kv

∫ S∧τ

0
(|f |2 + ‖un‖6 + ‖un‖2 + 1) dr

+ sup
r∈[0,S∧τ ]

∣∣∣ ∫ r

0
2

∞∑
k=1

((gk(un), un)) dβk

∣∣∣.
This implies

P

(
sup

s∈[0,τ∧S]
‖un(s)‖2 + ν

∫ τ∧S

0
|Aun|2ds > ‖un

0‖2 + (M − 1)2
)

(3.26)
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≤ P

(
Cν,KV

∫ S∧τ

0
(|f |2 + ‖un‖6 + ‖un‖2 + 1) dr >

(M − 1)2

2

)

+ P

(
sup

r∈[0,S∧τ ]

∣∣∣ ∫ r

0

∞∑
k=1

((gk(un), un)) dβk

∣∣∣ >
(M − 1)2

2

)
.

For the first term on the right-hand side of (3.26), Chebyshev’s inequality
and the fact that τ ∈ T M,T

n imply

P

(
Cν,KV

∫ S∧τ

0
(|f |2 + ‖un‖6 + ‖un‖2 + 1) dr >

(M − 1)2

2

)
(3.27)

≤ 2Cν,KV

(M − 1)2
E

∫ S∧τ

0
(|f |2 + ‖un‖6 + ‖un‖2 + 1) dr

≤ Cν,KV ,M,M̃E

( ∫ S

0
(|f |2 + 1) dr

)
.

Next, by applying Doob’s inequality for the second term, we have

P

(
sup

r∈[0,S∧τ ]

∣∣∣ ∞∑
k=1

∫ r

0
((gk(un), un)) dβk

∣∣∣ >
(M − 1)2

2

)
(3.28)

≤ 4
(M − 1)4

E

( ∫ S∧τ

0
‖un‖2

∞∑
k=1

‖gk(un)‖2 dr
)
≤ CM,M̃,KV

S.

Given the integrability assumed for f and noting that the right-hand sides
of (3.27) and (3.28) are independent of τ we have now established (3.7). �

4. Existence and Uniqueness

With the comparison estimates for the Galerkin systems in hand, we next
turn to the questions of existence and uniqueness. Since we will need to split
the probability space into pieces (see below), it is convenient to first address
the question of uniqueness.

Proposition 4.1. (Uniqueness) Let τ > 0 be a stopping time. Suppose that
(u(1), τ) and (u(2), τ) are respectively local strong and weak solutions to the
stochastic Navier-Stokes equations in d = 2, 3 (cf. Definition 2.3). Let u

(1)
0 ,

u
(2)
0 be the associated initial conditions and assume that

P(11Ω0u
(1)
0 = 11Ω0u

(2)
0 ) = 1, (4.1)

for some Ω0 ∈ F0. Then

P(11Ω0u
(1)(t ∧ τ) = 11Ω0u

(2)(t ∧ τ); t ∈ [0,∞)) = 1. (4.2)



582 Nathan Glatt-Holtz and Mohammed Ziane

Proof. Let U = u(1) − u(2); we have

dU = −[νAU + B(u(1)) − B(u(2))]dt +
∞∑

k=1

[gk(u(1)) − gk(u(2))]dβk. (4.3)

The Itô lemma yields, as with (2.38),

d|U |2 = − 2ν‖U‖2dt − 2〈B(u(1)) − B(u(2)), U〉dt (4.4)

+
∞∑

k=1

|gk(u(1)) − gk(u(2))|2dt + 2
∞∑

k=1

〈gk(u(1)) − gk(u(2)), U〉dβk.

Given any stopping time σ ≤ τ , we may integrate (4.4) from 0 to σ, multiply
the resulting expression by 11Ω0 and finally take expectations to conclude

E11Ω0

(
|U(σ)|2 + 2ν

∫ σ

0
‖U‖2dt

)
(4.5)

= E11Ω0

( ∫ σ

0
2〈B(u(2)) − B(u(1)), U〉 +

∞∑
k=1

|gk(u(1)) − gk(u(2))|2dt
)
.

Using the cancellation property (2.14) and (2.15), we have (e.g. [8], [29])

|〈B(u(1))−B(u(2)), U〉| = |〈B(U, u(1)), U〉| ≤ ν‖U‖2 + Cν‖u(1)‖4|U |2. (4.6)

For R > 0, define the stopping times

σR = inf
t>0

{‖u(1)(t)‖2 > R} ∧ τ. (4.7)

Fix R and apply (4.6) and the Lipschitz condition on g in H (cf. (2.29)) to
(4.5) with the stopping time σR ∧ t. Rearranging, we estimate

E11Ω0

(
|U(σR ∧ t)|2 + ν

∫ σR∧t

0
‖U(s)‖2ds

)

≤Cν,KH
E11Ω0

∫ σR∧t

0
(‖u(1)‖4 + 1)|U(s)|2ds

≤Cν,KH ,RE11Ω0

∫ σR∧t

0
|U(s)|2ds.

(4.8)

By the Gronwall and Poincaré inequalities

E11Ω0

(
|u(1)(σR ∧ t) − u(2)(σR ∧ t)|2

)
= 0, (4.9)

which implies

11Ω0 |u(1)(σR ∧ t) − u(2)(σR ∧ t)|2 = 0, a.s. (4.10)
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Thus,

P(11Ω0 |u(1)(t ∧ τ) − u(2)(t ∧ τ)|2 �= 0) (4.11)

= P({σR < τ} ∩ {11Ω0 |u(1)(t ∧ τ) − u(2)(t ∧ τ)|2 �= 0})
+ P({σR = τ} ∩ {11Ω0 |u(1)(t ∧ τ) − u(2)(t ∧ τ)|2 �= 0})
≤ P(σR < τ) + P(11Ω0 |u(1)(σR ∧ t) − u(2)(σR ∧ t)|2 �= 0)

= P(σR < τ).

Note that

P(σR < τ) ≤ P

(
sup

s∈[0,τ ]
‖u(1)‖2 ≥ R

)
≤ 1

R
E

(
sup

s∈[0,τ ]
‖u(1)‖2

)
→ 0, (4.12)

as R → ∞. So for any t

11Ω0 |u(1)(t ∧ τ) − u(2)(t ∧ τ)|2 = 0, (4.13)

on a set of full measure which may depend on t. Taking the intersection of
such sets corresponding to positive rational times we infer

P(11Ω0u
(1)(t ∧ τ) = 11Ω0u

(2)(t ∧ τ); t ∈ [0,∞) ∩ Q) = 1. (4.14)

Given the continuity assumption in (2.30) we finally conclude (4.2) from
(4.14), completing the proof. �
4.1. Existence of local strong solutions.

Proposition 4.2. (Local Existence) Suppose that d = 2, 3 and assume that

u0 ∈ L2(Ω; V ), f ∈ L2(Ω;L2
loc([0,∞);H)),

g ∈ Lipu(H, 	2(H)) ∩ Lipu(V, 	2(V )) ∩ Lipu(D(A), 	2(D(A))),
(4.15)

for some T positive. Then, there exists a local strong solution (u, τ) in the
sense of Definition 2.3.

Proof. We proceed in two steps. First, we assume that ‖u0‖ ≤ M̃ , almost
surely, so that the estimates in Proposition 3.1 apply. Also fix M > 1 and
a positive time T as in (3.5). Take {un} to be the associated sequence of
Galerkin solutions. Due to (3.6) and (3.7), the assumptions for Lemma 5.1,
(i) are satisfied for the spaces B1 = V and B2 = D(A) and the sequence
{Xn} = {un}. We infer the existence of a subsequence {un′}, a strictly
positive stopping time τ ≤ T and a process u(·) = u(· ∧ τ), continuous in V ,
such that

sup
t∈[0,τ ]

‖un′ − u‖2 + ν

∫ τ

0
|A(un′ − u)|2ds → 0 a.s. (4.16)
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Notice, moreover, that un
0 satisfies the conditions for Lemma 5.1, (ii) for any

p ∈ (1,∞). Thus for any such p

u(· ∧ τ) ∈ Lp(Ω;C([0, T ];V )), (4.17)

and
u11t≤τ ∈ Lp(Ω;L2([0, T ];D(A))). (4.18)

From Lemma 5.1, (ii) we also obtain a collection of measurable sets Ωn′ ∈ F
with Ωn′ ↑ Ω such that (cf. (5.9))

sup
n′

E

[
sup

t∈[0,T ]
‖un′

(t ∧ τ)11Ωn′‖2 + ν

∫ τ

0
|Aun′

11Ωn′ |2ds
]p/2

< ∞. (4.19)

Therefore, given (4.16) and (4.19), we apply Lemma 5.2 and infer

11Ωn′ ,t≤τu
n′

⇀ 11t≤τu in Lp(Ω;L2([0, T ];D(A))), (4.20)

as well as
11Ωn′u

n′
(· ∧ τ) ⇀∗ u in Lp(Ω;L∞([0, T ];V )). (4.21)

For the non-linear term we apply (2.15) and estimate

|(Pn′B(un′
)−B(u), v)| ≤ |〈B(un′ − u, un′

), Pn′v〉| (4.22)

+ |〈B(u, un′ − u), Pn′v〉| + |〈B(u), Qn′v〉|
≤C(‖un′ − u‖(‖un′‖ + ‖u‖)‖v‖ + ‖u‖2|Qn′v|1/2‖v‖1/2)

≤C
(
‖un′ − u‖(‖un′‖ + ‖u‖)‖v‖ +

1

λ
1/4
n′

‖u‖2‖v‖
)
.

By applying (4.16) with (4.22) we infer that, given any v ∈ V,

11t≤τ (Pn′B(un′
), v) → 11t≤τ (B(u), v) as n′ → ∞, (4.23)

for almost every (ω, t) ∈ Ω× [0, T ]. Furthermore, making use of the uniform
bound (4.19) with p = 4, one finds

sup
n′

E

(
11Ωn′

∫ τ

0
|Pn′B(un′

)|2 ds
)
≤ C sup

n′
E

(
11Ωn′

∫ τ

0
‖un′‖3|Aun′ | ds

)

≤ C sup
n′

E

(
11Ωn′ sup

t∈[0,τ ]
‖un′‖2

∫ τ

0
|Aun′ |2 ds

)
(4.24)

≤ C sup
n′

E11Ωn′

(
sup

t∈[0,τ ]
‖un′‖4 +

( ∫ τ

0
|Aun′ |2 ds

)2)
< ∞.

With (4.23) and (4.24), and Lemma 5.2, we gather that

11Ωn′ ,t≤τ Pn′B(un′
) ⇀ 11t≤τB(u) in L2(Ω;L2([0, T ];H)). (4.25)
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For the stochastic terms in (3.2), we use (4.15) and obtain( ∑
k

|Pn′gk(un′
) − gk(u)|2

)1/2
(4.26)

≤
( ∑

k

|Pn′gk(un′
) − Pn′gk(u)|2

)1/2
+

( ∑
k

|Qn′gk(u)|2
)1/2

≤CKH ,KV

(
‖un′ − u‖ +

1
λn′

(1 + ‖u‖) ds
)
.

With this estimate, (4.16) implies 11t≤τPn′g(un′
) → 11t≤τg(u), in 	2(H), for

almost every (ω, t) ∈ Ω×[0, T ]. On the other hand, if Yn =
∑

k |Pn′gk(un′
)|2,

then

sup
n′

E

[
11Ωn′

∫ τ

0
Yn(s) ds

]
≤ C + C sup

n′
E

[
11Ωn′

∫ τ

0
‖un′‖2 ds

]
< ∞,

which means that
11Ωn′ ,t≤τ Pn′g(un′

) ⇀ 11t≤τg(u), (4.27)

in L2(Ω;L2([0, T ]; 	2(H))). Therefore, using (4.20) and (4.25), we deduce
that for any fixed v ∈ H (see Remark 4.1, (i))

11Ωn′

∫ t∧τ

0
(Aun′

, v) ds ⇀

∫ t∧τ

0
(Au, v) ds, (4.28)

11Ωn′

∫ t∧τ

0
(PnB(un′

), v) ds ⇀

∫ t∧τ

0
(B(u), v) ds,

11Ωn′

∑
k

∫ t∧τ

0
(Pn′gk(un′

), v) dβk ⇀
∑

k

∫ t∧τ

0
(gk(u), v) dβk,

weakly in L2(Ω × [0, T ]). If K ⊂ Ω × [0, T ] is any measurable set then by
(4.21) and (4.28)

E

∫ T

0
χK(u(t), v) dt = lim

n′→∞
E

∫ T

0
(11Ωn′u

n′
(t ∧ τ), χKv) dt (4.29)

= lim
n′→∞

(
E

∫ T

0
χK11Ωn′ (Pn′u0, v) dt

− E

∫ T

0
χK11Ωn′

[ ∫ t∧τ

0
(νAun′

+ Pn′B(un′
) − Pn′f, v) ds

]
dt

+ E

∫ T

0
χK11Ωn′

[ ∑
k

∫ t∧τ

0
(Pn′gk(un′

), v)dβk

]
dt

)
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= E

∫ T

0
χK

[
(u0, v) −

∫ t∧τ

0
(νAu + B(u) − f, v)ds

]
dt

+ E

∫ T

0
χK

[ ∑
k

∫ t∧τ

0
(gk(u), v)dβk

]
dt.

Since v and K above are arbitrary, we may infer that u satisfies (2.31) as
an equation in H (cf. Remark 4.1, (ii)). It follows from (4.17), (4.18) and
the fact that τ ≤ T almost surely that u satisfies the regularity conditions
(2.33).

The proof is complete for the case when ‖u0‖ ≤ M̃ almost surely. We
suppose now merely that E‖u0‖2 < ∞. For k ≥ 0, take (uk, τk) to be the
local strong solutions corresponding to the initial data u011k≤‖u0‖<k+1. Let

u =
∞∑

k=0

uk11k≤‖u0‖<k+1, τ =
∞∑

k=0

τk11k≤‖u0‖<k+1. (4.30)

We now show that (u, τ) is a local strong solution with initial data u0. Since
uk ∈ C([0, τk], V ) almost surely, we infer that u ∈ C([0, τ ];V ) almost surely.
Using the fact that E‖u0‖2 < ∞, one infers that 1 =

∑∞
k=0 11k≤‖u0‖<k+1

almost surely. Therefore, by applying (5.7) for each uk, we deduce

sup
t∈[0,τ ]

‖u‖2 + ν

∫ τ

0
|Au|2ds

=
∞∑

k=0

11k≤‖u0‖<k+1

[
sup

t∈[0,τk]
‖uk‖2 + ν

∫ τk

0
|Auk|2ds

]

≤C

∞∑
k=0

11k≤‖u0‖<k+1(M
2 + ‖u0‖2) ≤ C(M2 + ‖u0‖2).

(4.31)

Taking expectations above, one infers (2.33) for u. Furthermore,

u(t ∧ τ) =
∞∑

k=0

11k≤‖u0‖<k+1uk(t ∧ τk) (4.32)

=
∞∑

k=0

11k≤‖u0‖<k+1

[
u0 −

∫ t∧τk

0
(νAuk + B(uk) − f)dt

]

+
∞∑

k=0

11k≤‖u0‖<k+1

[ ∫ t∧τk

0
g(uk)dW

]
,
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and theredore,

u(t ∧ τ) =
∞∑

k=0

11k≤‖u0‖<k+1F(t ∧ τ, u) = F(t ∧ τ, u),

where

F(t ∧ τ, u) =
[
u0 −

∫ t∧τ

0
(νAu + B(u) − f)dt +

∫ t∧τ

0
g(u)dW

]

= u(0) −
∫ t∧τ

0

(
νAu + B(u) − f

)
dt +

∫ t∧τ

0
g(u)dW, (4.33)

where all equalities are in H. The proof is now complete for the general
case. �
Remark 4.1. For the sake of the non-probabilistic reader we recall the
following facts used in Proposition 4.1.

(i) Weak convergences are preserved under continuous linear transforma-
tions. In the present context, it is sufficient to observe that if T is a bounded
linear mapping between two Hilbert spaces H1 and H2 then, assuming that
xn ⇀ x (weakly) in H1, one can infer that Txn ⇀ Tx (weakly) in H2.

(ii) Suppose that X is a Hilbert space and

x(t, ω) ∈ C([0, T ], X), a.s. ω, (4.34)

and y(t, ω) and z(t, ω) are given so that∫ t

0
y(s, ω)ds +

∫ t

0
z(s, ω)dW (s, ω) ∈ C([0, T ], X), a.s. ω. (4.35)

If we show that for every v ∈ X and every K ⊂ Ω× [0, T ], measurable, that3

E

∫ T

0
χK(x(t), v)dt = E

∫ T

0
χK

( ∫ t

0
(y(s), v)ds +

∫ t

0
(z(s), v)dW

)
dt,

then we can infer that

x(t, ω) =
∫ t

0
y(s, ω)ds +

∫ t

0
z(s, ω)dW (s, ω), (4.36)

for almost every (t, ω), with the equality making sense in X. It follows, for a
dense, countable set R ⊆ [0, T ], that there exists Ω̃ which is of full measure
so that for all t ∈ R, ω ∈ Ω̃

x(t, ω) =
∫ t

0
y(s, ω)ds +

∫ t

0
z(s, ω)dW (s, ω). (4.37)

3compare with (4.29)
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However, since the functions on both side of the equation above are contin-
uous (in time) we may infer that the equality above holds over all ω ∈ Ω̃
and every t ∈ [0, T ]. In the present context X = H, x(t) = u(t ∧ τ),
y(t) = 11t≤τAu(t) + B(u(t)) and z(t) = g(u(t)). Due to (4.17) we have
(4.34). As a consequence of (4.20), (4.25) and (4.27) we may infer (4.35).

4.2. Maximal existence time and blow-up. In this section we establish
the existence of a maximal strong solution (u, ξ). In addition, we show that
(u, ξ) is a weak solution even up to the blow up time ξ. The first step is
to show that if a strong solution exists up to time τ one can (uniquely)
extend this solution up to some stopping time σ > τ . This is captured in
the following lemma.

Lemma 4.1. Assume that (u, τ) is a local strong solution of the stochastic
Navier-Stokes equations (cf. Definition 2.3) and that τ is finite almost surely.
Then, there exists a local strong solution (ue, σ) such that σ > τ almost surely
and such that P(ue(t ∧ τ) = u(t ∧ τ); t ∈ [0,∞)) = 1.

Proof. Define the stochastic basis
S̃ : = (Ω̃, F̃ , {F̃t}t≥0, P̃, {β̃k(t)}k≥1)

= (Ω,F , {Ft+τ}t≥0, P, {βk(t + τ) − β(τ)}k≥1),
(4.38)

and let ũ0 = u(τ), f̃(t) = f(t + τ), g̃(·, t) = g(·, t + τ). Observe that these
data satisfy (4.15) for the basis S̃. As such, according to Proposition 4.2,
there exists a local strong solution (ũ, τ̃) relative to S̃. Define σ = τ + τ̃
and ue(t) = u(t) for t ≤ τ and ũ(t− τ) for t > τ. It may be checked directly
that (ue, τ + τ̃) = (u, σ) is a local strong solution relative to the original
stochastic l basis S. �

The next lemma establishes some further estimates on weak solutions
(u, τ) in terms of the data f , g and u0 that do not depend on τ . Note that
this lemma will also be employed in the next section for the proof of the
global existence in d = 2.

Lemma 4.2. Suppose that in addition to the assumptions of Proposition 4.2
we have, for some p ≥ 2 and u0 ∈ Lp(Ω;H), f ∈ Lp(Ω;L2

loc([0,∞);V ′)).
If (u, τ) is a local weak solution in the sense of Definition 2.3, then for any
T > 0

E

[
sup

t∈[0,τ∧T ]
|u|p +

∫ τ∧T

0
‖u‖2|u|p−2dt

]
≤ CE|u0|p + CE

( ∫ T

0
|f |2V ′ds

)p/2
,

(4.39)
where the constant C := Cν,KH ,p,T does not depend on τ .
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Proof. By (2.38), for any pair of stopping times 0 ≤ σa ≤ σb ≤ τ ∧ T,

E

(
sup

s∈[σa,σb]
|u|p + pν

∫ σb

σa

‖u‖2|u|p−2dt
)

(4.40)

≤CpE

(
|u(σa)|p +

∫ σb

σa

|〈f, u〉||u|p−2dt +
∫ σb

σa

∞∑
k=1

|gk(u)|2|u|p−2dt
)

+ CpE

(
sup

s∈[σa,σb]

∣∣∣ ∞∑
k=1

∫ s

σa

〈gk(u), u〉|u|p−2dβk

∣∣∣).

The first term on the right-hand side of (4.40) is estimated by

Cp

∫ σb

σa

|〈f, u〉| |u|p−2dt ≤ Cν,p

∫ σb

σa

|f |2V ′ |u|p−2 dt +
νp

2

∫ σb

σa

‖u‖2|u|p−2 dt

≤ Cν,p

(
sup

t∈[σa,σb]
|u|p−2

) ∫ σb

σa

|f |2V ′dt +
νp

2

∫ σb

σa

‖u‖2|u|p−2 dt

≤ 1
6

sup
t∈[σa,σb]

|u|p +
pν

2

∫ σb

σa

‖u‖2|u|p−2 dt + Cν,p

( ∫ σb

σa

|f |2V ′ds
)p/2

. (4.41)

Next, using the Lipschitz assumption for g we have

∞∑
k=1

∫ σb

σa

|gk(u)|2|u|p−2dt ≤C

∫ σb

σa

(1 + |u|2)|u|p−2dt

≤1
6 sup

t∈[0,T ]
|u|p + C

(
1 +

∫ σb

σa

|u|p dt
)
.

(4.42)

Finally,

CpE

(
sup

s∈[σa,σb]

∣∣∣ ∞∑
k=1

∫ s

0
〈gk(u), u〉|u|p−2dβk

∣∣∣)

≤CpE

( ∫ σb

σa

∞∑
k=1

〈gk(u), u〉2|u|2(p−2)dt
)1/2

≤CKH ,pE

( ∫ σb

σa

(1 + |u|2)|u|2(p−1)dt
)1/2

≤1
6

E

(
sup

t∈[σa,σb]
|u|p

)
+ Cp,T,KH

E

(
1 +

∫ σb

σa

|u|pdt
)
.

(4.43)
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From estimates (4.41), (4.42) and (4.43) applied to (4.40) we infer

E

[
sup

t∈[σa,σb]
|u|p +

∫ σb

σa

‖u‖2|u|p−2dt
]

≤CE

(
1 + |u(σa)|p +

∫ σb

σa

|u|p dt +
( ∫ σb

σa

|f |2V ′ds
)p/2)

.

(4.44)

We may now employ Lemma 5.3 to conclude (4.39). �
We now have everything we need to establish the existence of a maxi-

mal solution and a sequence of stopping times announcing any finite time
blow-up. The argument is adapted from Jacod [18] and Mikulevicius and
Rozovskii [23].

Theorem 4.1. Given the assumptions in Proposition 4.2, there exists a
unique maximal solution (u, ξ) and a sequence ρn announcing ξ. In addition,
the pair (u, ξ) is a weak solution.

Proof. Consider the set L of all stopping times such that τ ∈ L if and only
if there exists a process u such that (u, τ) is a local strong solution. Notice
that

σ1, σ2 ∈ L ⇒ σ1 ∨ σ2 ∈ L, (4.45)
and that

σ ∈ L ⇒ ρ ∧ σ ∈ L, (4.46)
for any stopping time ρ. Let ξ = supL (see [13], Chapter 5, Section 18).
Using (4.45) we can choose an increasing sequence σk ∈ L such that σk

converges to ξ almost surely. For each σk denote by uk the process such that
(uk, σk) is a local strong solution. Let

Ωk,k′ = {uk(t ∧ σk ∧ σk′) = uk′(t ∧ σk ∧ σk′); t ∈ [0,∞)}. (4.47)

By (4.46) and uniqueness (c.f. Proposition 4.1) we have that Ω̃ =
⋂

k,k′ Ωk,k′

is a set of full measure. For fixed ω on this set and every t > 0 the sequence
{uk(t ∧ σk)11t<ξ} is Cauchy in V . Let ũ(t) = limk→∞ uk(t ∧ σk)11t<ξ almost
surely. By Lemma 4.2 and the monotone convergence theorem, for any T > 0

E

[
sup

t∈[0,ξ∧T ]
|ũ|2 +

∫ ξ∧T

0
‖ũ‖2dt

]
< ∞. (4.48)

We are therefore justified in defining

〈u(t), v〉 = 〈u(0), v〉 −
∫ t∧ξ

0
〈νAũ + B(ũ) − f, v〉 dt +

∞∑
k=1

∫ t∧ξ

0
〈gk(ũ), v〉dβk,

(4.49)
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for any t > 0, v ∈ V . It is direct to check that for t < ξ(ω), u(t, ω) = ũ(t, ω)
and that u is weakly continuous (almost surely) in H. These observations,
with (4.48) and (4.49), imply that (u, ξ) is a local weak solution.

For R > 0 define the stopping time

ρR = inf
t≥0

{
sup

s∈[0,t]
‖u‖2 +

∫ t

0
|Au|2ds > R

}
∧ ξ. (4.50)

Clearly, (u, ρR) is a local strong solution for any R > 0. Suppose, toward a
contradiction, that for some R, T sufficiently large, P(ρR ∧ T = ξ) > 0. By
Lemma 4.1 this would imply the existence of an element ζ > ρR ∧ T almost
surely with ζ ∈ L. But since ξ is the supremal element of L, we have our
desired contradiction. We see moreover that {ρR}R≥0 announces ξ. �
4.3. Global existence in dimension two. In this section, we prove that
if d = 2 the maximal solution found in Proposition 4.1 is global.

Theorem 4.2. Suppose that d = 2 and that, in addition to the assumptions
of Proposition 4.2, we have u0 ∈ Lp(Ω;H) and f ∈ Lp(Ω;L2

loc([0,∞);V ′)),
for some p ≥ 4. Then the maximal solution (u, ξ) is global in the sense that
ξ = ∞ almost surely.

Proof. Let ρn be an increasing sequence of stopping times announcing ξ.
Observe that

{ξ < ∞} =
∞⋃

T=1

{ξ ≤ T} =
∞⋃

T=1

∞⋂
n=1

{ρn ≤ T}. (4.51)

Using the fact that ρn is increasing we have

P

( ∞⋂
n=1

{ρn ≤ T}
)

= lim
N→∞

P

( N⋂
n=1

{ρn ≤ T}
)

= lim
N→∞

P

(
ρN ≤ T

)
. (4.52)

Thus, to establish the desired result, it is sufficient to show that for any fixed
T < ∞

P(ρN ≤ T ) → 0 as N → ∞. (4.53)
For M > 0, define the stopping time

γM := inf
t≥0

{∫ t∧ξ

0
‖u‖2|u|2ds > M

}
∧ 2T. (4.54)

We have P(ρN ≤ T ) ≤ P(ρN ≤ T ∩ {γM > T}) + P(γM ≤ T ). The first term
on the right-hand side is bounded by

P

({
sup

t∈[0,ρN∧T ]
‖u‖2 +

∫ ρN∧T

0
|Au|2ds ≥ N

}
∩ {γM > T}

)
(4.55)
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≤ P

(
sup

t∈[0,ρN∧γM ]
‖u‖2 +

∫ ρN∧γM

0
|Au|2ds ≥ N

)
.

Fix T , M , N and a pair of stopping times τa ≤ τb ≤ ρN ∧ γM . Integrating
(2.39) for the case p = 2, and performing some standard manipulations using
the weighted Young inequality, one finds

E

(
sup

t∈[τa,τb]
‖u‖2 + ν

∫ τb

τa

|Au|2ds
)

(4.56)

≤ CE

(
‖u(τa)‖2 +

∫ τb

τa

(|f |2 + |〈B(u), Au〉| + ‖u‖2)ds
)

+ E

(
sup

t∈[τa,τb]

∣∣∣2 ∞∑
k=1

∫ t

τa

((gk(u), u))dβk

∣∣∣).

By making use of (2.16) for d = 2

|〈B(u), Au〉| ≤ |u|1/2‖u‖|Au|3/2 ≤ Cν |u|2‖u‖4 +
ν

2
|Au|2. (4.57)

For the last term in (4.56), the Burkholder-Davis-Gundy inequality implies

E

(
sup

t∈[τa,τb]

∣∣∣2 ∞∑
k=1

∫ t

τa

((gk(u), u))dβk

∣∣∣) ≤ CE

( ∞∑
k=1

∫ τb

τa

((gk(u), u))2dt
)1/2

≤ CKV
E

( ∫ τb

τa

(1 + ‖u‖2)‖u‖2dt
)1/2

(4.58)

≤ E

(1
2

sup
t∈[τa,τb]

‖u‖2 + CKV ,ν

∫ τb

τa

(1 + ‖u‖2)dt
)
.

Applying (4.57) and (4.58) to (4.56) and rearranging implies

E

(
sup

t∈[τa,τb]
‖u(t)‖2 + ν

∫ τb

τa

|Au|2ds
)

≤CE

(
‖u(τa)‖2 +

∫ τb

τa

(
(|u|2‖u‖2 + 1)‖u‖2 + |f |2

)
ds

)
,

(4.59)

where C = Cν,KV
. The expression on the right-hand side of (4.59) can be

bounded independently of τa, τb. Also, by definition∫ γM

0
|u|2‖u‖2ds ≤ M, a.s. (4.60)
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Lemma 5.3 then implies

E

(
sup

t∈[0,ρN∧γM ]
‖u(t)‖2 + ν

∫ ρN∧γM

0
|Au|2ds

)

≤Cν,Kv ,M,T E

(
‖u0‖2 +

∫ 2T

0
(|f |2 + 1)ds

)
.

(4.61)

Note that Cν,Kv ,M,T does not depend on N . Using (4.55) with (4.61) we
infer

P(ρN < T ) ≤ C

N
E

(
‖u0‖2 +

∫ 2T

0
(|f |2 + 1)ds

)
+ P(γM ≤ T ). (4.62)

Thus, for any fixed M

lim
N→∞

P(ρN < T ) ≤ P(γM ≤ T ). (4.63)

Finally, by applying Lemma 4.2 we find that

P(γM ≤ T ) ≤ P

( ∫ T∧ξ

0
‖u‖2|u|2dt ≥ M

)
≤ 1

M
E

( ∫ T∧ξ

0
‖u‖2|u|2dt

)
,

which goes to zero as M → ∞, and (4.53) follows. �

5. Abstract Results

In this section we formulate and prove a collection of abstract lemmas
which are employed above to circumvent the key difficulties related to com-
pactness for the Galerkin scheme. As such we believe that these results
could prove useful for the study of local well posedness for other non-linear
stochastic partial differential equations.

5.1. A pairwise comparison theorem. We have made use in Proposi-
tion 4.2 of the following abstract comparison lemma. The formulation and
proof extends Lemma 20 in [23]. Let (Ω,F , (Ft)t≥, P) be a fixed, filtered
probability space. Suppose that B1 and B2 are Banach spaces with B2 ⊂ B1

with continuous embedding. We denote the associated norms by | · |i. Define
E(T ) := C([0, T ];B1) ∩ L2([0, T ];B2) with the norm

|Y |E(T ) =
(

sup
t∈[0,T ]

|Y (t)|21 +
∫ T

0
|Y (t)|22dt

)1/2
. (5.1)

Let Xn be a sequence of B2-valued stochastic processes so that for every
T > 0 Xn ∈ E(T ) almost surely. For M > 1, T > 0 define the collection of
stopping times

T M,T
n :=

{
τ ≤ T ; |Xn|E(τ) ≤ M + |Xn(0)|1

}
, (5.2)
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and let T M,T
n,m := T M,T

n ∩ T M,T
m .

Lemma 5.1. (i) Suppose that, for some M > 1 and T, we have4

lim
n→∞

sup
m≥n

sup
τ∈T M,T

m,n

E|Xn − Xm|E(τ) = 0 (5.3)

lim
S→0

sup
n

sup
τ∈T M,T

n

P
[
|Xn|E(τ∧S) > |Xn(0)|1 + M − 1

]
= 0. (5.4)

Then, there exists a stopping time τ with

P(0 < τ ≤ T ) = 1, (5.5)

and a process X(·) = X(· ∧ τ) ∈ E(τ), such that

|Xnl
− X|E(τ) → 0, a.s. (5.6)

for some subsequence nl ↑ ∞. Moreover,

|X|E(τ) ≤ M + sup
n

|Xn(0)|1, a.s. (5.7)

(ii) If, in addition to the conditions imposed in (i)

sup
n

E|Xn(0)|p1 < ∞, (5.8)

for some 1 ≤ p < ∞, then there exists a sequence of sets Ωl ↑ Ω such that

sup
l

E11Ωl
|Xnl

|pE(τ) < ∞, (5.9)

and
E|X|pE(τ) ≤ Cq

(
Mp + sup

n
E|Xn(0)|p1

)
. (5.10)

Proof. Our first step will be to identify the convergent subsequence. We
proceed by induction on l and start with l = 0 and n0 = 1. When nl is
known, we easily find nl+1 > nl, thanks to (5.3), satisfying

sup
τ∈T M,T

nl+1,nl

E|Xnl
− Xnl+1

|E(τ) ≤ 2−2l. (5.11)

Next, to find τ , as needed for (5.5) and (5.6), we define

τl := inf
t>0

{
|Xnl

|E(t) > |Xnl
(0)|1 + (M − 1 + 2−l)

}
∧ T, (5.12)

and let

ΩN =
∞⋂

j=N

{
|Xnj − Xnj+1 |E(τj∧τj+1) < 2−(j+2)

}
. (5.13)

4Compare to (3.6) and (3.7)
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Noting that τl ∧ τl+1 ∈ T M,T
nl+1,nl , we have

P

(
|Xnl

−Xnl+1
|E(τl∧τl+1) ≥ 2−(l+2)

)
≤ 2l+2E|Xnl

−Xnl+1
|E(τl∧τl+1) ≤ 2−(l−2).

By the Borel-Cantelli lemma we infer that

P

( ∞⋂
N=1

∞⋃
j=N

{
|Xnj − Xnj+1 |E(τj∧τj+1) ≥ 2−(j+2)

} )
= 0, (5.14)

and therefore that Ω̃ := ∪NΩN is a set of full measure.
To show that {τl} converges, we establish that

τl+1(ω) ≤ τl(ω) for every l ≥ N, ω ∈ ΩN . (5.15)

Indeed, given N and l ≥ N consider the set {τl+1 > τl} ∩ ΩN . On this set
we have, in particular, that τl < T . With the continuity of |Xnl

|E(t) in t,
this implies (cf. (5.12))

|Xnl
|E(τl) = |Xnl

(0)|1 + (M − 1 + 2−l). (5.16)

Also, on ΩN it is clear that

|Xnl
|E(τl∧τl+1) − |Xnl+1

|E(τl∧τl+1) < 2−(l+2)

|Xnl+1
(0)| − |Xnl

(0)| < 2−(l+2).
(5.17)

Combining these observations, we infer

|Xnl+1
|E(τl∧τl+1) > |Xnl

|E(τl∧τl+1) − 2−(l+2) = |Xnl
|E(τl) − 2−(l+2)

= |Xnl
(0)|1 + (M − 1 + 2−l) − 2−(l+2)

> |Xnl+1
(0)|1 + (M − 1 + 2−l) − 2 · 2−(l+2)

= |Xnl+1
(0)|1 + (M − 1 + 2−(l+1)),

(5.18)

over {τl+1 > τl} ∩ ΩN . On the other hand on ΩN

|Xnl+1
|E(τl∧τl+1) ≤ |Xnl+1

|E(τl+1) ≤ |Xnl+1
(0)| + (M − 1 + 2−(l+1)). (5.19)

Together (5.18) and (5.19) show that {τl+1 > τl} ∩ ΩN must be empty.
Combining (5.15) and (5.14) justifies taking

τ = lim
l

τl a.s. (5.20)

To show that τ > 0 almost surely, we fix ε > 0 with T > ε > 0. We have

{τl < ε} ⊂{|Xnl
|E(τl∧ε) = |Xnl

(0)|1 + (M − 1 + 2−l)}
⊂{|Xnl

|E(τl∧ε) > |Xnl
(0)|1 + (M − 1)}.

(5.21)
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Since

{τ < ε} =
∞⋃
l=1

∞⋂
k=l

{τk < ε}, (5.22)

we have that

P(τ < ε) = P

( ∞⋃
l=1

∞⋂
k=l

{τk < ε}
)
≤ lim sup

l
P(τl < ε) (5.23)

≤ sup
l

P(|Xnl
|E(τl∧ε) > |Xnl

(0)|1 + (M − 1)).

Making use of the condition imposed in (5.4) we see that

P(τ = 0) = P(∩ε>0{τ < ε}) = lim
ε↓0

P(τ < ε) = 0. (5.24)

By construction, τ ≤ T , so 5.5 now follows.
We may now prove that Xnl

is Cauchy in E(τ) almost surely. Notice that,
due to (5.15), for every ω ∈ Ω̃, one can choose N = N(ω) so that ω ∈ ΩN

and τ(ω) ≤ τl+1(ω) ≤ τl(ω) whenever l ≥ N . As such

|Xnl
(ω) − Xnl+1

(ω)|E(τ(ω)) ≤ |Xnl
(ω) − Xnl+1

(ω)|E(τl∧τl+1(ω)) < 2−(l+2),

(5.25)
where the final inequality is due to (5.13). Therefore, there exists a process
X(·) = X(· ∧ τ) ∈ E(τ) such that liml→∞ |Xnl

− X|E(τ) = 0 almost surely.
To establish (5.7), (5.9) and (5.10) take Ωl as in (5.13). Again using the

fact that τl ≥ τl+1 ≥ τ on Ωl,

11Ωl
|Xnl

|E(τ) ≤ 2−(l+2) + 11Ωl
|Xnl+1

|E(τ)

≤ |Xnl+1
(0)|1 + M ≤ sup

n
|Xn(0)|1 + M,

(5.26)

which yields (5.7). The second inequality in (5.26) implies

E

(
11Ωl

|Xnl
|pE(τ)

)
≤ Cp(Mp + E|Xnl

(0)|p1). (5.27)

The bound (5.9) follows from (5.27) as a consequence of (5.8). By applying
Fatou’s lemma we infer (5.10). �

5.2. Weak convergence lemmas. We next establish a general result con-
cerning weak convergence in Banach spaces that is used to uniquely identify
certain limits that one infers from Lemma 5.1.

Lemma 5.2. Suppose that X is a separable Banach space and let D ⊂ X be
a dense subset. Let X∗ be the dual of X and denote the dual pairing between
X and X∗ by 〈·, ·〉. Assume that (E, E , μ) is a finite measure space and that
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p ∈ (1,∞). Assume that u, un ∈ Lp(E, X∗) with {un} uniformly bounded in
Lp(E, X∗) and

〈un, y〉 → 〈u, y〉 μ − a.e. (5.28)
for all y ∈ D. Then

un ⇀∗ u, (5.29)
in Lp(E, X∗).

Proof. Fix y ∈ D and define

EN := {ω ∈ E : |〈um(ω) − u(ω), y〉| ≤ 1, for every m ≥ N}. (5.30)

Let χN be the indicator function associated to EN . Note that as a conse-
quence of (5.28)

1 − χN → 0 as N → ∞, (5.31)
μ-almost surely.

Let F ∈ E and N ≥ 1 be given. We observe that, due to the dominated
convergence theorem,

lim
n→∞

∣∣∣ ∫
F

χN 〈un − u, y〉dμ
∣∣∣ = 0. (5.32)

As such

lim sup
n→∞

∣∣∣ ∫
F
〈un − u, y〉dμ

∣∣∣ ≤ lim sup
n→∞

∣∣∣ ∫
F
(1 − χN )〈un − u, y〉dμ

∣∣∣
≤ lim sup

n→∞
‖y‖X

( ∫
F
‖un − u‖p

X∗dμ
)1/p( ∫

F
|1 − χN |p′dμ

)1/p′

≤C
( ∫

F
|1 − χN |p′dμ

)1/p′

.

For the last bound above we use only the uniform bounds on un in Lp(E, X∗)
so that C can be chosen independently of N . Taking N → ∞ and applying
the dominated convergence theorem with (5.31), we finally conclude that

lim
n→∞

∣∣∣ ∫
F
〈un − u, y〉dμ

∣∣∣ = 0. (5.33)

Observe that (cf. [31], Chapter 5)

S := {s =
d∑

k=1

yk : χFk
, yk ∈ D, Fk ∈ E , d < ∞} (5.34)

is a dense subset of Lp′(E, X). As such, a simple density argument estab-
lishes (5.29) from (5.33). �
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5.3. A gronwall lemma for stochastic processes. In this paper, we used
the following lemma several times in an analogous manner to the classical
Gronwall lemma.

Lemma 5.3. Fix T > 0. Assume that X, Y, Z, R : [0, T ) × Ω → R are
real-valued, non-negative stochastic processes. Let τ < T be a stopping time
so that

E

∫ τ

0
(RX + Z) ds < ∞. (5.35)

Assume, moreover, that for some fixed constant κ,∫ τ

0
R ds < κ, a.s. (5.36)

Suppose that for all stopping times 0 ≤ τa < τb ≤ τ

E

(
sup

t∈[τa,τb]
X +

∫ τb

τa

Y ds
)
≤ C0E

(
X(τa) +

∫ τb

τa

(RX + Z) ds
)
, (5.37)

where C0 is a constant independent of the choice of τa, τb. Then

E

(
sup

t∈[0,τ ]
X +

∫ τ

0
Y ds

)
≤ CE

(
X(0) +

∫ τ

0
Z ds

)
, (5.38)

where C = C(C0, T, κ).

Proof. Choose a sequence of stopping times 0 = τ0 < τ1 < . . . < τN <
τN+1 = τ, so that ∫ τk

τk−1

R ds <
1

2C0
a.s. (5.39)

For each pair τk−1, τk take τa = τk−1 and τb = τk in (5.37). By making use
of (5.39) and rearranging we deduce

E

(
sup

t∈[τk−1,τk]
X +

∫ τk

τk−1

Y ds
)
≤ CEX(τk−1) + CE

∫ τk

τk−1

Z ds. (5.40)

Assuming, by induction on j, that

E

(
sup

t∈[0,τj ]
X +

∫ τj

0
Y ds

)
≤ CEX(0) + CE

∫ τj

0
Z ds, (5.41)

then

E

(
sup

t∈[0,τj+1]
X +

∫ τj+1

0
Y ds

)
(5.42)

≤ CEX(0) + CE

∫ τj

0
Z ds + CE

(
sup

t∈[τj ,τj+1]
X +

∫ τj+1

τj

Y ds
)
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≤ CEX(0) + CE

∫ τj+1

0
Z ds + CEX(τj) ≤ CEX(0) + CE

∫ τj+1

0
Z ds.

Hence (5.38) follows. �
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[18] J. Jacod, “Calcul stochastique et problèmes de martingales,” Lecture Notes in Math-
ematics, 714, Springer, Berlin, 1979.

[19] I. Karatzas and S.E. Shreve, “Brownian Motion and Stochastic Calculus,” Graduate
Texts in Mathematics, 113, 2nd Edition, Springer-Verlag, New York, 1991.

[20] R. E. Megginson, “An Introduction to Banach Space Theory,” Graduate Texts in
Mathematics, 183, Springer-Verlag, New York, 1998.

[21] J.-L. Menaldi and S.S. Sritharan, Stochastic 2-D Navier-Stokes equation, Appl. Math.
Optim., 46 2002, 31–53.

[22] R. Mikulevicius and B. L. Rozovskii, On equations of stochastic fluid mechanics, in
“Stochastics in finite and infinite dimensions,” Trends Math., 285–302, Birkhäuser
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