PROOF OF FORMULA 3.621.4

$$
\int_{0}^{\pi / 2} \sin ^{2 m+1} x d x=\int_{0}^{\pi / 2} \cos ^{2 m+1} x d x=\frac{(2 m)!!}{(2 m+1)!!}
$$

Let $t=\sin x$ to obtain

$$
\int_{0}^{\pi / 2} \sin ^{2 m+1} x d x=\int_{0}^{1} t^{2 m+1}\left(1-t^{2}\right)^{-1 / 2} d t
$$

The change of variables $s=t^{2}$ gives

$$
\int_{0}^{\pi / 2} \sin ^{2 m+1} x d x=\frac{1}{2} \int_{0}^{1} s^{m}(1-s)^{-1 / 2} d s=\frac{1}{2} B\left(m+1, \frac{1}{2}\right) .
$$

Therefore

$$
\int_{0}^{\pi / 2} \sin ^{2 m+1} x d x=\frac{\Gamma(m+1) \Gamma(1 / 2)}{2 \Gamma(m+3 / 2)} .
$$

The result now follows from

$$
\Gamma(m)=(m-1)!\text { and } \Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{m}}(2 m-1)!!
$$

followed by elementary simplifications.

