Inversion of Mosaic Hankel Matrices via Matrix Polynomial Systems

George Labahn
Department of Computing Science University of Waterloo, Waterloo, Ontario, Canada, Bernhard Beckermann
Institut für Angewandte Mathematik
Universität Hannover, Welfengarten 1, D-30167 Hannover, Germany, and
Stan Cabay,
Department of Computing Science University of Alberta, Edmonton, Alberta, Canada.

February 2, 1996

Abstract

Heinig and Tewodros give a set of components whose existence provides a necessary and sufficient condition for a mosaic Hankel matrix to be nonsingular. When this is the case they also give a formula for the inverse in terms of these components.

By converting these components into a matrix polynomial form we show that the invertibility conditions can be described in terms of matrix rational approximants for a matrix power series determined from the entries of the mosaic matrix. In special cases these matrix rational approximations are closely related to Padé and various well-known matrix-type Padé approximants. We also show that the inversion components can be described in terms of unimodular matrix polynomials. These are shown to be closely related to the V and W matrices of Antoulas used in his study of recursiveness in linear systems. Finally, we present a recursion which allows for the efficient computation of the inversion components of all nonsingular "principal mosaic Hankel" submatrices (including the components for the matrix itself).

