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Abstract. We consider three problems from the recent issues of the American Mathe-
matical Monthly involving different versions of Catalan triangle. Our main results offer
generalizations of these identities and demonstrate automated proofs with additional twists,
and on occasion we furnish a combinatorial proof.

1. Introduction

Let’s fix some nomenclature. The set of all integers is Z, and the set of non-negative integers
is N. Denote the Catalan triangle by Bn,k = k

n

(
2n
n−k

)
= k

n

(
2n
n+k

)
, for 1 ≤ k ≤ n, and

the all-familiar Catalan numbers Cn = 1
n+1

(
2n
n

)
correspond to Bn,1. On the other hand,

t2n−k,k =
(
2n
k

)
−
(

2n
k−1

)
form yet another variation of the Catalan triangle and these numbers

count lattice paths (N and E unit steps) from (0, 0) to (2n− k, k) that may touch but stay
below the line y = x.

Convention. Empty sums and empty products are evaluated to 0 and 1, respectively. Also
that

(
n
k

)
= 0 whenever k < 0 or k > n.

Let Qa,b :=
(
a+b
a

)
. When considering a triple product of the numbers Bn,k, on occasion we

find the following as a more handy reformulation

abcQa,bQb,cQc,a

Qa,aQb,bQc,c

Ba,kBb,kBc,k = k3
(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
.(1.1)

The impetus for this paper comes from Problem 11844 [1], Problem 11899 [2] and Problem
11916 [3] of the American Mathematical Monthly journal, plus the following identities that
came up in our study:(

n+m

2n

) n∑
k=0

k

(
2n

n+ k

)2(
2m

m+ k

)
=
n

2

(
2m

m+ n

)(
2n

n

)m−1∑
j=0

(
n+ j

n

)(
n+ j

n− 1

)
,(1.2)

(
n+m

m

) n∑
k=0

k

(
2n

n+ k

)(
2m

m+ k

)2

=
n

2

(
2n

n

)(
2m

m

)m−1∑
j=0

(
n+ j

n

)(
m+ j

m− 1

)
.(1.3)

The purpose of our work here is to present certain generalizations and to provide automatic
proofs as well as alternative techniques. Our demonstration of the Wilf-Zeilberger style of
proof [8] exhibit the power of this methodology, especially where we supplemented it with
novel adjustments whenever a direct implementation lingers.
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A class of d-fold binomial sums of the type

R(n) :=
∑

k1,...,kd

d∏
i=1

(
2n

n+ ki

)
|f(k1, . . . , kd)|

have been investigated by several authors, see for example [4] and references therein. One
interpretation is this: 4−dnR(n) is the expectation of |f | if one starts at the origin and takes
2n random steps ±1

2
in each of the d dimensions, thus arriving at the point (k1, . . . , kd) ∈ Zd

with probability

4−dn
d∏
i=1

(
2n

n+ ki

)
.

The organization of the paper is as follows. In Section 2, Problems 11844, 11916 and some
generalized identities are proved. Section 3 resolves Problem 11899 and highlights a combina-
torial proof together with q-analogue of related identities. Finally, in Section 4, we conclude
with further generalizations and some open problems for the reader.

2. The first set of main results

Our first result proves Problem 11844 of the Monthly [1] as mentioned in the Introduction.

Lemma 2.1. For non-negative integers m ≥ n, we have

n∑
k=0

(m− 2k)

(
m

k

)3

= (m− n)

(
m

n

)m−n−1∑
j=0

(
n+ j

n

)(
n+ j

m− n− 1

)
.(2.1)

Proof. We apply the method of Wilf-Zeilberger [8]. This techniques works, in the present
case, after multiplying (2.1) through with (−1)m. Denote the resulting summand on the LHS
of (2.1) by F1(m, k) and its sum by f1(m) :=

∑n
k=0 F1(m, k). Now, introduce the companion

function

G1(m, k) := −F1(m, k) · (2m− k + 2)k3

(m− 2k)(m− k + 1)3

and check that F1(m+ 1, k)− F1(m, k) = G1(m, k + 1)−G1(m, k). Telescoping gives

f1(m+ 1)− f1(m) =
n∑
k=0

F1(m+ 1, k)−
n∑
k=0

F1(m, k) =
n∑
k=0

[G1(m, k + 1)−G1(m, k)]

= G1(m,n+ 1)− 0 = (−1)m+1

(
m

n

)3

(2m− n+ 1).

Let F2(m, j) be the summand on the RHS of (2.1) and its sum f2(m) :=
∑m−n−1

j=0 F2(m, j).
Introduce

G2(m, j) := F2(m, j) ·
j(m− 2n− j − 1)

(m− n)2
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and check that F2(m+ 1, j)−F2(m, j) = G2(m, j + 1)−G2(m, j). Summing 0 ≤ j ≤ m− n
and telescoping, we arrive at

f2(m+ 1)− f2(m) =
m−n∑
j=0

F2(m+ 1, j)−
m−n∑
j=0

F2(m, j) + F2(m,m− n)

=
m−n∑
j=0

[G2(m, j + 1)−G2(m, j)] + F2(m,m− n)

= G2(m,m− n+ 1)− 0 + F2(m,m− n)

= (−1)m+1

(
m

n

)3

(2m− n+ 1).

The final step is settled with f1(0) = f2(0) = 0 (if m = 0, so is n = 0). �

Theorem 2.2. For nonnegative integers r, s and m ≥ n, we have

n∑
k=0

(m− 2k)
(
m+r+s
m,r,s

)(
m
k

)(
m+2r
k+r

)(
m+2s
k+s

)(
m+2r
m+r

)(
m+2s
m+s

)(
m+s
n+s

) = (m− n)
m−n+r−1∑

j=0

(
n+ j

n

)(
n+ j + s

m− n+ s− 1

)
.(2.2)

Proof. Again we use the W-Z method. Multiply through equation (2.2) by
(
m+s
n+s

)
and denote

the summand on the new LHS of (2.2) by F1(r, k) and its sum by f1(r) :=
∑n

k=0 F1(r, k).
Now, introduce the companion function

G1(r, k) := F1(r, k) · k(s+ k)

(m− 2k)(m+ r − k + 1)

and (routinely) check that F1(r+ 1, k)−F1(r, k) = G1(r, k+ 1)−G1(r, k). Telescoping gives

f1(r + 1)− f1(r) =
n∑
k=0

F1(r + 1, k)−
n∑
k=0

F1(r, k) =
n∑
k=0

[G1(r, k + 1)−G1(r, k)]

= G1(r, n+ 1)− 0 = (m− n)

(
m+ s

n+ s

)(
m+ r

n

)(
m+ r + s

m− n+ s− 1

)
.

Denoting the entire sum on the RHS of (2.2) by f2(r), it is straightforward to see that

f2(r + 1)− f2(r) = (m− n)

(
m+ s

n+ s

)(
m+ r

n

)(
m+ r + s

m− n+ s− 1

)
.

It remains to verify the initial condition f1(0) = f2(0); that is,

n∑
k=0

(m− 2k)
(
m+s
m

)(
m
k

)2(m+2s
k+s

)(
m+2s
m+s

) = (m− n)

(
m+ s

n+ s

)m−n−1∑
j=0

(
n+ j

n

)(
n+ j + s

m− n+ s− 1

)
.(2.3)

Denote the summand on the LHS of (2.3) by F2(s, k) and its sum by f2(s) :=
∑n

k=0 F2(s, k).
Now, introduce the companion function

G2(s, k) := F2(s, k) · k2

(m− 2k)(m+ s− k + 1)
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and (routinely) check that F2(s+ 1, k)−F2(s, k) = G2(s, k+ 1)−G2(s, k). Telescoping gives

f2(s+ 1)− f2(s) =
n∑
k=0

F2(s+ 1, k)−
n∑
k=0

F2(s, k) =
n∑
k=0

[G2(s, k + 1)−G2(s, k)]

= G2(s, n+ 1)− 0 = (m− n)

(
m+ s

n+ s+ 1

)(
m+ s

n

)(
m

n

)
.

Let F3(s, j) be the summand on the RHS of (2.3) and its sum f3(s) :=
∑m−n−1

j=0 F3(s, j).
Introduce

G3(s, j) := F3(s, j) ·
j(2n−m+ j + 1)

(n+ s+ 1)(m− n+ s)

and check that F3(s + 1, j) − F3(s, j) = G3(s, j + 1) − G3(s, j). Summing and telescoping,
we get

f3(s+ 1)− f3(s) =
m−n−1∑
j=0

F3(s+ 1, j)−
m−n−1∑
j=0

F3(s, j) =
m−n−1∑
j=0

[G3(s, j + 1)−G3(s, j)]

= G3(s,m− n)− 0 = (m− n)

(
m+ s

n+ s+ 1

)(
m+ s

n

)(
m

n

)
.

The initial condition f2(0) = f3(0) is precisely the content of Lemma 2.1. �

The next statement covers Problem 11916 [3] as an immediate application of Theorem 2.2.

Corollary 2.3. Let a, b and c be non-negative integers. Then, the function

U(a, b, c) := a

(
a+ b

a

) c−1∑
j=0

(
a+ j

a

)(
b+ j

b− 1

)
is symmetric, i.e. U(σ(a), σ(b), σ(c)) = U(a, b, c) for any σ in the symmetric group S3.

Proof. If n = a,m = 2a, r = b− a, s = c− a, the left-hand side of Theorem 2.2 turns into

LHS =

(
b+c

2a,b−a,c−a

)(
2b
b+a

)(
2c
c+a

) a∑
k=0

(2a− 2k)

(
2a

k

)(
2b

k + b− a

)(
2c

k + c− a

)

= 2
(a+ b)!(b+ c)!(c+ a)!

(2a)!(2b)!(2c)!

a∑
k=0

k

(
2a

a− k

)(
2b

b− k

)(
2c

c− k

)

=
2Qa,bQb,cQc,a

Qa,aQb,bQc,c

a∑
k=0

k

(
2a

a+ k

)(
2b

b+ k

)(
2c

c+ k

)
and the right-hand side simplifies to

RHS = a

(
a+ c

c

) b−1∑
j=0

(
a+ j

a

)(
c+ j

c− 1

)
= aQc,a

b−1∑
j=0

(
a+ j

a

)(
c+ j

c− 1

)
.

Therefore, we obtain

Qa,bQb,cQc,a

Qa,aQb,bQc,c

a∑
k=0

k

(
2a

a+ k

)(
2b

b+ k

)(
2c

c+ k

)
=
aQc,a

2

b−1∑
j=0

(
a+ j

a

)(
c+ j

c− 1

)
.(2.4)
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The following apparently symmetry

a∑
k=0

k

(
2a

a+ k

)(
2b

b+ k

)(
2c

c+ k

)
=

min{a,b,c}∑
k=0

k

(
2a

a+ k

)(
2b

b+ k

)(
2c

c+ k

)
.

implies that the LHS of the identity in (2.4) has to be symmetric. The assertion follows from
the symmetry inherited by the RHS of the same equation (2.4). �

Example 2.4. In equation (2.4), the special case a = n, b = c = m becomes (1.2) while
a = b = n, c = m recovers (1.3).

Corollary 2.5. Preserve notations from Cor. 2.3. For a, b, c ∈ N and any σ ∈ S3, we have

a∑
k=0

k

(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=
σ(a)Qσ(a),σ(b)

2

σ(c)−1∑
j=0

(
σ(a) + j

σ(a)

)(
σ(b) + j

σ(b)− 1

)
.(2.5)

Proof. First, employ an algebraic manipulation on (2.4) similar to equation (1.1). Now apply
the identity in (2.4) and the statement of Corollary 2.3. �

For non-negative integers x, y, z, write the elementary symmetric functions

e1(x, y, z) = x+ y + z, e2(x, y, z) = xy + yz + zx and e3(x, y, z) = xyz.

Theorem 2.6. For non-negative integers a, b and c, we have

a∑
k=0

k3
(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
=
b2c2Qb,c

2

a−1∑
j=0

e2(a, b, c)
(
b+j
b

)(
c+j
c

)
e2(j, b, c) · e2(j + 1, b, c)

.(2.6)

Proof. Once again use the W-Z method. First, divide through by e2(a, b, c) to denote the
summand on the LHS of (2.6) by F1(a, k) and its sum by f1(a) :=

∑a
k=0 F1(a, k). Now,

introduce the companion function

G1(a, k) := −F1(a, k) · ((e2 + b+ c)k2 − (e2 + b+ c)k + abc+ bc)(b+ k)(c+ k)

2k3(a+ 1− k) · (e2 + b+ c)

and (routinely) check that F1(a+ 1, k)− F1(a, k) = G1(a, k + 1)−G1(a, k); where we write
e2 for e2(a, b, c). Keeping in mind that F1(a, a+ 1) = 0 and telescoping gives

f1(a+ 1)− f1(a) =
a+1∑
k=0

F1(a+ 1, k)−
a+1∑
k=0

F1(a, k) =
a+1∑
k=0

[G1(a, k + 1)−G1(a, k)]

= G1(a, a+ 2)−G1(a, 0) = 0−G1(a, 0) =
b2c2Qa,bQb,cQc,a

2e2(e2 + b+ c)
.

This difference formula for f1(a+ 1)− f1(a) leads to

f1(a) =
b2c2Qb,c

2
·
a−1∑
j=0

(
b+j
a

)(
c+j
c

)
(jb+ bc+ cj) · (jb+ bc+ cj + b+ c)

which is the required conclusion. �
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Remark 2.7. In [7], Miana, Ohtsuka and Romero obtained two identities for the sum
∑n

k=0B
3
n,k.

From Theorem 2.6 and (1.1), we obtain the identity for the sum
∑a

k=0Ba,kBb,kBc,k.

Remark 2.8. Corollary 2.5 and Theorem 2.6 exhibit formulas for
∑

k k(· · · ) and
∑

k k
3(· · · ).

It appears that similar (albeit complicated) results are possible for sums of the type
∑

k k
p(. . . )

whenever p is an odd positive integer (but not when p is even).

We can offer a 4-parameter generalization of Theorem 2.5 and Theorem 2.6.

Theorem 2.9. For non-negative integers a, b, c and d, we have
a∑
k=0

k

(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ d

c+ k

)(
d+ a

d+ k

)
=
bQb,cQc,dQb+c+d,a

2Qa,c

a−1∑
j=0

Qb,jQc−1,j+1Qd−1,j+1

Qb+c+d,j+1

.

Proof. Analogous to the preceding arguments. �

Remark 2.10. It is interesting to compare our results against Corollary 4.1 of [5]. Although
these are similar, there are differences: in our case the RHSs are less involved while those
of [5] are more general. See also Corollary 4.2 and Theorem 4.3 of [7]. The examples below
are devoted to explore some specifics.

Example 2.11. Set a = b = c = n in Theorem 2.5. The outcome is
n∑
k=0

k

(
2n

n+ k

)3

=
1

2

(
2n

n

) n∑
j=0

j

(
n+ j − 1

n− 1

)2

.

Example 2.12. Set a = b = c = n in Theorem 2.6. The outcome is
n∑
k=0

k3
(

2n

n+ k

)3

=
1

2

n−1∑
j=0

3n4
(
2n
n

)(
n+j
n

)2
(n+ 2j)(n+ 2j + 2)

.

Example 2.13. Set a = b = c = d = n in Theorem 2.9. The outcome is
n∑
k=0

k

(
2n

n+ k

)4

=
1

2

(
4n

n

)(
2n

n

) n∑
j=0

j

(
n+ j − 1

n− 1

)3(
3n+ j

3n

)−1
.

3. The second set of main results

We start with a q-identity and its ordinary counterpart will allow us to prove one of the
Monthly problems which was alluded to in the Introduction. Along the way, we encounter
the Catalan triangle t2n−k,k =

(
2n
k

)
−
(

2n
k−1

)
which we also write as tn+k,k =

(
2n
n−k

)
−
(

2n
n−k−1

)
.

Let’s recall some notations. The q-analogue of the integer n is given by [n]q := 1−qn
1−q , the

factorial by [n]q! =
∏n

i=1
1−qi
1−q and the binomial coefficients by(

n

k

)
q

=
[n]q!

[k]q![n− k]q!
.

Lemma 3.1. For a free parameter q and a positive integer n, we have
n∑
k=0

(
2n+ 1

n− k

)
q

[(
2n

n− k

)
q

−
(

2n

n− k − 1

)
q

]
qk(k+1) = qn

(
2n

n

)2

q

.
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Proof. Let G(n, k) =
(

2n
n+k

)2
q
· qn+k2 . Now, check that

(
2n+ 1

n− k

)
q

[(
2n

n− k

)
q

−
(

2n

n− k − 1

)
q

]
qk(k+1) =

(
2n+ 1

n− k

)2

q

1− q2k+1

1− q2n+1
qn+k

2

= G(n, k)−G(n, k + 1)

and then sum over k = 0 through k = n to obtain G(n, 0) = qn
(
2n
n

)2
q
. �

We now demonstrate a combinatorial argument for the special case q = 1 of Lemma 3.1.

Lemma 3.2. For non-negative integers n, we have

n∑
k=0

(
2n+ 1

n− k

)[(
2n

n− k

)
−
(

2n

n− k − 1

)]
=

(
2n

n

)2

.(3.1)

Proof. The first factor in the summand on the left side of (3.1) counts paths of 2n + 1
steps, consisting of upsteps (1, 1) or downsteps (1,−1), that start at the origin and end at
height 2k+ 1. The second factor is the generalized Catalan number that counts nonnegative
(i.e., first quadrant) paths of 2n up/down steps that end at height 2k. By concatenating
the first path and the reverse of the second, we see that the left side counts the set Xn

of paths of 2n + 1 upsteps and 2n downsteps that avoid the x-axis for x > 2n, i.e. avoid
(2n+ 2, 0), (2n+ 4, 0), . . . , (4n, 0).

Now
(
2n
n

)
is the number of balanced paths of length 2n (i.e., n upsteps and n downsteps), but

it is also the number of nonnegative 2n-paths and, for n ≥ 1, twice the number of positive
(= nonnegative, no-return) 2n-paths (see [6], for example). So, the right side of (3.1) counts
the set Yn of pairs (P,Q) of nonnegative 2n-paths. Here is a bijection φ from Xn to Yn. A
path P ∈ Xn ends at height 1 and so its last upstep from the x-axis splits it into P = BUD
where B is a balanced path and D is a dyck path of length ≥ 2n since P avoids the x-axis
for x > 2n. Write D as QR where R is of length 2n.

If B is empty, set φ(P ) = (Q, Reverse(R)), a pair of nonnegative 2n-paths ending at the
same height. If B is nonempty, then by the above remarks it is equivalent to a bicolored
positive path S of the same length, say colored red or blue. If red, set φ(P ) = (QS,
Reverse(R))∈ Yn with the first path ending strictly higher than the second. If blue, set
φ(P ) = (Reverse(R), QS)∈ Yn with the first path ending strictly lower than the second. It
is easy to check that φ is a bijection from Xn to Yn. �

As an application, we present a proof for Problem 11899 as advertised in the Introduction.

Corollary 3.3. For non-negative positive integer n, we have

n∑
k=0

(
2n

k

)(
2n+ 1

k

)
+

2n+1∑
k=n+1

(
2n

k − 1

)(
2n+ 1

k

)
=

(
4n+ 1

2n

)
+

(
2n

n

)2

.
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Proof. Start by writing

A1 :=
n∑
k=0

(
2n

k

)(
2n+ 1

k

)
, A2 :=

2n+1∑
k=n+1

(
2n

k

)(
2n+ 1

k

)
,

Ã1 :=
2n+1∑
k=n+1

(
2n

k − 1

)(
2n+ 1

k

)
, Ã2 :=

n∑
k=0

(
2n

k − 1

)(
2n+ 1

k

)
.

Re-indexing gives A1 = Ã1 and A2 = Ã2. The required identity is A1 + Ã1 = 2A1 =(
4n+1
2n

)
+
(
2n
n

)2
. In view of the Vandermonde-Chu identity A1 + A2 =

(
4n+1
2n

)
, it suffices to

prove that A1 − A2 = A1 − Ã2 =
(
2n
n

)2
. That is,

n∑
k=0

(
2n+ 1

k

)
t2n−k,k =

n∑
k=0

(
2n+ 1

n− k

)[(
2n

n− k

)
−
(

2n

n− k − 1

)]
=

(
2n

n

)2

which is exactly what Lemma 3.2 is about. However, here is yet another verification: if we

let G(n, k) =
(

2n
n+k

)2
then it is routine to check that(

2n+ 1

n− k

)[(
2n

n− k

)
−
(

2n

n− k − 1

)]
=

(
2n+ 1

n− k

)2
2k + 1

2n+ 1
= G(n, k)−G(n, k + 1).

Obviously then
n∑
k=0

[G(n, k)−G(n, k + 1)] = G(n, 0)−G(n, n+ 1) = G(n, 0) =

(
2n

n

)2

.

The proof follows. �

4. Concluding Remarks

Finally, we list binomial identities with extra parameters similar to those from the preceding
sections, however their proofs are left to the interested reader because we wish to limit unduly
replication of our techniques. We also include some open problems.

The first result generalizes Corollary 2.5.

Proposition 4.1. For non-negative integers a, b, c and an integer r, we have
a+r∑
k=1

(2k − r)
(
a+ b+ r

a+ k

)(
b+ c+ r

b+ k

)(
c+ a+ r

c+ k

)
= (a+ r)Qa+r,b

c+r−1∑
j=0

(
a+ j

a

)(
b+ j

b+ r − 1

)
.

Next, we state certain natural q-analogues of Corollary 2.5 and Corollary 2.3.

Theorem 4.2. For non-negative integers a, b and c, we have
a∑
k=0

(1− q2k)q2k2−k−1

1− qa

(
a+ b

a+ k

)
q

(
b+ c

b+ k

)
q

(
c+ a

c+ k

)
q

=

(
a+ b

a

)
q

c−1∑
j=0

qj
(
a+ j

a

)
q

(
b+ j

b− 1

)
q

.

Corollary 4.3. Let a, b and c be non-negative integers. Then, the function

Uq(a, b, c) :=
1− qa

1− q

(
a+ b

a

)
q

c−1∑
j=0

(
a+ j

a

)
q

(
b+ j

b− 1

)
q
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is symmetric, i.e. Uq(σ(a), σ(b), σ(c)) = Uq(a, b, c) for any σ in the symmetric groups S3.

Let’s consider the family of sums

Sr(a, b, c) :=
a∑
k=0

k2r+1

(
a+ b

a+ k

)(
b+ c

b+ k

)(
c+ a

c+ k

)
.

It follows that

(a2 − k2)
(
a+ b

a+ k

)(
c+ a

c+ k

)
= (a+ k)(a− k)

(
a+ b

a+ k

)(
c+ a

a− k

)
= (a+ b)(a+ c)

(
a− 1 + b

a− 1 + k

)(
c+ a− 1

a− 1− k

)
= (a+ b)(a+ c)

(
a− 1 + b

a− 1 + k

)(
c+ a− 1

c+ k

)
which in turn implies, after replacing k2r+1 = k2r−1k2 = k2r−1[a2 − (a2 − k2)], that

Sr(a, b, c) = a2 · Sr−1(a, b, c)− (a+ b)(a+ c) · Sr−1(a− 1, b, c).

Problem. Introduce the operators on symmetric functions f = f(a, b, c) of 3-variables by

L · f = [(a+ b)(a+ c)E − a2I]f

where E · f(a, b, c) = f(a − 1, b, c) and I · f(a, b, c) = f(a, b, c) is the identity map. As
a question of independent interest show that the iterates Ln · 1 always yield in symmetric
polynomials in Z[a, b, c], for any integer n ≥ 1.

Postscript. Matthew Hongye Xie of Nankai University informed the authors, in private
communication, that he has found a proof for this problem.

Conjecture 4.4. For each r ∈ Z+, there exist symmetric polynomials fr, gr ∈ Z[a, b, c] such
that

Sr(a, b, c) =
b2c2fr(a, b, c)

(
b+c
b

)
2

a−1∑
j=0

(
b+j
b

)(
c+j
c

)
· gr(j + 1, b, c)

fr(j, b, c) · fr(j + 1, b, c)
.

The functions fr satisfy the recurrence,

fr(a, b, c) = L · fr−1(a, b, c)

with f0(a, b, c) = 1.

r fr gr
0 1 1/e3
1 e2 1
2 e22 − e1e2 + e3 2e3 − e2
3 e32 + 3e3e2 − 3e22e1 − 2e3e1 + 2e2e

2
1 + e3 − e2e1 6e23 − 8e3e2 + 3e22 + e3 − e2e1

Table 1. The first few polynomials in support of Conjecture 4.4
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