PROOF OF FORMULA 3.542.1

$$\int_0^\infty e^{-\mu x} \left(\cosh \beta x - 1\right)^{\nu} dx = \frac{1}{2^{\nu} \beta} B\left(\frac{\mu}{\beta} - \nu, 2\nu + 1\right)$$

The change $t = \beta x$ shows that the entry is equivalent to

$$\int_{0}^{\infty} e^{-ct} \left(\cosh t - 1\right)^{\nu} dt = \frac{1}{2^{\nu}} B \left(c - \nu, 2\nu + 1\right).$$

To prove this, let $y = e^{-t}$ to obtain

$$\int_0^\infty e^{-ct} \left(\cosh t - 1\right)^{\nu} dt = (-1)^{\nu - 1} \int_0^1 y^{c - \nu - 1} (1 - y)^{2\nu} dy.$$

This gives the result.