PROOF OF FORMULA 4.271.2

$$
\int_{0}^{1} \frac{\ln ^{2 n-1} x d x}{1+x}=\frac{1-2^{2 n-1}}{2 n} \pi^{2 n}\left|B_{2 n}\right|
$$

Consider the more general formula

$$
I(a):=\int_{0}^{1} \frac{\ln ^{a} x d x}{1+x}
$$

Expand the denominator as a geometric series to obtain

$$
I(a)=\sum_{j=0}^{\infty}(-1)^{j} \int_{0}^{1} x^{j} \ln ^{a} x d x
$$

The change of variables $u=-\ln x$ gives

$$
I(a)=\sum_{j=0}^{\infty}(-1)^{j+a} \int_{0}^{\infty} u^{a} e^{-(j+1) u} d u
$$

and $t=(j+1) u$ yields

$$
I(a)=\sum_{j=0}^{\infty} \frac{(-1)^{j+a}}{(j+1)^{a}} \int_{0}^{\infty} t^{a} e^{-t} d t
$$

The integral is recognized as $\Gamma(a+1)$. The sum is simplified using the standard even-odd split for the zeta function. It follows that

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j}}{j^{a}}=-\frac{2^{a-1}-1}{2^{a-1}} \zeta(a)
$$

Therefore

$$
I(a)=\frac{(-1)^{a}\left(2^{a}-1\right)}{2^{a}} \Gamma(a+1) \zeta(a+1)
$$

The case considered here is $a=2 n-1$. The result is first given in terms of $\zeta(2 n)$ and this is simplified via the basic identity

$$
\zeta(2 n)=\frac{2^{2 n-1}}{(2 n)!} \pi^{2 n}\left|B_{2 n}\right|
$$

This appears as $\mathbf{9 . 5 4 2 . 1}$.

