PROOF OF FORMULA 3.622 .4

$$
\int_{0}^{\pi / 4} \tan ^{2 n+1} x d x=(-1)^{n} \frac{\ln 2}{2}+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{2 n-2 k}
$$

Let

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{2 n+1} x d x
$$

Then

$$
\begin{aligned}
I_{n} & =\int_{0}^{\pi / 4} \tan ^{2 n+1} x d x=\int_{0}^{\pi / 4} \tan ^{2 n-2} x\left(\sec ^{2} x-1\right) d x \\
& =-I_{n-1}+\frac{1}{2 n} .
\end{aligned}
$$

Therefore,

$$
I_{n}+I_{n-1}=\frac{1}{2 n}
$$

and

$$
I_{0}=\int_{0}^{\pi / 4} \tan x d x=\int_{0}^{\pi / 4} \frac{d}{d x} \ln \sec x d x=\frac{1}{2} \ln 2
$$

The formula can now be checked directly by induction.
Note. The evaluation should be written as

$$
\int_{0}^{\pi / 4} \tan ^{2 n+1} x d x=\frac{(-1)^{n}}{2}\left(\ln 2+\sum_{k=0}^{n-1} \frac{(-1)^{k}}{k}\right)
$$

