
PROOF OF FORMULA 3.267.1
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Parameter restrictions. Convergence near x = 0 requires Ren > − 1
3 .

The stated formula is valid for (at least) n ∈ R. It should be written as∫ 1
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In the special case n ∈ N it should be written as∫ 1

0

x3n dx
3
√

1− x3
=

2π

3
√

3

Γ
(
n+ 1

3

)
n! Γ

(
1
3

) =
2π

3
√

3

(
1
3

)
n

n!
n ∈ N

Evaluation. The change of variables t = x3 produces∫ 1
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The integral representation

(1) B(a, b) =
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(which appears as entry 8.380.1) gives the last integral as
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The form given in the table uses the relation

(3) Γ(u)Γ(1− u) =
π

sinπu

(which appears as entry 8.334.3) to obtain the first evaluation.
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