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The integrals in Gradshteyn and Ryzhik.

Part 7: Elementary examples

Tewodros Amdeberhan and Victor H. Moll

Abstract. The table of Gradshteyn and Ryzhik contains some elementary inte-

grals. Some of them are derived here.

1. Introduction

Elementary mathematics leave the impression that there is marked difference be-
tween the two branches of calculus. Differentiation is a subject that is systematic:
every evaluation is a consequence of a number of rules and some basic examples.
However, integration is a mixture of art and science. The successful evaluation of
an integral depends on the right approach, the right change of variables or a patient
search in a table of integrals. In fact, the theory of indefinite integrals of elementary
functions is complete [3, 4]. Risch’s algorithm determines whether a given function
has an antiderivative within a given class of functions. However, the theory of definite
integrals is far from complete and there is no general theory available. The level of
complexity in the evaluation of a definite integral is hard to predict as can be seen in

(1.1)

∫ ∞

0

e−x dx = 1,

∫ ∞

0

e−x2

dx =

√
π

2
, and

∫ ∞

0

e−x3

dx = Γ
(

4
3

)

.

The first integrand has an elementary primitive, the second one is the classical Gauss-
ian integral and the evaluation of the third requires Euler’s gamma function defined
by

(1.2) Γ(a) =

∫ ∞

0

xa−1e−x dx.

The table of integrals [5] contains a large variety of integrals. This paper continues
the work initiated in [1, 7, 8, 9, 10, 11] with the objective of providing proofs and
context of all the formulas in the table [5]. Some of them are truly elementary. In
this paper we present a derivation of a small number of them.
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2. A simple example

The first evaluation considered here is that of 3.249.6:

(2.1)

∫ 1

0

(1−
√
x)p−1 dx =

2

p(p+ 1)
.

The evaluation is completely elementary. The change of variables y = 1−√
x produces

(2.2) I = −2

∫ 1

0

yp dy + 2

∫ 1

0

yp−1 dy,

and each of these integrals can be evaluated directly to produce the result.
This example can be generalized to consider

(2.3) I(a) =

∫ 1

0

(1− xa)p−1 dx.

The change of variables t = xa produces

(2.4) I(a) = a−1

∫ 1

0

t1/a−1(1− t)p−1 dt.

This integral appears as 3.251.1 and it can be evaluated in terms of the beta function

(2.5) B(a, b) =

∫ 1

0

xa−1(1− x)b−1 dx,

as

(2.6) I(a) = a−1B
(

p, a−1
)

.

The reader will find in [11] details about this evaluation.

A further generalization is provided in the next lemma.

Lemma 2.1. Let n ∈ N, a, b, c ∈ R with bc > 0. Define u = ac− b2. Then
∫ 1

0

a+ b
√
x

b+ c
√
x
xn/2 dx =

2u(−b)n+1

cn+3
ln(1 + c/b) +

2u

c2

n
∑

j=0

(−1)j

n− j + 1

(

b

c

)j

+
2b

(n+ 2)c
.

Proof. Substitute y = b+ c
√
x and expand the new term (y − b)n. �

3. A generalization of an algebraic example

The evaluation

(3.1)

∫ ∞

−∞

dx

(1 + x2)
√
4 + 3x2

=
π

3

appears as 3.248.4 in [5]. We consider here the generalization

(3.2) q(a, b) =

∫ ∞

−∞

dx

(1 + x2)
√
b+ ax2

.

We assume that a, b > 0.
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The change of variables x =
√
bt/

√
a yields

(3.3) q(a, b) = 2
√
a

∫ ∞

0

dt

(a+ bt2)
√
1 + t2

where we have used the symmetry of the integrand to write it over [0,∞). The
standard trigonometric change of variables t = tanϕ produces

(3.4) q(a, b) = 2
√
a

∫ π/2

0

cosϕdϕ

a cos2 ϕ+ b sin2 ϕ
.

Finally, u = sinϕ, produces

(3.5) q(a, b) = 2
√
a

∫ 1

0

du

a+ (b− a)u2
.

The evaluation of this integral is divided into three cases:

Case 1. a = b. Then we simply get q(a, b) = 2/
√
a.

Case 2. a < b. The change of variables s = u
√
b− a/

√
a produces (b − a)u2 = s2a,

so that

(3.6) q(a, b) =
2√
b− a

∫ c

0

ds

1 + s2
=

2√
b− a

tan−1 c,

with c =
√
b− a/

√
a.

Case 3. a > b. Then we write

(3.7) q(a, b) = 2
√
a

∫ 1

0

du

a− (a− b)u2
.

The change of variables u =
√
a s/

√
a− b yields

(3.8) q(a, b) =
2√
a− b

∫ c

0

ds

1− s2
,

where c =
√
a− b/

√
a. The partial fraction decomposition

(3.9)
1

1− s2
=

1

2

(

1

1 + s
+

1

1− s

)

now produces

(3.10) q(a, b) =
1√
a− b

ln

(√
a+

√
a− b√

a−
√
a− b

)

.

The special case in 3.248.4 corresponds to a = 3 and b = 4. The value of the integral
is 2 tan−1(1/

√
3) = π

3 , as claimed. This generalization has been included as 3.248.6
in the latest edition of [5].

We now consider a generalization of this integral. The proof requires several ele-
mentary steps, given first for the convenience of the reader.
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Let a, b ∈ R with a < b and n ∈ N. Introduce the notation

(3.11) I = In(a, b) :=

∫ ∞

0

dt

(a+ bt2)n
√
1 + t2

.

Then we have:

Lemma 3.1. The integral In(a, b) is given by

(3.12) In(a, b) =

∫ 1

0

(1− v2)n−1 dv

(a+ αv2)n
,

with α = b− a.

Proof. The change of variables v = t/
√
1 + t2 gives the result. �

The identity

(3.13) (1− v2)n−1 = (1− v2)n + (1− v2)n−1

{

1

α
(a+ αv2)− a

α

}

produces

(3.14) In(a, b) =
α

b

∫ 1

0

(1− v2)n

(a+ αv2)n
dv +

1

b

∫ 1

0

(1− v2)n−1

(a+ αv2)n−1
dv.

The evaluation of these integrals requieres an intermediate result, that is also of
independent interest.

Lemma 3.2. Assume z ∈ R and n ∈ N ∪ {0}. Then

(3.15)

∫ 1

0

dx

(1 + z2x2)n+1
=

1

22n

(

2n

n

)

(

tan−1 z

z
+

n
∑

k=1

22k

2k
(

2k
k

)

1

(1 + z2)k

)

.

Proof. Define

(3.16) Fn(z) :=

∫ 1

0

dx

(1 + z2x2)n+1
=

1

z

∫ z

0

dy

(1 + y2)n+1
.

Take derivatives with respect to z on both sides of (3.16). The outcome is a system
of differential-difference equations

dFn(z)

dz
=

2(n+ 1)

z
Fn+1(z)−

2(n+ 1)

z
Fn(z)(3.17)

dFn

dz
= −1

z
Fn(z) +

1

z(1 + z2)n+1
.

Solving for a purely recursive relation we obtain (after re-indexing n 7→ n− 1):

(3.18) 2nFn(z) = (2n− 1)Fn−1(z) +
1

(1 + z2)n
,

with the initial condition F0(z) =
1
z tan

−1 z. This recursion is solved using the proce-
dure described in Lemma 2.7 of [1]. This produces the stated expression for Fn(z). �

The next required evaluation is that of the powers of a simple rational function.
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Lemma 3.3. Let a, b, c, d be real numbers such that cd > 0. Then
∫ 1

0

(

ax2 + b

cx2 + d

)n

dx =
an

cn
+

4an

cn

√

d

c
tan−1

√

c/d

n
∑

k=1

(

bc− ad

4ad

)k (
n

k

)(

2k − 2

k − 1

)

+
4an

cn

n
∑

k=1

(

bc− ad

4ad

)k (
n

k

)(

2k − 2

k − 1

) k−1
∑

j=1

22j

2j
(

2j
j

)

dj

(c+ d)j
.

Proof. Start with the partial fraction expansion

(3.19) G(x) :=
ax2 + b

cx2 + d
=

a

c
+

bc− ad

cd

1

cx2/d+ 1
,

and expand G(x)n by the binomial theorem. The result follows by using Lemma
3.2. �

The next result follows by combining the statements of the previous three lemmas.

Theorem 3.4. Let a, b ∈ R
+ with a < b. Then

In+1(a, b) :=

∫ ∞

0

dt

(a+ bt2)n+1
√
1 + t2

=
1

a(a− b)n

n
∑

j=0

(

n

j

)(−b

4a

)j (
2j

j

)

×
(

tan−1
√

b/a− 1
√

b/a− 1
+

j
∑

k=1

22k

2k
(

2k
k

)

(a

b

)k
)

.

4. Some integrals involving the exponential function

In [5] we find 3.310:

(4.1)

∫ ∞

0

e−px dx =
1

p
, for p > 0,

that is probably the most elementary evaluation in the table. The example 3.311.1

(4.2)

∫ ∞

0

dx

1 + epx
=

ln 2

p
,

can also be evaluated in elementary terms. Observe first that the change of variables
t = px, shows that (4.2) is equivalent to the case p = 1:

(4.3)

∫ ∞

0

dx

1 + ex
= ln 2.

This can be evaluated by the change of variables u = ex that yields

(4.4) I =

∫ ∞

1

du

u(1 + u)
,

and this can be integrated by partial fractions to produce the result. The parameter in
(4.2) is what we call fake, in the sense that the corresponding integral is independent
of it. The advantage of such parameter is that it provides flexibility to a formula:
differentiating (4.2) with respect to p produces

(4.5)

∫ ∞

0

xepx dx

(1 + epx)2
=

ln 2

p2
,
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(4.6)

∫ ∞

0

x2epx(epx − 1) dx

(1 + epx)3
=

2 ln 2

p3
,

(4.7)

∫ ∞

0

x3epx(e2px − 4epx + 1) dx

(1 + epx)4
=

6 ln 2

p4
.

The general integral formula is obtained by differentiating (4.2) n-times with respect
to p to produce

(4.8)

∫ ∞

0

(

∂

∂p

)n
dx

1 + epx
= (−1)n

n!

pn+1
ln 2.

The pattern of the integrand is clear:

(4.9)

(

∂

∂p

)n
1

1 + epx
=

(−1)nxnepx

(1 + epx)n+1
Pn(e

px),

where Pn is a polynomial of degree n− 1. It follows that

(4.10)

∫ ∞

0

xnepxPn(e
px) dx

(1 + epx)n+1
=

n! ln 2

pn+1
.

The change of variables t = px shows that p is a fake parameter. The integral is
equivalent to

(4.11)

∫ ∞

0

xnexPn(e
x) dx

(1 + ex)n+1
= n! ln 2.

The first few polynomials in the sequence are given by

P1(u) = 1,(4.12)

P2(u) = u− 1,

P3(u) = u2 − 4u+ 1,

P4(u) = u3 − 11u2 + 11u− 1.

Proposition 4.1. The polynomials Pn(u) satisfy the recurrence

(4.13) Pn+1(u) = (nu− 1)Pn(u)− u(1 + u)
d

du
Pn(u).

Proof. The result follows by expanding the relation

(4.14)
(−1)n+1xn+1epxPn+1(e

px)

(1 + epx)n+2
=

∂

∂p

(

(−1)nxnepxPn(e
px)

(1 + epx)n+1

)

.

�

Examining the first few values, we observe that

(4.15) Qn(u) := (−1)nPn(−u)

is a polynomial with positive coefficients. This follows directly from the recurrence

(4.16) Qn+1(u) = (nu+ 1)Qn(u) + u(1− u)
d

du
Qn(u).
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This comes directly from (4.13). The first few values are

Q1(u) = 1,(4.17)

Q2(u) = u+ 1,

Q3(u) = u2 + 4u+ 1,

Q4(u) = u3 + 11u2 + 11u+ 1.

Writing

(4.18) Qn(u) =

n−1
∑

j=0

Ej,nu
j ,

the reader will easily verify the recurrence

E0,n+1 = E0,n(4.19)

Ej,n+1 = (n− j + 1)Ej−1,n + (j + 1)Ej,n

En,n+1 = En,n.

The numbers Ej,n are called Eulerian numbers. They appear in many situations. For
example, they provide the coefficients in the series

(4.20)
∞
∑

k=1

kjxk =
x

(1− x)j+1

m−1
∑

n=0

Ej,nx
n

and satisfy the simpler recurrence

(4.21) Ej,n = nEj−1,n + jEj,n−1,

that can be derived from (4.19). These numbers have a combinatorial interpretation:
they count the number of permutations of {1, 2, . . . , n} having j permutation ascents.
The explicit formula

(4.22) Ej,n =

j+1
∑

k=0

(−1)k
(

n+ 1

k

)

(j + 1− k)n,

can be checked from the recurrences. The reader will find more information about
these numbers in [6].

5. A simple change of variables

The table [5] contains the example 3.195:

(5.1)

∫ ∞

0

(1 + x)p−1

(x+ a)p+1
dx =

1− a−p

p(a− 1)
.

One must include the restrictions a > 0, a 6= 1, p 6= 0. The evaluation is elementary:
let

(5.2) u =
1 + x

x+ a
,
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to obtain

(5.3) I =
1

a− 1

∫ 1

1/a

up−1 du,

that gives the stated value. The formula has been supplemented with the value 1 for
a = 1 and ln a/(a− 1) when p = 0 in the last edition of [5].

Differentiating (5.1) n times with respect to the parameter p produces

∫ ∞

0

(1 + x)p−1

(x+ a)p+1
lnn
(

1 + x

x+ a

)

dx =
(−1)na−p

(a− 1)pn+1

[

n! (ap − 1)−
n
∑

k=1

n!(p ln a)k

k!

]

.

Naturally, the integral above is just

(5.4)
1

a− 1

∫ 1

1/a

up−1 lnn u du

and its value can also be obtained by differentiation of (5.3).

The next result presents a generalization of (5.1):

Lemma 5.1. Let a, b be free parameters and n ∈ N. Then

∫ ∞

0

(1 + x)b

(x+ a)b+n
dx = (a− 1)−n ×

{

B(n, b)−
n−1
∑

k=0

(−1)k
(

n− 1

k

)

a−b−k

b+ k

}

,

where B(n, b) is Euler’s beta function.

Proof. Use the change of variables u = (1 + x)/(a + x), expand in series and
then integrate term by term. �

6. Another example

The integral in 3.268.1 states that

(6.1)

∫ 1

0

(

1

1− x
− pxp−1

1− xp

)

dx = ln p.

To compute it, and to avoid the singularity at x = 1, we write

(6.2) I = lim
ǫ→0

∫ 1−ǫ

0

(

1

1− x
− pxp−1

1− xp

)

dx.

This evaluates as

(6.3) I = lim
ǫ→0

− ln ǫ+ ln(1− (1− ǫ)p) = lim
ǫ→0

ln

(

1− (1− ǫ)p

ǫ

)

= ln p.
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7. Examples of recurrences

Several definite integrals in [5] can be evaluated by producing a recurrence for
them. For example, in 3.622.3 we find

(7.1)

∫ π/4

0

tan2n x dx = (−1)n





π

4
−

n−1
∑

j=0

(−1)j−1

2j − 1



 .

To check this identity, define

(7.2) In =

∫ π/4

0

tan2n x dx

and integrate by parts to produce

(7.3) In = −In−1 +
1

2n− 1
.

From here we generate the first few values

I0 =
π

4
, I1 = −π

4
+ 1, I2 =

π

4
− 1 +

1

3
, and I3 = −π

4
+ 1− 1

3
+

1

5
,

and from here one can guess the formula (7.1). A proof by induction is easy using (7.3).

A similar argument produces 3.622.4:

(7.4)

∫ π/4

0

tan2n+1 x dx =
(−1)n+1

2

(

ln 2−
n
∑

k=1

(−1)k

k

)

.

To establish this, define

(7.5) Jn =

∫ π/4

0

tan2n+1 x dx

and integrate by parts to produce

(7.6) Jn = −Jn−1 +
1

2n
.

The value

(7.7) J0 =

∫ π/4

0

tanx dx =
ln 2

2
,

and the recurrence (7.6) yield the formula.

8. A truly elementary example

The evaluation of 3.471.1

(8.1)

∫ u

0

exp

(

− b

x

)

dx

x2
=

1

b
exp

(

− b

u

)

,

is truly elementary: the change of variables t = −b/x gives the result.



74 TEWODROS AMDEBERHAN AND VICTOR H. MOLL

9. Combination of polynomials and exponentials

Integration by parts produces

(9.1)

∫

xneax dx =
1

a
xneax − n

a

∫

xn−1eax.

This appears as 2.321.1 in [5]. Introduce the notation

(9.2) In(a) :=

∫

xneax dx

so that (9.1) states that

(9.3) In(a) =
1

a
xneax − n

a
In−1(a).

This recurrence is now used to prove

(9.4) In(a) = n!eax
n
∑

k=0

(−1)kxn−k

(n− k)! ak+1

by an easy induction argument. This appears as 2.321.2. The case 1 6 n 6 4 appear
as 2.322.1,2.322.2,2.322.3,2.322.4, respectively.

Integrating (9.4) between 0 and u produces 3.351.1:

(9.5)

∫ u

0

xne−ax dx =
n!

an+1
− e−au

n
∑

k=0

n!

k!

uk

an−k+1
.

This sum can be written in terms of the incomplete gamma function. Details will
appear in a future publication. Integrating (9.4) from u to ∞ produces

(9.6)

∫ ∞

u

xne−axdx = e−au
n
∑

k=0

n!

k!

uk

an−k+1
.

This appears as 3.351.2.

The special case n = 1 of 3.351.1 appears as 3.351.7. The cases n = 2 and n = 3
appear as 3.351.8 and 3.351.9, respectively.

10. A perfect derivative

In section 4.212 we find a list of examples that can be evaluated in terms of the
exponential integral function, defined by

(10.1) Ei(x) :=

∫ x

−∞

et dt

t

for x < 0 and by the Cauchy principal value of (10.1) for x > 0. An exception is
4.212.7:

(10.2)

∫ e

1

lnx dx

(1 + lnx)2
=

e

2
− 1.
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This is an elementary integral: the change of variables t = 1 + lnx yields

(10.3) I =
1

e

∫ 2

1

(t− 1)

t2
et dt

and to evaluate it observe that

(10.4)
(t− 1)

t2
et =

d

dt

et

t
.

The change of variables t = lnx in (10.2) yields

(10.5)

∫ 1

0

t et dt

(1 + t)2
=

e

2
− 1.

This is 3.353.4 in [5].

The previous evaluation can be generalized by introducing a parameter.

Lemma 10.1. Let α ∈ R. Then

(10.6)

∫ e

1

lnx dx

(α+ lnx)α+1
=

e

(α+ 1)α
− 1

αα
.

Proof. Substitute t = α+ lnx and use

(10.7)
d

dt

et

tα
=

t− α

tα+1
et.

The case α = 1 corresponds to (10.2). �

11. Integrals involving quadratic polynomials

There are several evaluation in [5] that involve quadratic polynomials. We assume,
for reasons of convergence, that the discriminant d = b2 − ac is strictly negative.

We start with

(11.1)

∫ ∞

0

dx

ax2 + 2bx+ c
=

1√
ac− b2

cot−1

(

b√
ac− b2

)

.

This is evaluated by completing the square and a simple trigonometric substitution:
∫ ∞

0

dx

ax2 + 2bx+ c
=

1

a

∫ ∞

b/a

du

u2 − d/a2

=
1√
−d

∫ ∞

b/
√
−d

dv

v2 + 1
.

Differentiating (11.1) with respect to c produces 3.252.1:

∫ ∞

0

dx

(ax2 + 2bx+ c)n
=

(−1)n−1

(n− 1)!

∂n−1

∂cn−1

[

cot−1(b/
√
ac− b2)√

ac− b2

]

.

We now produce a closed-from expression for this integral.
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Lemma 11.1. Let n ∈ N and u := 4(ac− b2)/ac. Assume cu > 0. Then we have
the explicit evaluation
(11.2)
∫ ∞

0

dx

(ax2 + 2bx+ c)n
=

2b

a(cu)n

(

2n− 2

n− 1

)

×







√
acu

b
cot−1

(

2b√
acu

)

−
n−1
∑

j=1

uj

j
(

2j
j

)







.

Proof. The case n = 1 was described above:

(11.3) h(a, b, c) :=

∫ ∞

0

dx

ax2 + 2bx+ c
=

1√
ac− b2

cot−1

(

1√
ac− b2

)

.

Now observe that h(a2, abc, b2) = h(1, b, 1)/ac. To establish (11.2), change the param-
eters sequentially as a 7→ a2; c 7→ c2; b 7→ abc. In the new format, both sides satisfy
the differential-difference equation

(11.4) −2nc(1− b2)fn+1 =
dfn
dc

+
b

ac2n
.

The identity (11.2) is obtained by reversing the transformations of paramaters indi-
cated above. �

Corollary 11.2. Using the notations of Lemma 11.1 we have

(11.5)

∞
∑

j=1

uj

j
(

2j
j

) =

√
acu

b
cot−1

(

2b√
acu

)

.

The integral 3.252.2

(11.6)

∫ ∞

−∞

dx

(ax2 + 2bx+ c)n
=

(2n− 3)!!π an−1

(2n− 2)!! (ac− b2)n−1/2

reduces via u = a(x+ b/a)/
√
ac− b2 to Wallis’ integral

(11.7)

∫ ∞

0

du

(u2 + 1)n
=

(2n− 3)!!

(2n− 2)!!

π

2
,

that appears as 3.249.1. The reader will find in [2] proofs of Wallis’ integral. Ob-
serve that the evaluation of 3.252.2 is much simpler than the corresponding half-line
example presented in Lemma 11.1.

The last example of this type is 3.252.3:
∫ ∞

0

dx

(ax2 + 2bx+ c)n+3/2
=

(−2)n

(2n+ 1)!!

∂n

∂cn

(

1√
c (
√
ac+ b)

)

.

A simple trigonometric substitution gives the case n = 0:
∫ ∞

0

dx

(ax2 + 2bx+ c)3/2
=

√
a

ac− b2

∫ ∞

b/
√
−d

du

(u2 + 1)3/2

=
1√

c (
√
ac+ b)

.
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The general case follows by differentiating with respect to c and observing that
(

∂

∂c

)j

= (−1)j
(2j + 1)!!

2j
(ax2 + bx+ c)−3/2−j .

We now provide a closed-form expression for (11.8).

Theorem 11.3. Let a, b, c ∈ R and n ∈ N. Define u = (ac− b2)/4ac and assume
cu > 0. Then

∫ ∞

0

dx

(ax2 + 2bx+ c)n+3/2
=

(cu)−n

√
c
(

2n
n

)

(2n+ 1)





1√
ac+ b

− b

ac− b2

n
∑

j=1

(

2j

j

)

uj



 .

Proof. Change parameters sequentially as a 7→ a2; c 7→ c2; b 7→ abc. Then, in
the new format both sides satisfy the differential-difference equation

(11.8) −(2N(1− b2)c)fN+1 =
dfN
dc

− b

ac2N
,

where N = n+ 3
2 . �

12. An elementary combination of exponentials and rational functions

The table [5] contains two integrals belonging to the family

(12.1) Tj :=

∫ ∞

0

e−px(e−x − 1)n
dx

xj
.

Indeed 3.411.19 gives T1:

(12.2)

∫ ∞

0

e−px(e−x − 1)n
dx

x
= −

n
∑

k=0

(−1)k
(

n

k

)

ln(p+ n− k),

and 3.411.20 gives T2:

(12.3)

∫ ∞

0

e−px(e−x − 1)n
dx

x2
=

n
∑

k=0

(−1)k
(

n

k

)

(p+ n− k) ln(p+ n− k),

The next result presents an explicit evaluation of Tj .

Proposition 12.1. Let p be a free parameter, and let n, j ∈ N with n + p > 0.
Then

(12.4)

∫ ∞

0

e−px(e−x − 1)n
dx

xj
=

(−1)j

(j − 1)!

n
∑

k=0

(−1)k(p+ n− k)j−1 ln(p+ n− k).

Proof. Start with the observation that

(12.5) Tj = −
∫

Tj−1(p)dp+ C.

Therefore we need to describe the iterative integrals fj(p) =
∫

fj−1(p) dp,with f0(p) =
ln(p+ α). This can be found in page 82 of [2] as

(12.6) fj(p) =
1

j!
(p+ α)j ln(p+ α)− Hj

j!
(p+ α)j + C,
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with α = p+ n− k and Hj = 1 + 1
2 + · · ·+ 1

j is the harmonic number. To build back

the functions Tj employ the fact that, for any polynomial Q(n, k),

(12.7)

n
∑

k=0

(−1)k(−1)k
(

n

k

)

Q(n, k) ≡ 0.

Consequently,

(12.8) Tj = C +
(−1)j+1

j!

n
∑

k=0

(−1)k(p+ n− k)j ln(p+ n− k).

The last step is to check that C = 0. This follows directly from Tj → 0 as p → ∞.
The assertion is now validated. �

13. An elementary logarithmic integral

Entry 4.222.1 states that

(13.1)

∫ ∞

0

ln

(

a2 + x2

b2 + x2

)

dx = (a− b)π.

In order to establish this, we consider the finite integral

(13.2) I(m) :=

∫ m

0

ln

(

a2 + x2

b2 + x2

)

dx

and then let m → ∞.
Integration by parts gives

∫ m

0

ln(a2 + x2) dx = m ln(m2 + a2)− 2

∫ m

0

x2 dx

a2 + x2

= m ln(m2 + a2)− 2m+ 2a2
∫ m

0

dx

a2 + x2

= m ln(m2 + a2)− 2m+ 2a tan−1
(m

a

)

.

Therefore

I(m) = m ln

(

m2 + a2

m2 + b2

)

+ 2a tan−1
(m

a

)

− 2b tan−1
(m

b

)

.

The limit of the logarithmic part is zero and the arctangent part gives (a − b)π as
required.

The generalization

(13.3)

∫ ∞

0

ln

(

as + xs

bs + xs

)

dx = (a− b)
π

sin(π/s)

can be established by elementary methods provided we assume the value

(13.4)

∫ ∞

0

dx

1 + xs
=

π

s sin(π/s)
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as given. This integral is evaluated in terms of Euler’s beta function in [11]. Indeed,
integration by parts gives

(13.5)

∫ y

0

ln(as + xs) dx = y ln(as + ys)− sy + sas
∫ y

0

dx

as + ys
,

and similarly for the b-parameter. Combining these evaluations gives
∫ y

0

ln

(

as + xs

bs + xs

)

dx = y ln

(

as + ys

bs + ys

)

+ sas
∫ y

0

dx

as + xs
− sbs

∫ y

0

dx

bs + xs
.

Upon letting y → ∞, we observe that the logarithmic term vanishes and a scaling
reduces the remaining integrals to (13.4).
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