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Abstract. In this short note, our primary purpose is to prove the congruence
p−1
2∑

k=1

(−1)k

k

k∑
j=b k

2 c+1

1

2j − 1
≡ 0 mod p.

Along the way, a number of auxiliary results of independent interest are found.

1. Introduction

The main target and motivation for this work is the present authors’ intent to respond
to a certain challenge proposed at the public forum called Mathoverflow in which the
proposer asks a proof for the congruence

p−1
2∑

k=1

(−1)k

k

k∑
j=b k

2
c+1

1

2j − 1
≡ 0 mod p.

After some effort, we succeed in doing so.

The following notations and conventions will be adhered to throughout the discussion.

Let p ≥ 5 be a prime. Denote p′ = p−1
2
, p′′ = bp−1

4
c and the Fermat’s quotients by

q2 = 2p−1−1
p

while (a
p
) stands for the Legendre’s symbol. For brevity, ≡p designates

congruence modulo p. The Euler numbers En are defined by the exponential generating
function

2et

e2t + 1
=
∞∑
n=0

En
tn

n!
.

The generalized harmonic numbers are given by Hn(a) =
∑n

j=1
1
na so that the classical

harmonic numbers become Hn = Hn(1).

The organization of the paper is as follows. In Section 2, we list some relevant congruences
for harmonic numbers which appear in the existing literature. In Section 3, we prove a few
preparatory statements to conclude with our main result as advertised at the beginning
of this section and the Abstract. In Section 4, we show an evaluation of a related definite
sum

∞∑
k=1

(−1)k

k

k∑
j=b k

2
c+1

1

2j − 1
= −5π2

48
.
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2. Background results

In this section, we shall recall certain well-known congruences which play a direct roll in
the sequel. The most basic result in this direction is that of Wolstenholme’s Hp−1 ≡p 0,
which has been strengthened since.

Lemma 1. (Wolstenholme)

Hp−1 ≡p2 0. (1)

Lemma 2. (Eisenstein)

Hp′ ≡p −2q2. (2)

Lemma 3. We have the elementary congruences

p−1∑
k=1

1

k2
≡p 0,

p′∑
k=1

1

k2
≡p 0 and

p−1∑
k=1

(−1)k

k2
≡p 0. (3)

Proof. The first congruence is clear from
∑p−1

k=1
1
k2
≡p

∑p−1
k=1 k

2 = p(p−1)(2p−1)
6

≡p 0. With
the change of variables k → p′ − k + 1, we obtain

p−1∑
k=1

1

(2k − 1)2
=

p′∑
k=1

1

(2(p′ − k + 1)− 1)2
≡p

1

4

p′∑
k=1

1

k2

which implies that

0 ≡p

p−1∑
k=1

1

k2
=

1

4

p′∑
k=1

1

k2
+

p−1∑
k=1

1

(2k − 1)2
≡p

1

2

p′∑
k=1

1

k2
.

and also
p−1∑
k=1

(−1)k

k2
=

1

4

p′∑
k=1

1

k2
−

p′∑
k=1

1

(2k − 1)2
≡p

1

4

p′∑
k=1

1

k2
− 1

4

p′∑
k=1

1

k2
= 0.

The proof is complete. �

Lemma 4. (Glaisher) [2, (43)]

Hp′′ ≡p −3q2. (4)

Lemma 5. [2, (19) and (20)]

Hp′(2) ≡p 0 and Hp′′(2) ≡p 4(−1)p
′
Ep−3. (5)

Hence,

Lemma 6.
p−1∑
k=1

Hk

k
=

1

2

(
H2

p−1 −Hp−1(2)
)
≡p 0, (6)

p′∑
k=1

Hk

k
=

1

2

(
H2

p′ −Hp′(2)
)
≡p 2q22, (7)

p′′∑
k=1

Hk

k
=

1

2

(
H2

p′′ +Hp′′(2)
)
≡p

9q22
2

+ 2(−1)p
′
Ep−3. (8)
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Lemma 7. Define the function £d(x) =
∑p−1

j=1
xj

jd
. Then,

p−1∑
j=1

xjHj

j
≡p £2(x)−£2(1− x). (9)

Proof. We have

p−1∑
j=1

(1− x)j − 1

j
=

n∑
j=1

(
p− 1

j

)
(−x)j

j
≡p2

p−1∑
j=1

xj

j
(1− pHj)

which implies that

p−1∑
j=1

xjHj

j
≡p

£1(x)−£1(1− x) +Hp−1

p
≡p £2(x)−£2(1− x).

where we used [1, (6)] and (1), as well as

−£2(x) ≡p
1

p

(
xp + (1− x)p − 1

p
+ £1(1− x)

)
.

�

Lemma 8. We have
p−1∑
k=1

(−1)k

k
Hk ≡p q

2
2. (10)

Proof. By Lemma 7, the last congruence in (3) and [1, (2)], we gather that

p−1∑
k=1

(−1)kHk

k
≡p £2(−1)−£2(2) ≡p q

2
2. (11)

�

Lemma 9. We have

p′∑
k=1

(−1)kHk

k
≡p

q22
2

+ (−1)p
′
Ep−3. (12)

Proof. We proceed as follows:

p−1∑
k=1

(−1)kHk

k
=

p′∑
k=1

(−1)kHk

k
+

p−1∑
k=p′+1

(−1)kHk

k
=

p′∑
k=1

(−1)kHk

k
+

p′∑
k=1

(−1)p−kHp−k

p− k

≡p

p′∑
k=1

(−1)kHk

k
+

p′∑
k=1

(−1)kHp−k

k
≡p

p′∑
k=1

(−1)kHk

k
+

p′∑
k=1

(−1)kHk−1

k

= 2

p′∑
k=1

(−1)kHk

k
−

p′∑
k=1

(−1)k

k2



4 TEWODROS AMDEBERHAN AND ROBERTO TAURASO

where we used the fact that Hp−k ≡p Hk−1. Hence, by (5) and (11),

p′∑
k=1

(−1)kHk

k
≡p

1

2

p−1∑
k=1

(−1)kHk

k
+

1

2

p′∑
k=1

(−1)k

k2

=
1

2

p−1∑
k=1

(−1)kHk

k
+

1

2

[
−Hp′(2) +

1

2
Hp′′(2)

]
≡p

q22
2

+ (−1)p
′
Ep−3.

�

3. Main Results

In order to reach the main goal of this paper, we first establish a series of crucial prepara-
tory statements. From (6) and (11), it is immediate that

p′∑
k=1

H2k

k
=

p−1∑
k=1

Hk

k
+

p−1∑
k=1

(−1)kHk

k
≡p q

2
2. (13)

On the other hand, (7) and (12) lead to

p′′∑
k=1

H2k

k
=

p′∑
k=1

Hk

k
+

p′∑
k=1

(−1)kHk

k
≡p

5q22
2

+ (−1)p
′
Ep−3. (14)

Lemma 10. We have

p′∑
k=1

(−1)kH2k

k
≡p

q22
4
. (15)

Proof. By [3, Section 4]

p′∑
k=1

(−1)kH2k

k
= 2

p′∑
k=1

(i2)kH2k

2k
= 2 Re

(
p−1∑
k=1

ikHk

k

)
≡p 2 Re (£2(i)−£2(1− i))

≡p 2 Re

(
((−1)p

′
+ i)Ep−3

2
− −q

2
2(1− i(−1)p

′
) + 4(−1)p

′
Ep−3

8

)
≡p

q22
4
.

�

Lemma 11. We have

p′∑
k=1

(−1)k

k
H2b k

2
c ≡p

q22
2
. (16)



5

Proof. Since H2k ≡p H2(p′−k),

p′∑
k=1

(−1)k

k
H2b k

2
c =

p′′∑
k=1

H2k

2k
−
d p
′
2
e∑

k=1

H2(k−1)

2k − 1

=

p′′∑
k=1

H2k

2k
−

p′∑
k=1

H2(p′−k)

p− 2k
+

p′′∑
k=1

H2(p′−k)

p− 2k

≡p

p′′∑
k=1

H2k

2k
+

p′∑
k=1

H2k

2k
−

p′′∑
k=1

H2k

2k
=

1

2

p′∑
k=1

H2k

k
≡p

q22
2

where in the last step we used (13). �

Lemma 12. We have
p′∑

k=1

(−1)k

k
Hb k

2
c ≡p q

2
2 + (−1)

p−1
2 Ep−3. (17)

Proof. The argument goes as follows:

p′∑
k=1

(−1)k

k
Hb k

2
c =

p′′∑
k=1

Hk

2k
−
d p
′
2
e∑

k=1

Hk−1

2k − 1

=

p′′∑
k=1

Hk

2k
−

p′∑
k=1

Hp′−k

p− 2k
+

p′′∑
k=1

Hp′−k

p− 2k

≡p

p′′∑
k=1

Hk

2k
+

p′∑
k=1

Hp′−k

2k
−

p′′∑
k=1

Hp′−k

2k
.

By using

Hp′−k = Hp′ −
k−1∑
j=0

1

p′ − j
≡p Hp′ + 2

k−1∑
j=0

1

2j + 1
= Hp′ + 2H2k −Hk

we get

p′∑
k=1

(−1)k

k
Hb k

2
c ≡p −

1

2

p′∑
k=1

Hk

k
+

p′′∑
k=1

Hk

k
+

p′∑
k=1

H2k

k
−

p′′∑
k=1

H2k

k
−
H2

p′

2
+
Hp′Hp′′

2
.

Invoke (2), (4), (7), (8), (14), and (15) to complete the proof. �

Finally, we are ready to state and prove our main result.

Theorem 1. We have
p′∑

k=1

(−1)k

k

k∑
j=b k

2
c+1

1

2j − 1
≡p 0. (18)

Proof. The inner sum can be rewritten as:

k∑
b k
2
c+1

1

2j − 1
=

k∑
j=1

1

2j − 1
−
b k
2
c∑

j=1

1

2j − 1
=

[
H2k −

1

2
Hk

]
−
[
H2b k

2
c −

1

2
Hb k

2
c

]
.
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In view of this, the theorem can be reformulated as

p′∑
k=1

(−1)k

k

[
H2k −

1

2
Hk −H2b k

2
c +

1

2
Hb k

2
c

]
≡p 0.

The proof follows from (12), (15), (16), and (17). �

4. An infinite series evaluation

In the present section, we consider an infinite series counterpart to the harmonic sum
that has been the subject of much of this paper.

Theorem 2. We have

S :=
∞∑
k=1

(−1)k

k

k∑
j=b k

2
c+1

1

2j − 1
= −5

8
ζ(2).

Proof. Split the sum S according to parity to express in terms of harmonic sums,

S =
∞∑
k=1

H4k − 1
2
H2k −H2k + 1

2
Hk

2k
−
∞∑
k=1

H4k−2 − 1
2
H2k−1 −H2k−2 + 1

2
Hk−1

2k − 1

=
∞∑
k=1

(−1)k

k
H2k −

3

2

∞∑
k=1

(−1)k

k
Hk −

∞∑
k=1

1

(2k − 1)2
+

1

2

∞∑
k=1

(−1)k

k
Hb k

2
c.

Next, we compute each series one-by-one, the easiest of which being
∑

k≥1
1

(2k−1)2 = 3
4
ζ(2).

For the rest, the representation Hk =
∫ 1

0
1−tk
1−t dt will be employed repeatedly.∑

k≥1

(−1)kHk

k
=

∫ 1

0

dt

1− t
∑
k≥1

(−1)k − (−t)k

k
=

∫ 1

0

log(1 + t)− log 2

1− t
dt =

log2 2− ζ(2)

2
,

∑
k≥1

(−1)kH2k

k
=

∫ 1

0

log(1 + t2)− log 2

1− t
dt =

∫ 1

0

[
log(1 + t2)− log 2

1− t2

]
(1 + t) dt

=

∫ 1

0

log(1 + t2)− log 2

1− t2
dt+

1

2

∫ 1

0

log(1 + t)− log 2

1− t
dt

= −3

8
ζ(2) +

log2 2− ζ(2)

4
,

∑
k≥1

(−1)k

k
Hb k

2
c =

1

2

∫ 1

0

1√
t
log
(

1+
√
t

1−
√
t

)
+ log(1− t)− 2 log 2

1− t
dt = S1 + S2 + S3;

where

S1 :=
1

2

∫ 1

0

log(1 +
√
t)− log 2

1− t
dt =

∫ 1

0

(
log(1 + t)− log 2

1− t2

)
t dt

=
1

2

∫ 1

0

log(1 + t)− log 2

1− t
dt− 1

2

∫ 1

0

log(1 + t)− log 2

1 + t
dt

=
log2 2− ζ(2)

4
+

1

4
log2 2,
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S2 :=
1

2

∫ 1

0

log(1−
√
t)

[
1− 1√

t

1− t

]
dt = −

∫ 1

0

log(1− t)
1 + t

dt =
ζ(2)− log2 2

2
,

S3 :=
1

2

∫ 1

0

1√
t
log(1 +

√
t)− log 2

1− t
dt =

∫ 1

0

log(1 + t)− t log 2

1− t2
dt

=
1

2

∫ 1

0

log(1 + t)− log 2

1− t
dt+

1

2

∫ 1

0

log(1 + t)− log 2

1 + t
dt+ log 2

∫ 1

0

dt

1 + t

=
log2 2− ζ(2)

4
− 1

4
log2 2 + log2 2.

Combining all the above calculations yields S = −5
8
ζ(2), as required. �
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Dipartimento di Matematica, Università di Roma “Tor Vergata”, 00133 Roma, Italy
E-mail address: tauraso@mat.uniroma2.it


