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Abstract. Using a recurrence derived from Dodgson's Condensation Method, we provide

numerous explicit evaluations of determinants. They were all conjectured, and then rigorously

proved, by computer-assisted methods, that should be amenable to full automation.

We also mention a �rst step towards that goal, our Maple package, DODGSON, that automates

the special case of Hankel and Toeplitz hypergeometric determinants.

AMS Subject Classi�cation: Primary 05A, 15A

This article is motivated by the computation in [1] that was inspired by the short proof

[6] of MacMahon's determinant evaluation [4], using a determinantal identity of Charles

Dodgson [2]. Many special cases of the sampled determinants given below were indepen-

dently discovered by M. Petkov�sek [5]. For an excellent and detailed survey of existing

methods of proofs of determinant identities, see [3].

For any n by n matrix A, let Ar(i; j) denote the r by r minor consisting of r contiguous

rows and columns of A, starting with row i and column j. In particular, An(1; 1) = detA.

Then, according to Dodgson [2],

(Lewis) An(1; 1)An�2(2; 2) = An�1(1; 1)An�1(2; 2) �An�1(2; 1)An�1(1; 2):

For many cases, An(i; j) turn out, conjectured at �rst, to have an explicit expression,

involving single and double products. Whenever this is the case the proof of the conjectured

evaluation is completely routine, by induction on n, by checking that (Lewis) is satis�ed

by that conjectured expression, and by checking the trivial initial conditions for n = 0 and

n = 1. Finally, to get an explicit expression for the original determinant, all one has to do

is plug in i = 1 and j = 1.
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A more interesting case happens whenAn(i; j) does not seem to have an explicit expression,

yet An(1; 1) does. We believe that in many cases, (Lewis) should still be useful, by

extending the ansatz to a larger class, that for us humans looks messy, but that computers

won't mind. Then plugging in i = 1 and j = 1 in that `messy expression' (which may well

be a recurrence satis�ed by it) could still be simpli�ed to something `nice.'

Be that as it may, in the former case things could be made completely automatic. But this

programming chore is too daunting. Hence so far we only accomplished a semi-automated

implementation of the special case of Hankel and Toeplitz determinants of hypergeometric

type. The reader is invited to check out our Maple package DODGSON, that has on-line

help.

Examples of Computer-assisted Explicit Evaluations:
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Remark: Notice in particular that Eqn. (13) reveals the Hilbert matrix when r = 0 and

a = 1.
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We now demonstrate how such identities could be discovered. Let us take the following

example:
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Denoting the left-hand side of (15) by fn(r), we form the ratio hn(r) :=
fn(r+1)

fn(r)
and input

empirical data (n �xed, r varying) in the MAPLE package gfun, which in turn suggests

the recurrence

�(r + n+ 1)(r + n+ 2)hn(r) + r(r + 2n+ 3)hn(r + 1) = 0

for hn(r). This, combined with the de�nition of hn(r) implies that

fn(r) = an
(r + n)!!(r + n� 1)!!

(r � 2)!!(r + 2n+ 1)!!

for some constant an, depending (possibly) on n. At this stage, we invoke the recurrence

relation (Lewis), resulting from Dodgson's rule, on fn(r). Consequently, we obtain

anan�2

a2n�1
= n(n+ 1):

We then conclude that an = n!!(n + 1)!! and the construction of the identity (15) is

completed.

Our Maple package DODGSON, combines some of these intermediate steps for the special

cases of Hankel and Toeplitz determinants of hypergeometric type. DODGSON is available

at http://www.math.temple.edu/~zeilberg/tokhniot/DODGSON.

Further Notes:

Let P (i; j; x) be polynomials in x, and assume also P (i+ 1; j; x) = P (i; j; x + c) for some

constant c. Then, we have

Fact 1: If deg(P (i; j; x) < n,

det[P (i; j; x)]0�i;j�n = 0:

Proof: Follows from a rank argument on the �rst row of the matrix and the linearity

assumption, above. �
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Fact 2: If in addition, P is of degree n and P (i; j; x) = g(i+ j + x), then

det[P (i; j; x)]0�i;j�n � constant:

Proof: By embedding the given matrix Mn(x) := [P (i; j; x)]0�i;j�n into Mn;0(x) :=

[P (i; j; x)]0�i;j�n+1 and applying Dodgson's rule, we gather that the determinant fn(x) :=

det(Mn(x)) of the original matrix satis�es

(16) fn(x)fn(x + 2) = fn(x + 1)2;

since the determinant of the new matrix Mn;0(x) vanishes by Fact 1, above. But fn(x) is

a polynomial, thus for Eqn. (16) to hold fn(x) must be a constant. �

Postscript:

Christian Krattenthaler pointed out that most of our determinants are special cases of

known determinants mentioned in [3]. More interestingly, with the exception of our iden-

tities (8)-(10), they can be derived from his amazingly general and versatile lemma [3,

Lemma 5.] He also recommended the Maple package \Guess" by B�eraud and Gauthier for

more eÆcient guessing.

Nevertheless, the identities we presented above are all beautiful, and once our complete

automation will be achieved, it would be much easier to prove them from scratch than to

�nd how they can be derived from Krattenthaler's Lemma. Also, in defense of Dodgson,

we are almost sure, (and will be glad to try it for a fee of $5000), that Krattenthaler's

Lemma is Dodgeable, and the humanly-daunting task of manipulating double products

should also be capable of automation.
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