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Abstract. Let n ≥ 2 be an integer. We prove the convexity of the so-
called MacMahon q-Catalan polynomials Cn(q) = 1

[n+1]q

[
2n
n

]
q

viewed as
functions of q over the entire set of reals. Along the way, several auxil-
iary properties of the q-Catalan polynomials and intermediate results in
the form of inequalities are presented, with the aim to make the paper
self-contained. We also include a commentary on the convexity of the
generating function for the integer partitions.

1. Introduction

For n ∈ N, let [n]q =
1−qn

1−q = 1+q+ · · ·+qn−1 and [n]!q = [1]q[2]q · · · [n]q. We
adopt [0]q = 0 and [0]!q = 1. The current literature embraces different ver-
sions of the q-Catalan polynomials, among them is MacMahon’s q-Catalan
polynomial defined by

Cn(q) =
1

[n + 1]q

[
2n
n

]
q
=

[2n]!q

[n + 1]!q [n]!q
,

with C0(q) = C1(q) = 1. For contrast, several authors investigated the
Gaussian polynomials

[
n
k

]
q

for symmetry, unimodality [7] and log-concavity
[3]. However, the above q-Catalan polynomials are symmetric (palindromic)
but they do not enjoy the other properties. There are some combinatorial
interpretations of MacMahon’s q-Catalan in the context of the maj statistic
[6], simultaneous core-partitions [2], [5] and a slightly altered concept of
parity unimodality [8]. Our main goal, in this paper, is to explore another
interesting question which incidentally seems to have been overlooked so
far: the q-Catalan polynomials are strictly convex functions of q; that means,
C′′n (q) > 0 for n ≥ 2. This conjecture is due to William Y. C. Chen, from
August 2015, who also posited that all even-order derivatives of Cn(q) are
positive [4]. We thank him for bringing his question to our attention. In
the present work, we are able to produce the first complete proof for the
convexity of Cn(q) over the real line.
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Theorem 1.1. The q-Catalan polynomials Cn(q) are strictly convex over R
for every integer n ≥ 2.

We like to remark that, by contrast, the closely related central q-binomial
coefficients

[
2n
n

]
q

are not generally convex, since their degree is not always
even. They do seem to be convex in the case that n is even, and it might be
possible to prove this along the same lines as Theorem 1.1.
We now describe the organization of our paper. Section 2 covers basic
properties of the q-Catalan polynomials and their derivatives, culminat-
ing in Corollary 2.5, which shows that it suffices to prove convexity for
q ∈ (−1, 0), provided that an additional technical condition holds. This
is achieved in Proposition 3.2. Two other lemmas in Section 3, namely
Lemma 3.5 and Lemma 3.6, provide the inductive step for an induction
proof of convexity for q ∈ (−1, 0) (see Theorem 4.1). Our central result,
Theorem 1.1, then follows by putting everything together. The final sec-
tion, Section 6, adds a convexity result for the generating function of the
integer partitions and concludes with a question for the inspired reader.

2. Preliminary results

In this section, we shall list some basic properties of the MacMahon q-
Catalan polynomials and a few other results pertinent to our principal goal.
Throughout this paper f ′(q) means derivative with respect to the variable q,
i.e., f ′(q) = d

dq f (q).

Proposition 2.1. The following statements hold.
(a) Cn(0) = 1,C′n(0) = 0, and C′′n (0) = 2 (the latter for n ≥ 2).

(b) Cn(1) = Cn =
1

n+1

(
2n
n

)
, and C′n(1) =

(
n
2

)
Cn.

(c) Cn(−1) =
(

n
⌊ n

2 ⌋

)
, while C′n(−1) = −

(
n
2

)(
n
⌊ n

2 ⌋

)
and

C′′n (−1) =
1

12

(
n
⌊ n

2⌋

)
·

 n2(n + 1)(3n − 5) if n is even;
(n2 − 1)(3n2 − 2n − 2) if n is odd.

(d) Cn(q) > 0 for any real number q and any n ∈ N.
(e) Cn(q) is strictly increasing and strictly convex whenever q > 0.

Proof. (a)–(c): We may express Cn(q) = fn(q)Cn−1(q) where

(2.1) fn(q) =
(1 + qn)(1 − q2n−1)

1 − qn+1 .

Then, the assertions become rather elementary based on the product rule
C′n = f ′nCn−1 + fnC′n−1,C

′′
n = f ′′n Cn−1 + 2 f ′nC′n−1 + fnC′′n−1 and induction on n.
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(d)–(e): The major index of a Dyck path D, denoted maj(D), is the sum over
all i for which (i, j) is a valley of D. The MacMahon’s q-Catalan [6] is a
generating function for the major index:∑

D∈Dn

qmaj(D) =
1

[n + 1]q

[
2n
n

]
q
.

It becomes immediate, from this combinatorial fact, that Cn(q) is indeed a
polynomial and each coefficient of Cn(q) is non-negative. Thus, C′n(q) > 0
and C′′n (q) > 0 for q > 0. We also would like to remark that Cn(q) has degree
n(n − 1) and the only vanishing coefficients are those of q and qn(n−1)−1. By
its very definition, each factor [ j] = 1−q j

1−q of Cn(q) is a product of cyclotomic
polynomials, hence the roots lie on the unit circle. In particular, any possible
real root can only be q = ±1. From parts (b) and (c) above, it is clear that
Cn(±1) , 0. Therefore, Cn(q) , 0 for any q ∈ R. On the other hand, Cn(q) is
continuous (as a polynomial) and hence by the intermediate value theorem
it must be either always negative or always positive-valued. Computing at
any real q, say Cn(0) = 1, decidedly proves Cn(q) > 0 for all q ∈ R. □

Rewrite Cn(q) =
∏n

j=2
1−qn+ j

1−q j so that C′n(q) = Cn(q)Qn(q), where we have
introduced the rational function

Qn(q) :=
n∑

j=2

(
1 − qn+ j

1 − q j

)−1 (
1 − qn+ j

1 − q j

)′
.

A routine calculation also shows that

Qn(q) =
n∑

j=2

jq j−1

1 − q j −

2n∑
j=n+2

jq j−1

1 − q j .

Note 2.2. Although Qn(q) appears to have singularities when q = ±1, it
does not! The reason is that, by Proposition 2.1(d), the polynomial Cn(q)
never equals zero for any real q. Thus the rational function Qn(q) = C′n(q)

Cn(q) is
well-defined and analytic for all q ∈ R. In short, Qn(q) has finite values at
q = ±1 (at least in the limit) and it is a smooth function over R. In particular,
Proposition 2.1(c) implies that Qn(1) =

(
n
2

)
and Qn(−1) = −

(
n
2

)
are indeed

finite. Moreover, it follows that all derivatives are also finite and bounded
over the compact interval |q| ≤ 1.

Lemma 2.3. Denote N := n(n − 1). Then, the following identity holds:

qQn(q) + q−1Qn(q−1) = N.

Proof. Simply note that q j

1−q j +
(q−1) j

1−(q−1) j = −1, and take the sum over j after
multiplying by j. □
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Lemma 2.4. The following relation holds:

qN−2C′′n (q−1) = q2C′′n (q) + (N − 1) · [NCn(q) − 2qC′n(q)].

Proof. Compute two derivatives in Cn(q) = qNCn(q−1) by taking advantage
of C′n(q) = Nq−1Cn(q)− qN−2C′n(q−1) (see Lemma 2.3) and repeat this in the
reverse form qN−2C′n(q−1) = Nq−1Cn(q) −C′n(q). We have

C′′n (q) = −Nq−2Cn(q) + Nq−1C′n(q) − (N − 2)qN−3C′n(q−1) + qN−4C′′n (q−1)

= −N(N − 1)q−2Cn(q) + 2(N − 1)q−1C′n(q) + qN−4C′′n (q−1)

= (N − 1)q−1 · [2C′n(q) − Nq−1Cn(q)] + qN−4C′′n (q−1).

The claim follows upon multiplying through by q2 and swapping terms. □

Corollary 2.5. If, for −1 < q < 0 and n ≥ 2, the polynomial Cn(q) is strictly
convex and Fn(q) :=

(
n
2

)
− qQn(q) ≥ 0, then Cn(q) is also strictly convex for

q < −1.

Proof. Observe that

NCn(q) − 2qC′n(q) = NCn(q) − 2qCn(q)Qn(q) = 2Cn(q)
[(

n
2

)
− qQn(q)

]
,

so Lemma 2.4 reads

(2.2) qN−2C′′n (q−1) = q2C′′n (q) + 2(N − 1)Cn(q)Fn(q).

We know Cn(q) is always positive-valued. The factors qN−2 and q2 are both
positive, therefore if C′′n (q) > 0 and Fn(q) ≥ 0 then equation (2.2) implies
C′′n (q−1) > 0. The conclusion follows because q−1 < −1 if −1 < q < 0. □

3. Auxiliary inequalities

In the present section, we first aim to prove Proposition 3.2 which accounts
for one of the hypotheses of Corollary 2.5. Let us commence with some
intermediate results.

Lemma 3.1. If 0 < q < 1 and n ≥ 2, then Q′n(q) is positive.

Proof. We use induction on n ≥ 2. Clearly Q′2(q) = 2(1−q2)
(1+q2)2 > 0. Assume the

claim holds for n. Let us denote Rn(q) := q2Q′n+1(q) − q2Q′n(q) and further
split Rn(q) = R(1)

n (q) + R(2)
n (q) where

R(1)
n (q) :=

(n + 2)qn+2(qn+2 + n + 1)
(1 − qn+2)2 −

(2n + 1)q2n+1(q2n+1 + 2n)
(1 − q2n+1)2 ,

R(2)
n (q) :=

(n + 1)qn+1(qn+1 + n)
(1 − qn+1)2 −

(2n + 2)q2n+2(q2n+2 + 2n + 1)
(1 − q2n+2)2 .
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These expressions motivate defining the function

f−(t, x) :=
txt(t − 1 + xt)

(1 − xt)2

whose derivative takes the form
∂

∂t
f−(t, x) = ta−(xt) − b−(xt),

where

a−(y) :=
2y

(1 − y)2 +
y(1 + y) log y

(1 − y)3 and b−(y) :=
y

1 − y
+

y log y
(1 − y)2 .

By the mean value theorem there is a τ ∈ (n + 2, 2n + 1) satisfying

R(1)
n (q) = f−(n + 2, x) − f−(2n + 1, x) = (n − 1)[−τa−(xτ) + b−(xτ)].

Let us check that −a−(y) = − y(1+y)
(1−y)3

[
2(1−y)

1+y + log y
]
> 0 for y ∈ (0, 1). If

h(y) := 2(1−y)
1+y + log y then h(1) = 0 and dh(y)

dy =
(1−y)2

y(1+y)2 > 0 whenever y > 0,
which shows h(y) > 0 for y > 1 and h(y) < 0 for y < 1. The implication on
−a−(y) > 0 is clear. It follows that −τa−(xτ) ≥ −4a−(xτ), since τ > n+2 ≥ 4.
So in order to obtain R(1)

n (q) > 0, it suffices to prove

−4a−(y) + b−(y) =
y(y2 + 6y − 7 − (5y + 3) log y)

(1 − y)3 > 0.

This is equivalent to y2+6y−7
5y+3 − log y > 0, which can for example be shown by

noting that equality holds when y = 1, while the derivative of the left side
is (1−y)2(5y−9)

y(5y+3)2 < 0.

Thus R(1)
n (q) > 0. An analogous argument works for R(2)

n (q) > 0. However,
we opt to display a more elementary method, namely that

R(2)
n (q) = f−(n + 1, q) − f−(2n + 2, q) =

(n + 1)qn+1(n − qn+1)
(1 + qn+1)2 > 0.

So Rn(q) > 0, and based on the induction hypothesis, we can infer that
q2Q′n+1(q) = q2Q′n(q) + Rn(q) > 0. This completes the proof that Q′n(q) is
indeed positive, as required. □

Proposition 3.2. If −1 < q < 1 then Fn(q) =
(

n
2

)
− qQn(q) is positive with

Fn(±1) = 0 and Fn(0) =
(

n
2

)
.

Proof. Since qC′n(q) = Cn(q) · qQn(q) = Cn(q)
[(

n
2

)
− Fn(q)

]
and Cn(q) , 0,

we notice that Fn(q) =
(

n
2

)
−

qC′n(q)
Cn(q) is well-defined for any q ∈ R. Obviously

Fn(0) =
(

n
2

)
. Applying Proposition 2.1 (b) and (c) verifies Fn(±1) = 0.



6 T. AMDEBERHAN AND S. WAGNER

Consider first the case that 0 < q < 1: by Proposition 2.1, Cn(q) > 0 and
C′n(q) = Cn(q)Qn(q) > 0 imply Qn(q) > 0; Lemma 3.1 gives Q′n(q) > 0.
Combining, we get F′n(q) = −Qn(q) − qQ′n(q) < 0, i.e., Fn(q) is decreasing.
Thus Fn(q) > Fn(1) = 0, and we are done.
If −1 < q < 0, change variables to q = −t. We will show that Fn(−t) ≥
Fn(t) > 0 for 0 < t < 1, completing the proof. To this end, break up the
sums according to parity to get

Fn(−t) =
(
n
2

)
−

∑
2≤ j≤n
j even

jt j

1 − t j +
∑

2≤ j≤n
j odd

jt j

1 + t j +
∑

n+2≤ j≤2n
j even

jt j

1 − t j −
∑

n+2≤ j≤2n
j odd

jt j

1 + t j

Fn(t) =
(
n
2

)
−

∑
2≤ j≤n
j even

jt j

1 − t j −
∑

2≤ j≤n
j odd

jt j

1 − t j +
∑

n+2≤ j≤2n
j even

jt j

1 − t j +
∑

n+2≤ j≤2n
j odd

jt j

1 − t j .

So it is enough to justify that∑
2≤ j≤n
j odd

jt j

1 + t j −
∑

n+2≤ j≤2n
j odd

jt j

1 + t j ≥ −
∑

2≤ j≤n
j odd

jt j

1 − t j +
∑

n+2≤ j≤2n
j odd

jt j

1 − t j ,

or equivalently,∑
2≤ j≤n
j odd

2 jt j

1 − t2 j ≥
∑

n+2≤ j≤2n
j odd

2 jt j

1 − t2 j ⇐⇒
∑

2≤ j≤n
j odd

2 j
t− j − t j ≥

∑
n+2≤ j≤2n

j odd

2 j
t− j − t j .

In fact, this inequality holds (strictly) term-by-term: depending on the parity
of n,

(3.1)
2 j

t− j − t j >
2(n + j)

t−(n+ j) − tn+ j or
2 j

t− j − t j >
2(n + j − 1)

t−(n+ j−1) − tn+ j−1 .

The former applies for n even, the latter for n odd. Choose θ > 0 such that
t−1 = eθ and define the auxiliary function g(x) := sinh(θx)

x = t−x−tx

2x . Now,
inequality (3.1) amounts to g(n + j) > g( j) or g(n + j − 1) > g( j). This
monotonicity, however, follows from the elementary observation

g′(x) =
θx cosh(θx) − sinh(θx)

x2 > 0

(equivalent to tanh(θx) < θx, which is well known and follows from the
mean value theorem). We conclude Fn(−t) ≥ Fn(t) > 0 for any 0 < t < 1.
The proof is complete. □

Note 3.3. Figure 1 illustrates positivity and concavity (the latter is left to
the interested reader to check) of F4(q) in the range −1 < q < 1.

Corollary 3.4. For q < −1, Cn(q) is strictly decreasing.
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Figure 1. Positivity and concavity of F4(q).

Proof. By Proposition 3.2, we have q−1Qn(q−1) <
(

n
2

)
, and hence qQn(q) >(

n
2

)
> 0 by Lemma 2.3; this means that Qn(q) < 0. Therefore C′n(q) =

Cn(q)Qn(q) < 0 holds since Cn(q) is always positive by Proposition 2.1(d).
□

For the following two lemmas, which provide the induction step in proving
Theorem 4.1 later, we designate

φ j(q) :=
jq j[ j − 1 + q j]

(1 − q j)2 = −
j( j − 1)
1 − q− j +

j2

(1 − q− j)2 .

Note that this is equal to the function f−( j, q) used earlier, but since we are
not distinguishing the two parity cases any longer in the formulation of the
next results, we use this simpler notation.

Lemma 3.5. If n = 2m is an even positive integer and −1 < q < 0 a real
number, then

Kn(q) := φn(q) − φ2n(q) + φn+1(q) − φ2n−1(q) > 0.

Proof. Observe that φn(q) − φ2n(q) = nqn(n−1−qn)
(1+qn)2 =

n(n−1)
1+q−n −

n2

(1+q−n)2 after a di-
rect simplification. The substitution q = −x (so that 0 < x < 1) and notation
K̂2m(x) := K2m(−x) give away φ2m(−x) − φ4m(−x) = 2m(2m−1)

1+(−x)−2m −
4m2

(1+(−x)−2m)2 =
2m(2m−1)

1+x−2m −
4m2

(1+x−2m)2 . On the other hand, from the definition φ2m+1(−x) =

−
2m(2m+1)

1−(−x)−(2m+1) +
(2m+1)2

(1−(−x)−(2m+1))2 and φ4m−1(−x) = − (4m−1)(4m−2)
1−(−x)−(4m−1) +

(4m−1)2

(1−(−x)−(4m−1))2 .
Armed with these properties, we proceed to rearrange the terms of K̂2m(x)
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in the following way:

K̂2m(x) =
2m(2m − 1)

1 + x−2m −
4m2

(1 + x−2m)2 −
2m(2m + 1)
1 + x−(2m+1) +

(2m + 1)2

(1 + x−(2m+1))2

+
(4m − 1)(4m − 2)

1 + x−(4m−1) −
(4m − 1)2

(1 + x−(4m−1))2

=

(
(2m + 1)2

(1 + x−(2m+1))2 −
(2m + 1)2

(1 + x−(4m−1))2

)
+

(
2m(2m − 1)
1 + x−(4m−1) −

4m2

(1 + x−2m)2

)
+

(
6m(m − 1)
1 + x−(4m−1) −

12m(m − 1)
(1 + x−(4m−1))2

)
+

(
2m(2m − 1)

1 + x−2m −
2m(2m + 1)
1 + x−(2m+1) +

6m2 − 4m + 2
1 + x−(4m−1)

)
.

Next, we treat each of the terms individually. Putting the following four
inequalities together proves that K̂2m(x) > 0 and hence K2m(q) > 0.

Inequality 1: Clearly,

(2m + 1)2

(1 + x−(2m+1))2 −
(2m + 1)2

(1 + x−(4m−1))2 ≥ 0

for all m ≥ 1, since 4m − 1 ≥ 2m + 1.

Inequality 2: Since x2m − x4m > 0, we have

2m(2m − 1)
1 + x−(4m−1) −

4m2

(1 + x−2m)2 =
2mx4m−1(−x4m + (4m − 2)x2m − 2mx + 2m − 1)

(1 + x2m)2(x4m−1 + 1)

>
2mx4m−1((4m − 3)x2m − 2mx + 2m − 1)

(1 + x2m)2(x4m−1 + 1)
.

Now just note that the minimum of the factor (4m− 3)x2m − 2mx+ 2m− 1 is
attained at x = (4m−3)−1/(2m−1) and equal to (2m−1)(1−(4m−3)−1/(2m−1)) ≥ 0
(as can be shown by elementary calculus) to prove that this term is positive.

Inequality 3: Because x−1 > 1, we have

6m(m − 1)
1 + x−(4m−1) −

12m(m − 1)
(1 + x−(4m−1))2 =

6m(m − 1)(x−(4m−1) − 1)
(1 + x−(4m−1))2 ≥ 0.

Inequality 4: We want to show that

2m(2m − 1)
1 + x−2m −

2m(2m + 1)
1 + x−(2m+1) +

6m2 − 4m + 2
1 + x−(4m−1) > 0.

For m = 1, this readily reduces to 2
1+x−2 −

2
1+x−3 > 0, which is clearly true.

So, assume that m ≥ 2. Next, observe that 6m2 − 4m + 2 ≥ 2m2 + 5m for
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all m ≥ 2 (this seemingly arbitrary estimate will simplify expressions later).
So it suffices to prove that

A =
2m(2m − 1)

1 + x−2m −
2m(2m + 1)
1 + x−(2m+1) +

2m2 + 5m
1 + x−(4m−1) > 0.

To this end, note first that
1

mx2m (1 + x2m)(1 + x2m+1)(1 + x4m−1)A

= (2m + 1)x6m + (6m + 3 − (2m − 3)x)x4m−1

+ (2m + 5 − 4x2)x2m−1 − 2(2m + 1)x + 2(2m − 1)

> (2m + 1)x2m−1 − 2(2m + 1)x + 2(2m − 1).

This final expression has its minimum at x = ( 2
2m−1 )1/(2m−2), and the mini-

mum is equal to 2(2m− 1)− 4(m−1)(2m+1)
2m−1 ( 2

2m−1 )1/(2m−2). We only have to show
that this is positive, which is equivalent to

(3.2)
(

2(m−1)(2m+1)
(2m−1)2

)2m−2
< 2m−1

2

after some straightforward manipulations. Since(
2(m−1)(2m+1)

(2m−1)2

)2m−2
=

(
1 + 1

2m−1 −
2

(2m−1)2

)2m−2
<

(
1 + 1

2m−1

)2m−1
< e

(it is well known that (1+ 1/n)n is increasing and converges to e), the claim
materializes soon as 2m−1

2 > e, i.e., m ≥ 4. For m = 2 and m = 3, one can
verify directly that (3.2) holds. This completes the proof of the fourth and
final inequality. □

Lemma 3.5 has the following counterpart for odd integers, which we prove
by means of a different approach.

Lemma 3.6. If n = 2m+ 1 > 1 is an odd positive integer and −1 < q < 0 is
a real number, then

Ln(q) := −φ2n−1 − φ2n−3 + (φn−1 − φ2n−2) + φn+1 + (φn − φ2n) + φn > 0.

Proof. Make the change of variables x := −q ∈ (0, 1) as in the previous
lemma. Let us first consider the case that m = 1 (n = 3): here,

L3(q) =
x2(1 − x)2N

(1 − x3)2(1 + x5)2 ,

where the final factor in the numerator is

N = 2 − 2x + 18x3 + 43x4 + 60x5 + 41x6 + 14x7

− 2x8 − 12x9 − 12x10 − 12x11 − 6x12

≥ 2 − 2x + (18 + 43 + 60 + 41 + 14)x7 − (2 + 12 + 12 + 12 + 6)x8

= 2(1 − x) + 44x7(4 − x) > 0.
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From now on, we can assume that m > 1. Next, we set

f−(t, x) :=
txt(t − 1 + xt)

(1 − xt)2 and f+(t, x) :=
txt(t − 1 − xt)

(1 + xt)2 ,

cf. the proof of Lemma 3.1. Observe that

φk =

 kxk(k−1+xk)
(1−x j)2 = f−(k, x) k even,

−
kxk(k−1−xk)

(1+xk)2 = − f+(k, x) k odd,

as well as

φk − φ2k =

 kxk(k−1−xk)
(1+xk)2 = f+(k, x) k even,

−
kxk(k−1+xk)

(1−xk)2 = − f−(k, x) k odd.

Hence we have

Ln(q) = f+(4m + 1, x) + f+(4m − 1, x) + ( f+(2m, x) − f+(2m + 1, x))
+ ( f−(2m + 2, x) − f−(2m + 1, x)).(3.3)

We distinguish two different cases, one for “large” x, and one for “small” x.

Case 1: x2m+2 ≥ 1
10 . We apply the mean value theorem to the differences

f+(2m, x) − f+(2m + 1, x) and f−(2m + 2, x) − f−(2m + 1, x). Recall that
∂
∂t f−(t, x) = ta−(xt) − b−(xt), where

a−(y) :=
2y

(1 − y)2 +
y(1 + y) log y

(1 − y)3 and b−(y) :=
y

1 − y
+

y log y
(1 − y)2 .

Likewise, we have ∂
∂t f+(t, x) = ta+(xt) − b+(xt), where

a+(y) :=
2y

(1 + y)2 +
y(1 − y) log y

(1 + y)3 and b+(y) :=
y

1 + y
+

y log y
(1 + y)2 .

It follows that f+(2m, x) − f+(2m + 1, x) = −τ1a+(xτ1) + b+(xτ1) for some
τ1 ∈ (2m, 2m+1). Likewise, f−(2m+2, x)− f−(2m+1, x) = τ2a−(xτ2)−b−(xτ2)
for some τ2 ∈ (2m + 1, 2m + 2). It is routine to verify that

• a+(y) is positive and increasing for 1
10 ≤ y ≤ 1,

• b+(y) is increasing for 1
10 ≤ y ≤ 1,

• a−(y) is negative and decreasing for 0 < y < 1,
• b−(y) is decreasing for 0 < y < 1,
• a−(y) and b−(y) are bounded at 1, in spite of the factor 1 − y in the

denominator, with limy→1− a−(y) = −1
6 and limy→1− b−(y) = −1

2 .
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We are assuming that x2m+2 ≥ 1
10 , so x2m ≥ xτ1 ≥ x2m+1 ≥ xτ2 ≥ x2m+2 ≥ 1

10 .
By monotonicity of a+, a−, b+ and b−, we have

( f+(2m, x) − f+(2m + 1, x)) + ( f−(2m + 2, x) − f−(2m + 1, x))
= −τ1a+(xτ1) + b+(xτ1) + τ2a−(xτ2) − b−(xτ2)

= −(τ1 + 1)a+(xτ1) + τ2a−(xτ2) +
(
a+(xτ1) + b+(xτ1) − b−(xτ2)

)
≥ −(τ1 + 1)a+(x2m) + τ2a−(x2m) +

(
a+( 1

10 ) + b+( 1
10 ) − b−( 1

10 )
)

> −(2m + 2)
(
a+(x2m) − a−(x2m)

)
as a+( 1

10 ) + b+( 1
10 ) − b−( 1

10 ) ≈ 0.083 > 0.

On the other hand,

f+(4m + 1, x) + f+(4m − 1, x)

=
(4m + 1)x4m+1(4m − x4m−1)

(1 + x4m+1)2 +
(4m − 1)x4m−1(4m − 2 − x4m−1)

(1 + x4m−1)2

≥
(4m + 1)x4m+1(4m − 1)

(1 + x4m)2 +
(4m − 1)x4m(4m − 3)

(1 + x4m)2

=
(4m − 1)x4m(4m − 3 + (4m + 1)x)

(1 + x4m)2

≥
(4m − 1)x4m(4m − 3 + (4m + 1)10−1/(2m+2))

(1 + x4m)2

where we have used the monotonicity of the function y 7→ y
(1+y)2 to deduce

that x4m−1

(1+x4m−1)2 ≥
x4m

(1+x4m)2 . In order to obtain the inequality Ln(q) > 0, it is
therefore sufficient that
(4m − 1)x4m(4m − 3 + (4m + 1)10−1/(2m+2))

(1 + x4m)2 ≥ (2m + 2)
(
a+(x2m) − a−(x2m)

)
,

which is equivalent to

(4m − 1)(4m − 3 + (4m + 1)10−1/(2m+2))
2m + 2

≥ h(x2m),

where

h(y) =
(a+(y) − a−(y))(1 + y2)2

y2 =
8(1 + y2)2(1 − y2 + (1 + y2) log y)

(y2 − 1)3 .

This auxiliary function is decreasing for 0 < y < 1, which can for example
be seen by substituting y2 = 1 − t and noting that the resulting function

h
(√

1 − t
)
=

8
3
+

∞∑
j=2

4( j − 1)( j2 + j + 6)
j( j + 1)( j + 2)( j + 3)

t j
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has only positive Taylor coefficients. So 11.23 ≈ h( 1
10 ) ≥ h(x2m). On the

other hand, (4m−1)(4m−3+(4m+1)10−1/(2m+2))
2m+2 > 12 for m ≥ 2, completing the proof

in this case.

Case 2: x2m+2 ≤ 1
10 . In this case, we use the inequalities

u+(k, x) := kxk(k − 1 − xk)(1 − xk) ≥ f+(k, x) =
kxk(k − 1 − xk)

(1 + xk)2

≥ kxk(k − 1 − xk)(1 − 2xk) =: ℓ+(k, x).

The first inequality holds for all k ≥ 1 and xk ≤
√

5−1
2 , since (1− t)(1+ t)2 ≥ 1

for t ≤
√

5−1
2 . The second inequality is in fact valid for all x ∈ (0, 1), since

(1 − 2t)(1 + t)2 ≤ 1 is true for all t > 0. Similarly,

u−(k, x) := kxk(k − 1 + xk)(1 + 3xk) ≥ − f−(k, x) =
kxk(k − 1 + xk)

(1 − xk)2

≥ kxk(k − 1 + xk)(1 + 2xk) := ℓ−(k, x),

which holds for all k ≥ 1 and xk ≤ 5−
√

13
6 . Once more, the second inequality

holds for all x ∈ (0, 1).
We apply these inequalities to each of the terms of Ln(q) in (3.3). The upper
bounds apply since x2m+1 ≤

( 1
10

)(2m+1)/(2m+2)
≤ 10−5/6 < 5−

√
13

6 <
√

5−1
2 .

Hence we obtain

Ln(q) ≥ ℓ+(4m + 1, x) + ℓ+(4m − 1, x) + ℓ+(2m, x)
− u+(2m + 1, x) + ℓ−(2m + 2, x) − u−(2m + 1, x).

Now expand all these expressions and collect the terms involving m2 and m
respectively. This yields

Ln(q) ≥ m2
(
4(1 − x)2x2m + 8(2 − x + 2x2 − x3 + x5)x4m−1 − 32(1 + x4)x8m−2

)
+ m

(
2(x − 1)(1 + 3x)x2m − 2(6 − x − 2x2 + 2x3 − 7x5)x4m−1

+ 4(1 − x3)2x6m + (20 − 12x4)x8m−2 + 8(1 + x6)x12m−3
)

+
(
2x2m+2 + 2x4m−1 + 6x4m+4 − 4x6m+3 + 4x6m+6 − 3x8m−2 − x8m+2

− 2x12m−3 + 2x12m+3
)

=: c2(m, x)m2 + c1(m, x)m + c0(m, x).

Let us estimate the three coefficients c0(m, x), c1(m, x) and c2(m, x). First,
since 4m − 1, 4m + 4 ≤ 6m + 3, 8m − 2, 8m + 2 and 6m + 6 ≤ 12m − 3, it is
clear that we can drop all terms from c0(m, x) except for the first:

c0(m, x) > 2x2m+2.
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Next, dropping positive terms from c1(m, x) yields

c1(m, x) > 2(x − 1)(1 + 3x)x2m − 12x4m−1.

Finally, since 4m − 2 ≥ 2m + 2, we have x4m−2 ≤ x2m+2 ≤ 1
10 and thus

32(1 + x4)x8m−2 ≤ 32
10 (1 + x4)x4m, which implies that

c2(m, x) ≥ 4(1 − x)2x2m +
(
16 − 56x

5 + 16x2 − 8x3 + 24x5

5

)
x4m−1

> 4(1 − x)2x2m + (16 − 8
√

2x + 16x2 − 8x3)x4m−1

= 4(1 − x)2x2m +
(
12 + (2 − 2

√
2x)2 + 8x2(1 − x)

)
x4m−1

≥ 4(1 − x)2x2m + 12x4m−1.

Combining these inequalities, we arrive at

Ln(q) > x2m
(
4(1 − x)2m2 + 2(x − 1)(1 + 3x)m + 2x2

)
+ 12(m2 − m)x4m−1.

Thus it remains to show that

4(1 − x)2m2 + 2(x − 1)(1 + 3x)m + 2x2 + 12(m2 − m)x2m−1 ≥ 0.

The quadratic polynomial 4(1 − x)2m2 + 2(x − 1)(1 + 3x)m + 2x2 reaches
minimum − 2m

m+1 (attained at x = m
m+1 ), and it is positive outside of the interval

[ 2m2+m−
√

m+2m2

1+3m+2m2 , 2m2+m+
√

m+2m2

1+3m+2m2 ]. Hence we may assume that x ≥ 2m2+m−
√

m+2m2

1+3m+2m2 .
But then it follows that

12(m2 − m)x2m−1 ≥ 12(m2 − m)
(

2m2+m−
√

m+2m2

1+3m+2m2

)2m−1

= 12(m2 − m)
(
1 − 1

2m+1−
√

2m2+m

)2m−1

≥ 12(m2 − m)
(
1 − 1

(2−
√

2)m

)2m
.

The final expression is increasing in m (the well-known fact that (1 − a
t )t

is increasing for t > a was already mentioned earlier) and approximately
equal to 3.68 for m = 5. For m ∈ {2, 3, 4}, one can verify directly that
12(m2 − m)( 2m2+m−

√
m+2m2

1+3m+2m2 )2m−1 > 2. So in all cases, we have

4(1− x)2m2 + 2(x− 1)(1+ 3x)m+ 2x2 + 12(m2 −m)x2m−1 > −
2m

m + 1
+ 2 > 0,

completing the proof. □

4. Proof of the main result

Now, we can finally prove the convexity of the q-Catalan polynomials for
q ∈ (−1, 0), which also establishes the validity of another hypothesis in
Corollary 2.5.

Theorem 4.1. For n ≥ 2, Cn(q) is strictly convex in the range −1 < q < 0.
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Figure 2. Convexity of C4(q).

Proof. Recall that Qn(q) =
∑n

j=2
jq j−1

1−q j −
∑2n

j=n+2
jq j−1

1−q j , C′n(q) = Cn(q)Qn(q) and

q2Q′n(q) =
∑n

j=2
jq j(q j−1+ j)

(1−q j)2 −
∑2n

j=n+2
jq j(q j−1+ j)

(1−q j)2 . Our goal is to establish that

q2Q′n(q) > 0 for −1 < q < 0, and hence Q2
n(q)+Q′n(q) > 0. The rest follows

from the identity

C′′n (q) = (Cn(q)Qn(q))′ = C′n(q)Qn(q) +Cn(q)Q′n(q) = Cn(q)
(
Q2

n(q) + Q′n(q)
)

(recall that Cn(q) > 0).

If n is an odd integer, then q2Q′n(q) − q2Q′n−2(q) = Ln(q) and Lemma 3.6
reveals Ln(q) > 0. By induction on n ≥ 3 and the fact that (for the base
case) q2Q′3(q) = L3(q) > 0, we firmly deduce that q2Q′n(q) > 0 for odd
n ≥ 3.

If n is even, from Lemma 3.5 we have q2Q′n(q) − q2Q′n−1(q) = Kn(q) > 0,
and from the case n odd (just proven) we get q2Q′n−1(q) > 0 if n ≥ 4. Hence
q2Q′n(q) > 0 once again. The case n = 2 is easy, as C2(q) = 1 + q2. The
proof is complete in all cases. □

Finally, we are ready to state (again) and prove the main result of this paper.

Theorem 4.2. The q-Catalan polynomials Cn(q) are strictly convex over R
for all n ≥ 2.

Figure 2 portrays monotonicity and convexity of C4(q). Note also that
Cn(q) ≥ Cn(0) = 1.

Proof. The case q > 0 is handled by the fact that Cn(q) has non-negative
coefficients; see Proposition 2.1(d) and (e). The case −1 < q < 0 is the
content of Theorem 4.1. The case q < −1 is implied by Corollary 2.5,
Proposition 3.2 and Theorem 4.1. The special values for q = 0 and q = −1
appear in Proposition 2.1(a) and (c). The theorem follows. □
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5. Concluding remarks

In this section, we leave the reader with certain inequalities of particular
interest. Theorem 5.1 is in harmony with the preceding sections, it may
also be regraded being of independent value. Corollary 5.3 displayed below
seems weaker than Theorem 4.2, the main result of this paper; in the sense
that it does not offer the extent as to how large n should be. So, it may be
viewed principally as a theoretical contribution to the topic at hand.
Below, we say fn defined on D converges to f uniformly on compacta if
fn → f uniformly on every compact subset K ⊂ D. Denote the interval
{q ∈ R : −1 < q < 1} by I.
Observe that, for q ∈ I, MacMahon’s q-Catalan polynomials Cn(q) con-
verge uniformly on compacta (for instance, by the Weierstrass M-test) to an
infinite product, namely

lim
n→∞

Cn(q) = lim
n→∞

n∏
k=2

1 − qn+k

1 − qk =

∞∏
k=2

1
1 − qk := F(q),

which is a generating function for partitions λ ⊢ n with no part equal to 1.
On the other hand, the classical partition function P(n) satisfies the so-called
Hardy–Ramanujan–Rademacher (see [1], Chapter 5) asymptotic estimate
log P(n) ∼ π

√
2n/3, and so

lim
n→∞

log P(n)
n

= 0.

In particular, the growth rate function of P(n) is subexponential. Standard
tests show that the infinite product and infinite series G(q) =

∏∞
k=1

1
1−qk =∑∞

n=0 P(n)qn have radius of convergence 1. Moreover, it is clear that

F(q) =
∞∏

k=2

1
1 − qk =

∞∑
n=0

(P(n) − P(n − 1))qn

shares the same interval of convergence |q| < 1. So, there is ample reason
to study the function F(q). To begin with, F(q) > 0 since each term in
the product is such. Next, convergence allows computing derivatives freely
over the interval I, and we just do so by logarithmic differentiation:

F′(q) = F(q)
∞∑

k=2

kqk−1

1 − qk

and

F′′(q) = F(q)

 ∞∑
k=2

kqk−1

1 − qk

2

+ F(q)
∞∑

k=2

(
kqk−1

1 − qk

)2

+ F(q)
∞∑

k=2

k(k − 1)qk−2

1 − qk .
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After a geometric series expansion and infinite series manipulations, the last
series takes the form

∞∑
k=2

k(k − 1)qk−2

1 − qk =

∞∑
k=2

k(k − 1)qk−2
∞∑

n=0

qkn

=

∞∑
n=0

q−2
∞∑

k=2

k(k − 1)qk(n+1)

=

∞∑
n=0

2q2n

(1 − qn+1)3 .

Therefore, we arrive at

F′′(q) = F(q)

 ∞∑
k=2

kqk−1

1 − qk

2

+ F(q)
∞∑

k=2

(
kqk−1

1 − qk

)2

+ F(q)
∞∑

k=1

2q2k−2

(1 − qk)3 .

From here, we may readily infer

Theorem 5.1. F(q) is strictly convex in the interval I, i.e. F′′(q) > 0.

Note 5.2. The same statement (with the same proof) also holds for the gen-
erating function G(q) =

∏∞
k=1

1
1−qk .

Corollary 5.3. For each compact subset S ⊂ I, if n is large enough, then
Cn(q) is strictly convex in S .

Proof. Since the polynomials Cn(q) converge uniformly on compacta to the
analytic function F(q), it follows that C′′n (q) → F′′(q) uniformly on com-
pacta. Since F′′(q) is a continuous function on the compact set S , it has a
minimum value m∗ > 0 there. By uniform convergence, there must be an n0

such that supq∈S |C
′′
n (q)−F′′(q)| ≤ m∗

2 for all n ≥ n0. By triangular inequality,
we must therefore have C′′n (q) ≥ m∗

2 > 0 for all q ∈ S and n ≥ n0. □

Note 5.4. Although we have arrived at the first proof for the convexity of the
q-Catalan polynomials, our method stands as highly technical. As history
has shown us abundantly, alternative and more concise methods usually
come to replace initial attempts. We hope to see such follow-ups concerning
our main result.
For example, is there a more elegant proof of Lemma 3.6 than what this
paper offers?
On a more general note, it would be interesting to develop more widely
applicable techniques to prove convexity and similar properties for other
families of q-polynomials arising in Combinatorics or elsewhere.
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