FORMULA 3.623.1

$$
\int_{0}^{\pi / 2} \tan ^{\mu-1} x \cos ^{2 \nu-2} x d x=\int_{0}^{\pi / 2} \cot ^{\mu-1} x \sin ^{2 \nu-2} x d x=\frac{1}{2} B\left(\frac{\mu}{2}, \nu-\frac{\mu}{2}\right)
$$

The integral representation

$$
B(a, b)=\frac{1}{2} \int_{0}^{\pi / 2} \sin ^{2 a-1} x \cos ^{2 b-1} x d x
$$

and the identity

$$
\tan ^{\mu-1} x \cos ^{2 \nu-2} x=\sin ^{\mu-1} x \cos ^{2 \nu-\mu-1} x
$$

give the first formula. The second comes from the first via the change of variables $x \mapsto \frac{\pi}{2}-x$.

