NEW FORMULA 4.322 .2

The original formula is

$$
\int_{0}^{\infty} \frac{\ln \sin ^{2} a x}{b^{2}+x^{2}} d x=\frac{\pi}{b} \ln \frac{1-e^{-2 a b}}{2}
$$

The change of variables $x=b t$ and replacing $a b$ by $a$ gives the new formula (going back to $x$ as the integration variable)

$$
\int_{0}^{\infty} \frac{\ln \sin ^{2} a x}{1+x^{2}} d x=\pi \ln \frac{1-e^{-2 a}}{2}
$$

