PROOF OF FORMULA 4.265

$$
\int_{0}^{1} \frac{\ln ^{6} x d x}{1+x^{2}}=\frac{51 \pi^{7}}{256}
$$

The change of variables $x=\tan \varphi$ gives

$$
\int_{0}^{1} \frac{\ln ^{6} x d x}{1+x^{2}}=\int_{0}^{\pi / 4} \ln ^{6} \tan \varphi d \varphi
$$

This is the case $n=6$ in entry 4.227 .4 and its value comes from $\left|E_{7}\right|=61$.

