PROOF OF FORMULA 3.419.4

$$
\int_{-\infty}^{\infty} \frac{x^{3} d x}{\left(\beta+e^{x}\right)\left(1-e^{-x}\right)}=\frac{\left(\pi^{2}+\ln ^{2} \beta\right)^{2}}{4(\beta+1)}
$$

In Part 1, it has been shown that

$$
h_{n}(a)=\int_{0}^{\infty} \frac{\ln ^{n-1} t d t}{(t-1)(t+a)}
$$

is given by

$$
\begin{aligned}
n(1+a) h_{n}(a) & =(-1)^{n} n!\left[1+(-1)^{n}\right] \zeta(n) \\
& +\sum_{j=0}^{\lfloor n / 2\rfloor}\binom{n}{2 j}\left(2^{2 j}-2\right)(-1)^{j-1} B_{2 j} \pi^{2 j} \ln ^{n-2 j} a
\end{aligned}
$$

The change of variables $t=e^{-x}$ shows that

$$
h_{n}(a)=\int_{-\infty}^{\infty} \frac{x^{n-1} d x}{\left(1-e^{-x}\right)\left(a+e^{-x}\right)}
$$

The present entry corresponds to the value $n=4$.

