
PROOF OF FORMULA 3.411.12

∫
∞

0

xe−2nx

1 + ex
dx =

π2

12
+

2n∑
k=1

(−1)k

k2

Formula 3.411.8 states that∫
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The special case m = 2 and p = 2n yields∫
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The series simplifies as follows
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The result now follows from
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.
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