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Abstract

This study develops a combinatorial approach for nonparametric short-term queue length estimation in

terms of cycle-by-cycle partially observed queues from probe vehicles (PV). The method does not as-

sume random arrivals and does not assume any primary parameters or estimation of any parameters but

uses simple algebraic expressions that only depend on signal timing. For an approach lane at a traffic

intersection, the conditional queue lengths given probe vehicle location, count, time, and analysis inter-

val (e.g., at the end of the red signal phase) are represented by a Negative Hypergeometric distribution.

The simple analytical estimators obtained are compared with parametric methods and highway capacity

manual methods using field test data involving probe vehicles. The analysis indicates that the nonpara-

metric models presented in this paper match the accuracy of the parametric ones used in the field test

data for estimating queue lengths.
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1. Introduction

Probe vehicles (PV) or Lagrangian sensors (Herrera & Bayen, 2010) can be considered as tracking-

device-equipped vehicles that can report critical information such as direct travel time, speed (Ramezani

& Geroliminis, 2012; Jenelius & Koutsopoulos, 2013, 2015; Hans et al., 2015; Zheng et al., 2018) flow

(Duret & Yuan, 2017; Seo et al., 2019) or inferred delay (Florin & Olariu, 2020) and queue lengths (Bae

et al., 2019; Poonthalir & Nadarajan, 2019; Wang et al., 2020) as they traverse transportation networks.

Commercial taxis, volunteers, transit buses, maintenance vehicles, commercial trucks, etc., can report

their location and timestamps through cellphones and GPS devices for improved traffic operations or

better planning. The collected data can be used to estimate traffic parameters (e.g., flow, density, speed,

queue lengths, and delays). The accuracy of these estimates depends on the quality of reported sensor

data and the penetration of the number of data received from the vehicles. Regardless, observing mo-

bile data from transportation networks gives critical coverage for dynamic traffic behavior. This study

presents a method for estimating queue length given that (1) probe vehicles can be observed on a lane

accurately and infer the order of vehicles in a queue, (2) we can deduce the beginning of queue start

time to probe vehicle arrival times (e.g., relative to the beginning of red duration at a signal), and (3) we

can track the number of probe vehicles in the queue. Assuming these data are available, using the com-

binatorics approach, we develop cycle-to-cycle (dynamic) queue length estimators that can be used for

any cyclic queues (e.g., signalized intersections) without requiring primary arrival rate or probe vehicle

market penetration rate (or percentage) parameters.

Researchers have extensively studied the queue length estimation problem by proposing parametric

(Zhao et al., 2019, 2021b,a) and nonparametric methods. In this paper, we focused on the review of

nonparametric ones. Jin and Ma presented a study on a nonparametric Bayesian method for traffic state

estimation (Jin & Ma, 2019). In their study, they developed a generalized modeling framework for

estimating traffic states at signalized intersections. The framework is nonparametric and data-driven,

and no explicit traffic flow modeling is required. Wong et al. estimated the market penetration rate

(probe proportion or percentage) (Wong et al., 2019). Based on probe vehicle data alone, they proposed

a simple, analytical, nonparametric, and unbiased approach to estimate the penetration rate. The method

fuses two estimation methods. One is from probabilistic estimation and the second is from samples of

probe vehicles which is not affected by arrival patterns. It uses PVs and all vehicles ahead of the last PV

2



in the queue.

Gao et al. presented queue length estimations (QLEs) based on shockwaves and backpropagation

neural network (NN) sensing (Gao et al., 2019). The approach uses PV data and queue formation dy-

namics. It uses the shockwave velocity to predict the queue length of the non-probe vehicles. The NN

is trained with historical PV data. The queue lengths at the intersection are obtained by combining the

shockwave and NN-based estimates by variable weight. Tan et al. introduced License Plate Recognition

(LPR) data in their study to fuse with the vehicle trajectory data and then developed a lane-based queue

length estimation method (Tan et al., 2020). The authors matched the LPR with probe vehicle data. They

obtained the probability density function of the discharge headway and the stop-line crossing time of

vehicles. They presented the lane-based queue lengths and overflow queues. Wang et al. proposed a

QLE method on street networks using occupancy data (Wang et al., 2013). Their key idea is to use the

speed decrease as the queue increase downstream of the loop detector. This would result in higher occu-

pancy at constant volume-to-capacity ratios. Using VISSIM simulation, they generated data for various

link lengths, lane numbers, and bus ratios. They fit a logistic model for the queue length and occupancy

relationship. Then, queue lengths were estimated using multiple regression models.

Contributions of this study

This paper aims to model cycle-to-cycle (i.e., dynamic) queue lengths at intersections generally with-

out assuming random arrivals or any primary parameters (i.e., market penetration rate, arrival rate) or

estimating these parameters. Unlike fundamental non-parametric queue length estimations from ar-

rival and service distributions (Schweer & Wichelhaus, 2015; Goldenshluger, 2016; Goldenshluger &

Koops, 2019; Singh et al., 2021), our method uses mathematical techniques from combinatorics to de-

rive discrete conditional probability mass functions of observed information about the queue and derive

moments of the distributions without depending on probe vehicle proportion (i.e., the number of probe

vehicle divided by all vehicles or also called market penetration rate), arrival, or service distributions.

Thus, estimators derived can be used to calculate cycle-to-cycle queue length/delay values for signal

timing or optimization. As the title suggests, the paper builds on the authors’ previous work. However,

the approach presented in this study significantly extends the results from (Comert & Cetin, 2009; Com-

ert, 2013a) where (Comert & Cetin, 2009) presented a conditional probability mass function for probe

location information and (Comert, 2013a) provided closed-form dynamic queue length estimators given

probe vehicle location and time information for Poisson arrivals.

The paper is organized as follows: In section 2, the approach is defined to set up derivations. In
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section 3, we use combinatorial arguments and present a closed form of the sum of the probabilities in

Eqs. (3) and (4). The result obtained in section 3 enables us to define a probability mass function. We

show that this probability distribution is Negative Hypergeometric. We use the results for the mean and

variance of the distribution to derive formulas for the queue length estimators. In section 4, we present

numerical examples of the behavior of the derived estimators and show the performance of the estimators

using field data. We summarize our findings and discuss possible future research directions in section 5.

2. Problem Definition

Probe vehicles (PVs) and partially observed systems through inexpensive sensors are facilitating

real-time queue length estimations. Our goal in this paper is to model queue lengths (N ) at intersections

without assuming random arrivals or any primary parameters or estimating such parameters (i.e., arrival

rate (λ) and probe vehicle market penetration rate (p)). In Fig. 1, a snapshot of an example queue (e.g.,

the waiting vehicles at the end of the red signal phase) is shown. Suppose that solid vehicles are observed.

The total queue length N is written as a sum of two queues: the total number of vehicles up to the last

probe N1 and the number of vehicles after the last probe N2. The estimator for the total queue length

(N ) given the location (L), the number of PVs (M ) in the queue, the time of the last probe (T ), and the

signal timing (or time interval of interest (R)) can be expressed as follows.

E(N |L = l,M = m,T = t, R) = E(N1|L = l,M = m,T = t, R) +

E(N2|L = l,M = m,T = t, R) (1)

Now, the first part of the queue is trivial and equals the last probe vehicle location (order in the queue)

N1 = l and the variance of the N1 is V (N1|L = l,M = m,T = t, R) = 0. After the last probe vehicle,

N2 contains uncertainty. If we simply assume Poisson arrivals E(N2|L = l,M = m,T = t, R) = (1 −

p)λ(R − t). And, if no initial queue (or overflow queue from the previous signal cycle) is assumed, the

estimator becomes E(N |L = l,M = m,T = t, R) = l + (1 − p)λ(R − t). The essential information

needed for the estimation is primary parameters such as flow rate (λ) and percent of probe vehicles (or

market penetration rate p). However, both parameters are dynamic. Especially in real-time applications,

like cycle-to-cycle or shorter-term queue lengths at signalized intersections, one would need to collect

data for a few cycles to estimate these parameters. The parameters can then be updated and used in such

applications. Assuming random arrivals, in (Comert, 2016; Comert & Begashaw, 2021), it is shown that

at least 10 cycles of PV data would be needed to start using queue length estimators.
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If Poisson is too restrictive, one can attempt to model the estimator as E(N |L = l,M = m,T = t)=∑
np(N |L = l,M = m,T = t) which can be direct or using known or easier to identify simpler condi-

tional distributions, e.g., Eq. (2). Please note that this approach would need to result in a simple algebraic

form of estimators. Otherwise, calculations would be tedious.

p(N = n|l,m, t) =
p(T = t|l,m, n)p(L = l|m,n)p(M = m|n)P (N = n)∑
n p(T = t|l,m, n)p(L = l|m,n)p(M = m|n)P (N = n)

(2)

For instance, the conditional probability of the location (order) of the last probe vehicle can be cal-

culated by p(L = l|M = m,N = n) =
(
l−1
m−1

)
/
(
n
m

)
given the number of probe vehicles and the total

number of vehicles in the queue. In this probability mass function, L is the location of the last probe

vehicle, M is the number of probe vehicles in the queue, and N is the total queue. In Fig. 1, L is 6, M

is 2, and N is 8 vehicles. We can see that this approach does not assume any arrival pattern or parameter

and only depends on probe vehicle data. Certainly, it is not taking advantage of queue joining time T

of PVs with respect to signal timing. Note that T is assumed integer representing whole seconds or

fine discrete sub-second time intervals. For signal timing, whole or half-second precision is commonly

used in calculations (Urbanik et al., 2015). There is also the physical constraint of the vehicle following,

which can be 0.5− 2 seconds s even if vehicles arrive in a very closely following group.

Fig. 1. Snapshot of an intersection at the end of a red phase

This problem (i.e., derivation of conditional probability distribution given probe vehicle information)

described as a single lane of approach can equivalently be expressed as Fig. 2 drawing balls labeled as

arrival as a probe vehicle, arrival as a non-probe vehicle, or no arrival. Consider the approach lane queue

formed in 2R (i.e., R is the red phase) time intervals where in a unit time interval, there can be, at most,

one arrival. So, in this setup, there can be at most one arrival per 0.5 seconds. This can be thought of as

the minimum possible time gap and can be updated in the formulations derived. For example, in Fig. 2,

we have l arrivals within 2t discrete unit time intervals. Among these time intervals, 2t−1 contain m−1

PVs, 2R − 2t contain n − l arrivals. Now, the problem is a negative inference, meaning n is changing

as in Negative Binomial, so we are interested in p(N = n|L = l,M = m,T = t, R), i.e., probability of
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having N = n arrivals within R time interval given L = l, T = t,M = m. Calculating this probability,

we obtain Eq. (3) or equivalently Eq. (4).

Fig. 2. Example queue with queue length, PV data, and arrival-no arrival spots

p(N = n|l,m, t, R) =

(
2t

l−m

)(
2R−2t
n−l

)(
2R

n−m

) (3)

p(N = n|l,m, t, R) =

(
n−m
l−m

)(
2R−(n−m)
2t−(l−m)

)(
2R
2t

) (4)

We can then calculate expected values to get the mean (E(N = n|l, t,m,R) or the queue length

estimator) and the variance (V (N = n|l, t,m,R)) of the estimator. However, we first need to

i. verify if this is a valid probability mass function.

ii. find the normalizing denominator for a valid probability mass function.

iii. simplify to forms that can be used as input-output models like E(N = n|l, t,m,R) = l + (1 −

p)λ(R− t) in (Comert, 2013b).

iv. show if this approach leads to one of the known negative probability mass functions (e.g., Negative

Hypergeometric). This could facilitate (iii).

The above formulation approach would hold under certain conditions. Without claiming all, the

following can be noted as some of the limitations of the study:

1. The paper models the cycle-to-cycle queue lengths at the end of red duration which is the maximum

queue for deterministic queues. In real traffic signal queues when the signal turns green, there is
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a short loss time due to vehicle acceleration and reaction times. During this time, more vehicles

can join the queue. Thus, we only estimate the total queue at the end of the red duration, not the

maximum queue. They might slightly differ. Regardless, the formulations are valid if the start and

end time of the analysis interval is known, e.g., the start and end times of red duration.

2. Undersaturated conditions are assumed, meaning, the queue is not building up after each cycle.

In fact, the signal queue is cleared after each cycle, and sometimes overflow queues (remaining

queues) are observed. Note that since the presence of PV in the queue is tracked, the estimators can

show slightly overestimated results as overflow queue PVs are not from the same cycle arrivals.

If the volume-to-capacity ratio gets higher (> 0.80), the expected queue length would have a

significant overflow queue presence, thus, a long queue is expected. With more PVs present in

the queue, estimators would show better results with M = m and L = l getting higher. The time

information should be revised as it would be from a previous cycle. Overall, this can be corrected

via scenario analysis (Comert (2013b)). However, it is not within the scope of this paper.

3. How vehicles can be identified on a lane or limitations of GPS or tracking technology is not dis-

cussed. One can approach similarly to identify probe vehicles in a lane.

3. Probability Mass Function, Expected Value, and Variance

We first provide combinatorial arguments and derive a closed form for the sum of the function in Eq.

(4).

Theorem 1. Let ℓ, t, R, and m be as defined in the preceding section. Then

2R−2t+ℓ∑
n=ℓ

(
n−m
ℓ−m

)(
2R+m−n
2t+m−ℓ

)(
2R
2t

) =
2R + 1

2t+ 1
(5)

or equivalently
2R−2t+ℓ∑

n=ℓ

(
n−m

ℓ−m

)(
2R +m− n

2t+m− ℓ

)
=

(
2R + 1

2t+ 1

)
(6)

Proof. Observe
(
n−m
ℓ−m

)
=

(
n−m
n−ℓ

)
and

(
2R+m−n
2t+m−ℓ

)
=

(
2R+m−n

2R−2t−n+ℓ

)
and replace n′ = n − ℓ so that Eq. (4)

becomes

2R−2t∑
n′=0

(
n′ + ℓ−m

n′

)(
2R +m− n′ − ℓ

2R− 2t− n′

)
=

(
2R + 1

2t+ 1

)
(7)
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Make another re-indexing ℓ′ = ℓ−m and hence Eq. (7) takes the form

2R−2t∑
n′=0

(
n′ + ℓ′

n′

)(
2R− ℓ′ − n′

2R− 2t− n′

)
=

(
2R + 1

2t+ 1

)
(8)

The "negativization" (reminiscent of the Euler’s gamma reflection formula Γ(z)Γ(1−z) = π
sin(πz)

) of

binomial coefficients
(−a+b

b

)
= (−1)b

(
a−1
b

)
allows to convert

(
ℓ′+n′

n′

)
= (−1)n

′(−ℓ′−1
n′

)
and

(
2R−ℓ′−n′

2R−2t−n′

)
=(

2t−ℓ′+2R−2t−n′

2R−2t−n′

)
= (−1)2R−2t−n′( ℓ′−2t−1

2R−2t−n′

)
. Therefore,

2R−2t∑
n′=0

(
n′ + ℓ′

n′

)(
2R− ℓ′ − n′

2R− 2t− n′

)

=
2R−2t∑
n′=0

(
−ℓ′ − 1

n′

)(
ℓ′ − 2t− 1

2R− 2t− n′

)
(9)

The well-known Vandermonde-Chu identity states
∑y

k=0

(
x
k

)(
z

y−k

)
=

(
x+z
y

)
. Applying this to Eq. (9)

and engaging
(−a+b

b

)
= (−1)b

(
a−1
b

)
(one more time) yields

2R−2t∑
n′=0

(
−ℓ′ − 1

n′

)(
ℓ′ − 2t− 1

2R− 2t− n′

)
=

(
−2t− 2

2R− 2t

)
= (−1)2R−2t

(
2R + 1

2R− 2t

)
=

(
2R + 1

2t+ 1

)
The proof is complete. □

Remark. The identity just proved shows that Eq. (3) or Eq. (4) is independent of the parameters m

and ℓ.

We can see that the identity proved in the above theorem enables us to revise Eq. (4) and define

a probability mass function. We can divide both sides of the identity by the expression on the right-

hand side of the identity to get one on the right-hand side (i.e., the right-hand side of the identity is the

normalizer of the probability distribution, which we explain below). Note that additional results from

combinatorics and discussions are presented in the Appendix.

In Negative Hypergeometric distribution (Johnson et al., 2005), the probability of having k successes

up to the rth failure given sample size of S and maximum possible queued vehicles K is given by

p(k|r,K, S) =

(
k+r−1

k

)(
S−r−k
K−k

)(
S
K

) (10)

where S is the sample size (time capacity for arrivals and non-arrivals), K is the total number of successes

(arrivals) in S, r is the number of failures (non-arrivals), and k is the number of successes (realizations of
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(a) p(N = n|T = 20, L,M = 2, R = 45) in Eq. (13) (b) p(N = n|L = l,M = 2, R = 45) in Eq. (16)

Fig. 3. Example behavior of conditional probabilities.

arrivals). The probabilities sum to 1. For the Negative Hypergeometric distribution, the expected value

E(k|r,K, S) and the variance V (k|r,K, S) are given by Eqs. (11) and (12).

E(k|r,K, S) =
rK

S −K + 1
(11)

V (k|r,K, S) =
rK(S + 1)(S −K − r + 1)

(S −K + 1)2(S −K + 2)
(12)

In the probability mass function of the Negative Hypergeometric distribution (Eq. (10)), let S =

2R + 1, K = 2R − 2t, r = l − m + 1, and k = n − l. Then the result proved in the theorem above

gives the following probability mass function, which is a Negative Hypergeometric distribution since∑2R−2t+l
n=l

(
n−m
l−m

)(
2R+m−n
2t+m−l

)
=

(
2R+1
2t+1

)
. Notice that with these assignments arrivals and non-arrivals are

fixed, and the probability of the total queue N = n is calculated with known l,m, t, R.

p(N = n|l,m, t, R) =

(
n−m
l−m

)(
2R+m−n
2t+m−l

)(
2R+1
2t+1

) (13)

From the formulas for the expected value and variance of the Negative Hypergeometric distribution,

we get the following formulas for the expected value (Eq. (11)) and variance (Eq. (12)) of this probability

distribution in Eq. (13). Note that L = l,M = m,T = t, R are basic information from PVs, not primary

parameters (arrival or penetration rate of probe vehicle in the traffic stream). We also do not require

steady-state behavior if this Probe vehicle information is available. The expected queue length and its

variance are short-term (R seconds or time interval) estimators.
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The expected value E(n|l, t,m,R) can be determined by

E(N = n|l,m, t, R) =
2R−2t+l∑

n=l

n(2R + 1)

(2t+ 1)

(
n−m
l−m

)(
2R+m−n
2t+m−l

)(
2R+1
2t+1

)
=

2R−2t∑
n′=0

n′(2R + 1)

(2t+ 1)

(
n′+l′

n′

)(
2R−l′−n′

2R−2t−n′

)(
2R+1
2t+1

)
where n′ = n− l, l′ = l −m, and (2R+1)

(2t+1)
is the normalizer.

By Eqs. (11) and (12), simplified expected value or the queue length estimation 1 and the variance

can be obtained as in Eqs. (14) and (15).

E(N1 = n1|l,m, t, R) = l +
(l −m+ 1)(2R− 2t)

2t+ 2

= l +
(l −m+ 1)(R− t)

t+ 1
(14)

V (N1 = n1|l,m, t, R) = (l−m+1)(2R+2)(2R−2t)
(2t+2)(2t+3)

[1− l−m+1
2t+2

] (15)

Alternatively, from Eq. (16), we can get the following equivalent estimator without PV time (T )

information (Eq. (17)) and its variance in (Eq. (18)).

p(N = n|l,m,C) =

(
C−n+m
C−n

)(
n−m
n−l

)(
C
l

) (16)

where C is capacity or maximum possible arrivals (e.g., 2R with 0.5 s headways), J = C − 2l, r =

l −m + 1, K = C − l, and k = n − l. Note that, with time discretization, we can infer t from l. The

expected value E(n|l,m,R) is given by

E(N = n|l,m,C) =
C+l∑
n=l

n(l + 1)

(C + 1)

(
C−n+m
C−n

)(
n−m
n−l

)(
C
l

)
=

C∑
n′=0

n′(l + 1)

(C + 1)

(
n′+l′

n′

)(
C−l′+n′

C−l′−n′

)(
C
n′

)
where n′ = n− l, l′ = l −m, and (l+1)

(C+1)
is the normalizer for valid probability mass function.

E(N2 = n2|l,m,C) = l +
(l −m+ 1)(C − l)

l + 2
(17)

V (N2 = n2|l,m,C) =
(l −m+ 1)(C + 2)(C − l)

(l + 2)(l + 3)
[1− l −m+ 1

l + 2
] (18)

One of the advantages of the derived estimators in Eqs. (14) and (17) is that the denominators are

nonzero since L ≥ 0. This enables us to estimate queues even if there is no probe vehicle in the queue.

10



(a) E(N |T, L,M = 2, R = 45) in Eq. (14) (b) E(N |L,M,R = 45) in Eq. (17)

Fig. 4. Example behavior of conditional expectations

(a) V (N |T, L,M = 2, R = 45) in Eq. (14) (b) V (N |L,M,R = 45) in Eq. (18)

Fig. 5. Example behavior of conditional variances

The behavior of conditional probabilities, expected values, and variances are shown in Figs. 3-5. We can

see in Fig. 3 that the likelihoods are right to the N = l values. In Fig. 4, as the queue time joining of the

last probe vehicle increases, the expected queue length gets closer to L = l for both models. The variance

of the conditional distributions is high. However, for these examples, M = 2. The variance will decrease

when the number of PVs increases in the queue. Similarly, in Fig. 5, the variance of the estimated queue

length reduces as l and t increase. Having time information also shows smoother behavior compared to

having only location information.

Fig. 6 shows the percent coefficient of variation (CoV) with respect to T or L to understand errors

relative to true average queue lengths. Suppose the maximum queue length is 20 vehicles per red duration
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Fig. 6. Example behavior of conditional variances

(on average, the unconditional queue length is 16.52 vehicles), then, depending on the information M,L,

the error is within 30% of the average queue length for the estimator with time information. Similarly,

given information M , the error for the estimator without T is within 40% of the average queue length

and decreases to zero as the location of the last probe increases. Note that the figures show the behavior

of the conditional CoVs where M,L, T values are selected for illustrations. For other values, CoV values

are going to change.

4. Evaluation with Field Queue Length Data

To show the effectiveness of the estimators developed, we used 2014 ITS World Congress Con-

nected Vehicle Demonstration Data (Dataset, 2014). The authors’ previous works used this field data for

evaluating range sensor inclusion and filtering for queue length estimation (Comert & Begashaw, 2021;

Comert & Cetin, 2021). The results of this study are new. For completeness, assumptions and setup are

reported again. The dataset contains manually collected queue lengths at the intersection of Larned and

Shelby streets in Detroit, Michigan, between September 8 and 10, 2014. The number of observations

per day is 98, 254, and 135, respectively. During data collection, probe vehicles were identified with the

blue Xs. Each row of data includes the hour, minute, and second of observation, the maximum queue

lengths, and the number of probe vehicles in these queues (i.e., M in the formulations above) from the

left, center, and right lanes of the Larned street approach.

The dataset provides M = m and C cycle time values but not the information of L and T from PVs.
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Hence, we generated random variates of this information from Uniform distribution (L = l location

l ∼ U(m,n)) and Gamma distribution (T = t queue joining time t ∼ Ga(l, C
2n
)) distributions for all

lanes independently and repeated for 1000 random seeds. Note that, integer values are used for L,M , and

T . The overall average of estimation errors is reported to compare models. In addition, the followings

are assumed related to the traffic signal and the dataset:

1. Back-of-queue observations are obtained at the end of red phases (vary cycle-by-cycle). The time

between two observations is assumed to be the cycle length (C), and red phases are assumed to be

half (R = C/2).

2. There is no steady growth of queue and many zero queue values. Thus, the overflow queues are

omitted. The data was collected during low to medium ρ (i.e., volume-to-capacity ratio= 0.50

assumed for HCM models). Please note this is real-life demo data from an urban arterial and is

used to show the performance of the models against known parameters ones. Regardless, ρ’s are

also calculated using estimated arrival rates and used in relevant models.

3. The capacity of the approach was approximated by the observed overall maximum queue value of

10 vehicles within 70 seconds (10× 3600/35=1029 vehicles per hour or 0.286 vehicles per second

(vps) saturation flow rate). These values are used essentially in the Highway Capacity Manual

(HCM) from manual and back-of-queue calculations. Note that the values may not reflect the

actual capacity and phase splits; however, we compare and report true queue lengths. This would

provide insights into the accuracy of our approach.

Compared HCM delay (i.e., Delay time difference between ideal versus actual conditions (or simply

waiting time)) and back of the queue (i.e., Qback) models are given in Eqs. (19) and (20). These models

are approximations for given time intervals (e.g., 15 minutes) and fully observed traffic.

d1 =
C

2
[

(1−G/C)2

1− [min(1, X̂)G/C]
]

d2 = 900T [(X̂ − 1) +

√
(X̂ − 1)2 +

8kIX̂

cT
] (19)

where d=d1×PF + d2+ d3 is control delay seconds per vehicle, d2 is uniform delay, PF is progression

factor due to arrival types, d2 is random delay component, and d3 is delay due to initial queue. In this

study, only d1+d2 are considered with d3 = 0 since no overflow queue is assumed. PF = 1.0 is used for

random arrivals. Volume-to-capacity is X̂ = ρ̂ = λ̂
0.286

. Green time G is in seconds s, C is cycle time in

13



Table 1. Estimators given for the queue lengths

Estimator E(n|l,m, t, R)

Est.1 I(m > 0)[l + (l −m)(1− t
R
)] + I(m = 0)[(1− m̄

l̄
)(l̄ + (l̄ − m̄)(1− t̄

R
))]

Est.2 I(m > 0)[m+ (l−m)R
t

] + I(m = 0)[m̄+ (l̄−m̄)R
t̄

]

NP.Est.1 l + (l−m+1)(R−t)
t+1

NP.Est.2 l + (l−m+1)(C−l)
l+2

s. T is the analysis period in hours where in cycle-to-cycle estimations Ti = Ci/3600 is assumed where

i denotes cycle number. k is incremental delay factor, and 0.5 is assumed for fixed time like movement.

I = 1 upstream filtering is assumed for no interaction with nearby intersections, and capacity is c = 1029

vph. Note that in our calculations, the uniform delay is the main component updated by changing G and

C values. Queue lengths are approximated by Little’s formula dλ where d and λ are both calculated at

each cycle using M number of probe vehicles in the queue. This method is based on HCM 2000 (Prassas

& Roess, 2020; Ni, 2020).

Another estimation approach adopted from (Kyte et al., 2014) is used to calculate the cycle-to-cycle

back of queues (see Eq. (20)).

Qback = v̂(R + gs) (20)

where Qback is the back of the queue in vehicles, v = λ is the arrival rate in vehicles per second (vps),

R is the red duration in seconds s, and gs is queue service time that is calculated v̂R/(x − v̂) with x is

the saturation flow rate (i.e., assumed to be 0.286 vps). All the values R, gs, and v̂ except x are changing

cycle-to-cycle.

Alternative estimators from (Comert, 2016) are denoted by Est.1 and Est.2 in Eqs. (21) and (22),

respectively. These queue length estimators are in the form of E(n|l,m, t, R) = l+(1− p̂)λ̂(R− t) with

two different primary parameter estimator combinations: {λ̂1 =
l
R
, p̂1 =

m
l
} and {λ̂2 =

(l−m)
t

+ m
R
, p̂2 =

mt
mt+(l−m)R

}. All compared cycle-to-cycle queue length estimators are given in Table 1.

E(N1|l,m, t, R) = I(m > 0)[l + (l −m)(1− t

R
)] +

I(m = 0)[(1− m̄

l̄
)(l̄ + (l̄ − m̄)(1− t̄

R
))] (21)
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E(N2|l,m, t, R) = I(m > 0)[m+
R(l −m)

t
] +

I(m = 0)[(1− m̄t̄

m̄t̄+ (l̄ − m̄)R
)(m̄+

R(l̄ − m̄)

t̄
)]

= I(m > 0)[m+
(l −m)R

t
] + I(m = 0)[m̄+

(l̄ − m̄)R

t̄
] (22)

where I(.) is the indicator function. When there is no probe vehicle in the queue (i.e., I(m = 0)), we

use the average of previous probe vehicles’ information as we need to estimate arrival rate (λ) and probe

percentage (p). Notation M1:i represents values from cycle 1 to i and m̄1:i =
∑i

j=1
mj

i
, l̄1:i =

∑i
j=1

lj
i
,

and t̄1:i =
∑i

j=1
tj
i

. Average error values are given in Table 2 for T ∼ Ga(l, C
2n
). Fig. 7 (b) is given to

demonstrate if assumed interarrivals are impacting the accuracy of the estimators.

Table 2. Estimation results with RMSE errors in [vehs/cycle] with T ∼ Ga(l,C/(2n))

Lane Avg. p Est.1 Est.2 NP.Est.1 NP.Est.2 Delay Q back

Sep08

L 13% 1.09 1.01 1.01 1.01 1.37 1.25

C 21% 0.72 0.78 0.69 0.70 1.33 1.26

R 7% 0.56 0.55 0.60 0.60 0.66 0.64

Sep09

L 10% 1.22 1.05 0.99 0.99 1.38 1.13

C 26% 1.14 0.96 1.09 1.09 1.81 1.38

R 2% 0.34 0.35 0.54 0.54 0.39 0.41

Sep10

L 7% 2.68 2.43 2.48 2.48 2.81 2.52

C 18% 1.48 1.32 1.73 1.73 2.28 1.63

R 1% 0.84 0.77 0.77 0.77 1.06 1.26

In Table 2, a summary of average queue length (QL) estimation errors in the root mean square is

provided (RMSE=
√∑n

i=1
(QLi−Q̂Li)

2

n
). Average p values are calculated from

∑n
i=1

m
nQLi

for each lane.

Since true maximum queues are not known, p and λ are estimated. HCM’s control delay-based model

and back of queue are denoted by HCMd and Qback, respectively. The accuracy of the estimators is

reported when probe vehicles are present in the queue (p={10%, 13%, 18%, 21%, 26%}).

Example performances with 21% penetration rates are given in Fig. 7 (a). When there are probe

vehicles in the queue, we can see that the proposed methods can follow the true maximum queue lengths

closely. In Fig. 7 (b), boxplots for overall errors are given. We can see that the model with new estimators

provides slightly lower errors. However, errors are lower than delay-based HCMd and Qback methods.

Our methods can estimate more accurately compared to Qback.
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(a) Estimation on Sep 08 on center-lane (b) Box plots for all estimation errors

Fig. 7. Performance of the proposed estimators NP.Est.1 and NP.Est.2

5. Conclusions

In this study, we derived two new nonparametric cycle-to-cycle (i.e., dynamic) queue length estima-

tion models for traffic signal-induced queues. Contributions can be summarized as follows:

i. derived estimators only depend on signal phasing and timing information. The derivations involved

fundamental analysis of the experiment.

ii. one of the estimators (NP.Est.2, E(N |l,m,R)) does not require time information of the last

probe vehicle in the queue and matches the accuracy of the one with time information (NP.Est.1,

E(N |l,m, t, R)).

iii. resulting estimators are simple algebraic expressions. We do not assume independent arrivals at the

intersection. The only assumption is a discrete time interval which is reasonable as signal timing

involves whole seconds. However, sub-second or finer discrete time intervals can also be utilized.

iv. for independent approach lanes at traffic intersections, it is shown that conditional queue lengths

given probe vehicle location, count, time, and analysis interval can be represented by a Negative

Hypergeometric distribution.

v. performance of the estimators derived was compared with parametric and simple highway capacity

manual methods that use field test data involving probe vehicles. The results obtained from the

comparisons show that the nonparametric models presented in this paper match the accuracy of
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parametric models. Compared parametric models assume known cycle-to-cycle (dynamic) arrival

and market penetration rates.

vi. methods developed do not assume random arrivals of vehicles at the intersection or any primary

parameters or involve parameter estimations.

Developed methods in this study estimate the queue lengths at intersection approaches using probe ve-

hicle data. These probe vehicles could be traditional probe vehicles or connected vehicles that generate

basic safety messages. Apart from improving the limitations listed under the problem statement, future

research could apply and expand the models presented in this paper using a more complex intersection

and a series of adjacent intersections with higher traffic demand volumes.
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Appendix

The results in Eq. (1) can be extended to the short sum runs from n = ℓ through n = 2R− 2t.

Theorem 2. Let ℓ, m, n, R, and t be as defined in Theorem 1. Then there is a recurrence formula for

2R−2t∑
n=ℓ

(
n−m

ℓ−m

)(
2R +m− n

2t+m− ℓ

)
(A5)

Proof. Denote the sum in (A5) by f(ℓ) and the summand by F (ℓ, n) (after suppressing the remaining

variables). Introduce the function G(ℓ, n) = −
(

n−m
ℓ+1−m

)(
2R+m−n+1
2t+m−ℓ

)
. Then, it is routine to verify that

F (ℓ+ 1, n)− F (ℓ, n) = G(ℓ, n+ 1)−G(ℓ, n)(A6)

Sum both sides of (A6) for n = ℓ+ 1 to n = 2R− 2t (and telescoping on the right-hand side) to obtain

f(ℓ+ 1)− f(ℓ) + F (ℓ, ℓ) = G(ℓ, 2R− 2t+ 1)−G(ℓ, ℓ+ 1).

Based on F (ℓ, ℓ) =
(
2R+m−ℓ
2t+m−ℓ

)
, G(ℓ, 2R−2t+1) = −

(
2R−2t−m+1

ℓ−m+1

)(
2t+m

ℓ

)
and G(ℓ, ℓ+1) = −

(
2R+m−ℓ
2t+m−ℓ

)
,

we infer the recursive relation

f(ℓ+ 1)− f(ℓ) = −
(
2R− 2t−m+ 1

ℓ−m+ 1

)(
2t+m

ℓ

)
. □

Corollary. From Theorem 2, we get the following identity

2R−2t∑
ℓ=0

(
2R− 2t−m+ 1

ℓ−m+ 1

)(
2t+m

ℓ

)
=

(
2R + 1

2t+ 1

)
(A7)

Proof. This follows from the recurrence relation proved in Theorem 2 and the identity proved in Theorem

1. □

Theorem 3. The identity in (A7) can be re-indexed and formulated as follows:

R−t+ℓ∑
m=ℓ

(
m

ℓ

)(
R−m

t− ℓ

)
=

(
R + 1

t+ 1

)
.

Proof. We offer a combinatorial argument. Given natural numbers ℓ ≤ t ≤ R, and m, we may consider

the class of those (t + 1)-subsets {x0 < x1 < · · · < xt} of {0, 1, . . . , R} such that xℓ = m: these are

exactly
(
m
ℓ

)(
R−m
t−ℓ

)
(indeed the ℓ elements x0, . . . , xℓ−1 can be chosen freely into {0, . . . ,m− 1}, and so

can the t − ℓ elements xℓ+1, . . . , xt into {m + 1, . . . , R}. These classes, for ℓ ≤ m ≤ R − t + ℓ form

a partition of all (t + 1)-subsets of [R + 1], whence the sum of their cardinality is independent of ℓ and
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the identity. □ Remark. The discrepancy in having a closed form and no closed form can be understood

as follows: we know that
∑n

k=0

(
n
k

)
= 2n, however, there is no "nice evaluation" for

∑m
k=0

(
n
k

)
unless

m = n. The bottom line is the former is summed over the full compact support of
(
n
k

)
(in the sense,(

n
k

)
= 0 if k < 0 or k > n. A similar analogy can be drawn with having the closed form

∫
R e

−x2
dx =

√
π

but nothing similar is available if the limit is altered to be any smaller subset than the full range R, except

for [0,∞).
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