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Valparáıso, Chile
ISSN 0716-8446
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The integrals in Gradshteyn and Ryzhik.

Part 22: Bessel-K functions

Larry Glasser, Karen T. Kohl, Christoph Koutschan, Victor H. Moll,
and Armin Straub

Abstract. The table of Gradshteyn and Ryzhik contains many integrals that can
be evaluated using the modified Bessel function. Some examples are discussed and

typos in the table are corrected.

1. Introduction

This paper is part of the collection initiated in [12], aiming to evaluate the entries
in [8] and to provide some context. This table contains a large variety of entries
involving the Bessel functions. The goal of the current work is to evaluate some
entries in [8] where the integrand is an elementary function and the result involves
the so-called modified Bessel function of the second kind, denoted by Kν(x). Other
types of integrals containing Bessel functions will appear in a future publication. This
introduction contains a brief description of the Bessel functions. The reader is referred
to [3, 13, 14, 15] for more information about this class of functions.

The Bessel differential equation

(1.1) x2 d
2u

dx2
+ x

du

dx
+ (x2 − ν2)u = 0

arises from the solution of Laplace’s equation

(1.2)
∂2U

∂x2
+

∂2U

∂y2
+

∂2U

∂z2
= 0

in spherical or cylindrical coordinates. The method of Frobenius shows that, for any
ν ∈ R, the function

(1.3) Jν(x) =

∞
∑

k=0

(−1)k

Γ(ν + 1 + k) k!

(x

2

)ν+2k
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solves (1.1). The function Jν(x) is called the Bessel function of the first kind.
In the case ν 6∈ Z, the functions Jν(x) and J−ν(x) are linearly independent, so

they form a basis for the space of solutions to (1.1). If ν = n ∈ Z, the relation
J−n(x) = (−1)nJn(x), shows that a second function is required. This is usually
obtained from

(1.4) Yν(x) =
Jν(x) cosπν − J−ν(x)

sinπν
,

and now {Jν , Yν} is a basis for all ν ∈ R. Naturally, when ν ∈ Z, the function
Yν(x) has to be interpreted as limµ→ν Yµ(x). The function Yν(x) is called the Bessel

function of the second kind.
The modified Bessel equation

(1.5) x2 d
2w

dx2
+ x

dw

dx
− (x2 + ν2)w = 0

is solved in terms of the modified Bessel functions

(1.6) Iν(x) =

∞
∑

k=0

1

Γ(ν + 1 + k) k!

(x

2

)ν+2k

and

(1.7) Kν(x) =
π

2

I−ν(x)− Iν(x)

sinπν
.

As before, if ν ∈ Z, the function Kν has to be replaced by its limiting value. The
function Iν(x) is called of first kind and Kν(x) of second kind. The integral repesen-
tation

(1.8) Iν(z) =
(z/2)ν

Γ(ν + 1
2 )Γ(

1
2 )

∫ 1

−1

e−zt(1− t2)ν−1/2 dt

appears as entry 3.387.1. A proof may be found in [13].
This paper contains entries in [8] that involve the function Kν(x) in the answers.

For instance, entry 3.324.1, which is a special case of (2.11), stating that

(1.9)

∫ ∞

0

exp

(

− b

4x
− ax

)

dx =

√

b

a
K1(

√
ab),

is an example of the type of problems considered here, but entry 6.512.9, which is

(1.10)

∫ ∞

0

K0(ax)J1(bx) dx =
1

2b
ln

(

1 +
b2

a2

)

,

where the Bessel function appears in the integrand, will be described in a future
publication.

Most of the entries presented here appear in the literature. The objective of this
paper is to present several techniques that are applicable to this and other integral
evaluations. Some typos in the table [8] have been corrected. The work presented
here employs a variety of techniques. The choice of method used in a specific entry
has been determined by pedagogical as well as efficiency reasons.

Many integrals that appear in this article have integrands that are members of the
class of hyperexponential expressions. Recall that f(x) is called hyperexponential if
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f ′(x)/f(x) = r(x) is a rational function of x. In other words, f(x) satisfies a first-order
linear differential equation with polynomial coefficients, namely q(x)f ′(x)−p(x)f(x) =
0, if we write r(x) = p(x)/q(x). A multivariate function is hyperexponential, if the
above property holds for each single variable. Almkvist and Zeilberger [1] developed
an algorithm for treating integrals with hyperexponential integrand in an automatic
fashion. The idea is based on the paradigm of creative telescoping: assume one wants

to evaluate the integral
∫ b

a
f(x, y) dx. Then the goal of the algorithm is to find a

differential equation for f of the following, very special, form

(1.11) cm(y)
dmf

dym
+ · · ·+ c1(y)

df

dy
+ c0(y)f =

d

dx
(q(x, y)f) ,

where the ci(y) are polynomials and q(x, y) is a bivariate rational function. If one
integrates this equation and applies the fundamental theorem of calculus then one
obtains a differential equation for the integral. This equation may be used to find
a closed form or to prove a certain identity. In many cases, the right-hand side
evaluates to zero, yielding a homogeneous o.d.e., in other cases one may end up with
an inhomogeneous one. Care has to be taken that all the integrals that appear do
really converge (this may not always be the case). The approach just described will
be employed and illustrated in Section 7.2.

The Almkvist-Zeilberger algorithm has later been extended to general holonomic
functions by Chyzak [4]. In this context, a holonomic function is one which satisfies
a linear ordinary differential equation with polynomial coefficients for each of its vari-
ables (not necessarily of order 1 as in the hyperexponential case). Implementations in
Mathematica of these two algorithms are given in the package HolonomicFunctions [10].

2. A first integral representation of modified Bessel functions

This section describes the integral representations of the modified Bessel function
Kν(z). A detailed proof of the first result appears as (9.42) in [13], page 235.

Theorem 2.1. The function Kν(z) admits the integral representation

(2.1) Kν(z) =
zν

2ν+1

∫ ∞

0

t−ν−1e−t−z2/4t dt.

This formula appears as entry 8.432.6 in [8].

Remark 2.1. Several other entries of [8] are obtained by elementary manipula-
tions of (2.1). For instance, it can be written as

(2.2)

∫ ∞

0

t−ν−1 exp

(

−t− b

t

)

dt =
2

bν/2
Kν(2

√
b).

Example 2.1. Let b = 1 in (2.2) and make the change of variables t = ex to
obtain

(2.3)

∫ ∞

−∞
exp (−νx− 2 coshx) dx = 2Kν(2).
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Splitting the integration over (−∞, 0) and (0,∞) gives

(2.4)

∫ ∞

0

exp (−2 coshx) cosh νx dx = Kν(2).

Example 2.2. Example 2.1 is the special case β = 2 of entry 3.547.4:

(2.5)

∫ ∞

0

exp (−β coshx) cosh νx dx = Kν(β).

The table employs γ instead of ν. This entry also follows directly from (2.2). The

change of variables t =
√
bx gives

(2.6)

∫ ∞

0

x−ν−1exp
(

−
√
b (x+ 1/x)

)

dx = 2Kν(2
√
b).

The change of variables y = et gives an integral over the whole real line. Splitting the
integration as in Example 2.1 produces the result (2.5).

Example 2.3. Entry 3.395.1 is

(2.7)

∫ ∞

0

[

(
√

x2 − 1 + x)ν + (
√

x2 − 1 + x)−ν
] e−µx

√
x2 − 1

dx = 2Kν(µ).

The left-hand side of (2.7) transforms as
∫ ∞

1

[

(sinh θ + cosh θ)ν + (sinh θ + cosh θ)−ν
]

e−µ cosh θ dθ

=

∫ ∞

1

[

eνθ + e−νθ
]

e−µ cosh θ dθ

= 2

∫ ∞

1

cosh(νθ)e−µ cosh θ dθ

and applying (2.5) yields (2.7).

Example 2.4. Entry 3.471.12 is

(2.8)

∫ ∞

0

xν−1exp

(

−x− µ2

4x

)

dx = 2
(µ

2

)ν

K−ν(µ)

and it comes directly from (2.2).

Example 2.5. The change of variables s = 1/t yields

(2.9) Kν(z) =
zν

2ν+1

∫ ∞

0

sν−1e−1/s−z2s/4 ds,

and followed by s = w/a produces

(2.10) Kν(z) =
zν

2ν+1aν

∫ ∞

0

wν−1exp

(

− a

w
− z2

4a
w

)

dw.

Now introduce the parameter b by the relation 4ab = z2, to obtain

(2.11)

∫ ∞

0

wν−1exp
(

− a

w
− bw

)

dw = 2
(a

b

)ν/2

Kν(2
√
ab).
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In particular, if b = 1, it follows that

(2.12)

∫ ∞

0

wν−1exp
(

−w − a

w

)

dw = 2aν/2Kν(2
√
a).

Formula (2.11) appears as entry 3.471.9 of [8]. The special case ν = 1 is entry 3.324.1
which served as an illustration in (1.9).

Now replace a by b and ν by −ν in (2.12) to obtain

(2.13)

∫ ∞

0

w−ν−1exp

(

−w − b

w

)

dw =
2

bν/2
K−ν(2

√
b).

Proposition 2.1. The function Kν satisfies the symmetry

(2.14) Kν(z) = K−ν(z).

Proof. This symmetry is suggested by the differential equation, as only even
powers of ν occur. The actual proof follows directly from (1.7). A second proof is
obtained by comparing (2.2) with (2.13). �

Example 2.6. Entry 3.337.1 is

(2.15)

∫ ∞

−∞
exp (−αx− β coshx) dx = 2Kα(β).

To establish this identity, make the change of variables t = βex/2 to produce
∫ ∞

−∞
exp (−αx− β coshx) dx =

(

β

2

)α ∫ ∞

0

t−α−1exp

(

−t− β2

4t

)

dt.

The result (2.15) then follows from (2.2) and Proposition 2.1.

Example 2.7. The result of Example 2.6 is now employed to produce a proof of
the evaluation

(2.16)

∫ ∞

0

e−2b
√
x2+1 dx = K1(2b).

The reader will find the similar looking integral

(2.17)

∫ ∞

0

e−2b (x2+1)2 dx = 2−3/2e−bK1/4(b)

in Section 7.
The change of variables t = sinhx produces

∫ ∞

0

e−2b
√
x2+1 dx =

∫ ∞

0

coshx exp (−2b coshx) dx

=
1

2

∫ ∞

0

(ex + e−x) exp (−2b coshx) dx

=
1

2

∫ ∞

−∞
exp (−x− 2b coshx) dx.

The result then follows from (2.15).
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Example 2.8. Entry 3.391 is
∫ ∞

0

[(
√

x+ 2β +
√
x)2ν − (

√

x+ 2β −
√
x)2ν ]e−µxdx = 2ν+1 ν

µ
eβµKν(βµ).(2.18)

Under the change of variables x → 2β sinh2 x the left-hand side becomes

(2β)ν+1

∫ ∞

0

sinh 2x[(coshx+ sinhx)2ν − (coshx− sinhx)2ν ]e−βµ(cosh 2x−1)dx

= (2β)ν+1eβµ
∫ ∞

0

[e2νx − e−2νx]e−2βµ cosh 2x sinh 2x dx

= (2β)ν+1eβµ
∫ ∞

0

[cosh(ν + 1)x]− cosh(ν − 1)x]e−βµ cosh xdx

=
1

2
(2β)ν+1eβµ

∫ ∞

−∞
{exp[(ν + 1)x− βµ coshx]− exp[−(ν − 1)x− βµ coshx]}dx

= (2β)ν+1eβµ[Kν−1(βµ)−Kν+1(βµ)]

where in the last step Example 2.6 was used. Finally, by the recursion formula for the
modified Bessel functions this reduces, as claimed, to the right-hand side of (2.18).

Example 2.9. Entry 3.547.2, given by

(2.19)

∫ ∞

0

exp(−β coshx) sinh(γx) sinhx dx =
γ

β
Kγ(β),

follows by rewriting the integral as

2e−β

∫ ∞

0

exp(−β(cosh 2x− 1)) sinh(2γx) sinh 2x dx

= eβ
∫ ∞

0

exp(−2β sinh2 x)
(

e2γx − e−2γx
)

sinh 2x dx

= eβ
∫ ∞

0

exp(−2β sinh2 x)
[

(coshx+ sinhx)2γ − (coshx− sinhx)2γ
]

d(sinh2 x)

= eβ
∫ ∞

0

e−2βu
[

(
√

u2 + 1 +
√
u)2γ − (

√

u2 + 1−
√
u)2γ

]

du

and applying (2.18).

Example 2.10. Entry 3.478.4 is

(2.20)

∫ ∞

0

xν−1 exp
(

−βxp − γx−p
)

dx =
2

p

(

γ

β

)

ν
2p

Kν/p(2
√

βγ).

To evaluate this entry let y = βxp to obtain

(2.21)

∫ ∞

0

xν−1 exp
(

−βxp − γx−p
)

dx =
1

pβν/p

∫ ∞

0

yν/p−1e−y−βγ/y dy.

The value of this last integral is obtained from (2.1).
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3. A second integral representation of modified Bessel functions

The next integral representation of the modified Bessel function appears as Entry
3.387.3 of [8] and it can also be found as (9.43) in [13], page 236. In order to make
this paper as self-contained as possible, a proof is presented here.

Theorem 3.1. The modified Bessel function Kν satisfies

(3.1)

∫ ∞

1

(x2 − 1)α−1/2 e−µx dx =
1√
π

(

2

µ

)α

Γ(α+ 1
2 )Kα(µ).

Proof. Let C be the contour starting at ∞, running along, and just above, the
positive real axis to go into a counterclockwise circle of radius larger than 1 about the
origin and then back to ∞ along, and just below, the positive real axis. Then

∮

C

e−zt(t2 − 1)ν−1/2dt =

∮

C

e−ztt2ν−1(1− t−2)ν−1/2dt(3.2)

=
∞
∑

k=0

Γ( 12 − ν + k)

k!Γ( 12 − ν)

∮

C

t2ν−1−2ke−ztdt.

The last integral in (3.2) is Hankel’s integral representation for the gamma function,
so

∮

C

e−zt(t2 − 1)ν−1/2dt =
2πi

Γ( 12 − ν)

∞
∑

k=0

Γ( 12 − ν + k)z2k−2ν

k!Γ(2k − 2ν + 1)
(3.3)

=
2ν+1πie−iνπΓ(1/2)

Γ( 12 − ν)

J−ν(iz)

(iz)ν

Thus,

(3.4) I−ν =
Γ( 12 − ν)e2πνi(z/2)ν

2πiΓ(1/2)

∮

C

e−zt(t2 − 1)ν−1/2dt.

Since C encloses ±1, branch points of the integrand at which it vanishes, we can
collapse C to the real axis from −1 to ∞ (the branch cut runs from −1 to 1). We
have, integrating over the two segments above ( t− 1 = (1− t)eiπ ) and below ( t− 1 =
(1− t)e−iπ ) the positive real axis,

(3.5) I−ν(z) =
Γ( 12 − ν)e2πνi(z/2)ν

2πiΓ(1/2)
×

{(1− e−4πνi)

∫ ∞

1

e−zt(t2 − 1)ν−1/2dt+ i(e−πνi + e−3πνi)

∫ 1

−1

e−zt(1− t2)ν−1/2dt}.

Therefore, from (1.8) and (3.5)

(3.6)
I−ν(z)− Iν(z)

sinπν
=

Γ( 12 − ν)

πΓ( 12 )

(z

2

)ν
∫ ∞

1

e−zt(t2 − 1)ν−1/2dt.

Consequently, by (1.7),

(3.7)

∫ ∞

1

e−zt(t2 − 1)ν−1/2dt =
Γ(ν + 1

2 )

Γ( 1
2)

(

2

z

)ν

Kν(z).
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This completes the proof. �

Several entries of [8] are now obtained by simple manipulations of (3.1).

Example 3.1. The scaled version

(3.8)

∫ ∞

a

(x2 − a2)ν−1e−µx dx =
1√
π

(

2a

µ

)ν− 1
2
Γ(ν)K

ν− 1
2
(aµ),

appears as entry 3.387.6 in [8]. To establish this formula, let t = ax to obtain

(3.9)

∫ ∞

a

(x2 − a2)ν−1e−µx dx = aν
∫ ∞

1

(t2 − 1)ν−1e−µat dt.

Now use (3.1) with α = ν − 1
2 and µa instead of µ.

Example 3.2. The change of variables x → coshx in (3.1) yields entry 3.547.9:

(3.10)

∫ ∞

0

exp(−β coshx) sinh2ν x dx =
1√
π

(

2

β

)ν

Γ

(

ν +
1

2

)

Kν(β)

Example 3.3. Entry 3.479.1, given by

(3.11)

∫ ∞

0

xµ−1exp
(

−β
√
1 + x

)

√
1 + x

dx =
2√
π

(

β

2

)1/2−ν

Γ(ν)K 1
2−ν

(β),

comes from (3.1) by the change of variables t =
√
1 + x and the symmetry of Kν with

respect to the order ν.

Example 3.4. Entry 3.462.25 states that

(3.12)

∫ ∞

0

exp
(

−px2
)

√
a2 + x2

dx =
1

2
exp

(

a2p

2

)

K0

(

a2p

2

)

.

To evaluate this example, let x = at to produce

(3.13)

∫ ∞

0

exp
(

−px2
)

√
a2 + x2

dx =

∫ ∞

0

exp
(

−bt2
)

√
t2 + 1

dt,

with b = pa2. The change of variables y = t2 + 1 then gives

(3.14)

∫ ∞

0

exp
(

−bt2
)

√
t2 + 1

dt =
eb

2

∫ ∞

1

e−by

√

y2 − y
dy.

Now complete the square to write y2 − y = (y− 1/2)2 − 1/4 and let y− 1/2 = ω/2 to
obtain

(3.15)

∫ ∞

0

exp
(

−px2
)

√
a2 + x2

dx =
1

2
eb/2

∫ ∞

1

(ω2 − 1)−1/2e−bω/2 dω.

This is evaluated by taking α = 0 and µ = b/2 in (3.1).
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Example 3.5. After replacing a by 2a in the original formulation in [8], entry
3.364.3 is given by

(3.16)

∫ ∞

0

e−px dx
√

x(x+ 2a)
= eapK0(ap).

To verify this formula, complete the square and define a new variable of integration
by x+ a

2 = 1
2at. This yields

(3.17)

∫ ∞

0

e−px dx
√

x(x+ 2a)
= eap

∫ ∞

1

(t2 − 1)−1/2e−pat dt.

The result now follows from Theorem 3.1.

Example 3.6. Entry 3.383.8 of [8] is

(3.18)

∫ ∞

0

xν−1(x+ 2a)ν−1e−µx dx =
1√
π

(

2a

µ

)ν− 1
2
eµaΓ(ν)K 1

2−ν
(aµ),

where we have replaced the original parameter β in [8] by 2a to simplify the form of
the result. To establish this formula, let t = x+ a to obtain

(3.19)

∫ ∞

0

xν−1(x+ 2a)ν−1e−µx dx = eµa
∫ ∞

a

(t2 − a2)ν−1e−µt dt.

The result again follows from Theorem 3.1.

Example 3.7. The special case a = 1 and ν = n+ 1
2 and replacing the parameter

µ by p in Example 3.6 gives

(3.20)

∫ ∞

0

xn−1/2(x+ 2)n−1/2e−px dx =
1√
π

(

2

p

)n

epΓ(n+ 1
2 )K−n(p).

The result is brought to the form

(3.21)

∫ ∞

0

xn−1/2(2 + x)n−1/2e−px dx =
(2n− 1)!!

pn
epKn(p)

given in entry 3.372 of [8], by using the fact that K is an even function of its order
and employing the identity

(3.22) (2n− 1)!! =
2n√
π
Γ(n+ 1

2 ).

This reduction of the double-factorials appears as entry 8.339.2.

Example 3.8. Entry 3.383.3 is

(3.23)

∫ ∞

a

xµ−1(x− a)µ−1e−2bx dx =
1√
π

( a

2b

)µ− 1
2
Γ(µ)e−abK

µ− 1
2
(ab),

where we have replaced u by a and β by 2b to simplify the answer and avoid confusion
between u and µ. To prove this, let t = x− a to convert the requested identity into

(3.24)

∫ ∞

0

tµ−1(t+ a)µ−1e−2bt dt =
1√
π

( a

2b

)µ− 1
2
Γ(µ)eabK

µ− 1
2
(ab).

This comes directly from Example 3.6 and the symmetry of Kα(z) respect to α.
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Example 3.9. Entry 3.388.2 is

(3.25)

∫ ∞

0

(2βx+ x2)ν−1e−µx dx =
1√
π

(

2β

µ

)ν− 1
2
eβµΓ(ν)K

ν− 1
2
(βµ).

This comes directly from Example 3.6.

Example 3.10. Entry 3.471.4 states that

(3.26) I =

∫ a

0

x−2µ(a− x)µ−1e−β/x dx =
1√
πa

β1/2−µe−β/2aΓ(µ)Kµ−1/2

(

β

2a

)

where we have replaced u by a to avoid confusion. To evaluate this integral, let
t = a/x− 1 to produce

(3.27) I =
e−β/a

aµ

∫ ∞

0

tµ−1(t+ 1)µ−1e−βt/a dt.

The formula established in Example 3.6 now gives the result.

Example 3.11. The proof of entry 3.471.8,
(3.28)
∫ a

0

x−2µ(a2 − x2)µ−1e−β/x dx =
1√
π

(

2

β

)µ−1/2

aµ−3/2Γ(µ)Kµ−1/2

(

β

a

)

,

is obtained employing the same change of variables as in Example 3.10.

4. A family with typos

Section 3.462 of [8] contains five incorrect entries involving the modified Bessel
function. There are some typos in both the form of the integrand as well as the value
of the integral.

Example 4.1. The first entry analyzed here is 3.462.24: it appears incorrectly
as

(4.1)

∫ ∞

0

x2n exp
(

−a
√
x+ b2

)

√
x2 + b2

dx = (2n− 1)!!

(

b

a

)n

Kn(ab),

with the correct version being

(4.2)

∫ ∞

0

x2n exp
(

−a
√
x2 + b2

)

√
x2 + b2

dx =
2n√
π
Γ
(

n+ 1
2

)

(

b

a

)n

Kn(ab).

The argument of the exponential appears incorrectly as −a
√
x+ b2. The presentation

in [8] also employs the relation (3.22). This becomes inconvenient for n = 0.

To confirm (4.1) make the change of variables t =
√
x2 + b2 to obtain

(4.3)

∫ ∞

0

x2n exp
(

−a
√
x2 + b2

)

√
x2 + b2

dx =

∫ ∞

b

(t2 − b2)n−1/2e−at dt.

The result then follows from (3.8).
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Example 4.2. Entry 3.462.20 states incorrectly that

(4.4)

∫ ∞

0

exp
(

−a
√
x+ b2

)

√
x2 + b2

dx = K0(ab).

This should be written as

(4.5)

∫ ∞

0

exp
(

−a
√
x2 + b2

)

√
x2 + b2

dx = K0(ab),

and follows from (4.2) with n = 0.

Example 4.3. Entries 3.462.21, 3.462.22, 3.462.23 are the special cases of (4.2)

with n = 1, 2, 3. Each one of these entries has the term
√
x+ b2 instead of the correct√

x2 + b2. Entry 3.462.22 has an additional typo in the answer: it has K1(ab) instead
of K2(ab).

5. The Mellin transform method

The Mellin transform of a locally integrable function f : (0,∞) → C is defined by

(5.1) M [f ; s] = f̃(z) =

∫ ∞

0

ts−1f(t)dt

whenever the integral converges. Suppose the integral (5.1) converges in a strip a <

ℜs < b. A function f(t) may be recovered from its Mellin transform f̃(s) via the
inversion formula:

f(t) =
1

2πi

∫ c+i∞

c−i∞
t−sf̃(s)ds

where a < c < b.

Example 5.1. The Mellin transform of the exponential function e−µx is µ−sΓ(s).
By the inversion formula, we have, for s > 0,

(5.2) e−µx =
1

2πi

∫ c+i∞

c−i∞
x−sµ−sΓ(s) ds.

Lemma 5.1. The Mellin transform of Kν(t) evaluates as

(5.3)

∫ ∞

0

ts−1Kν(t) dt = 2s−2Γ
(s

2
+

ν

2

)

Γ
(s

2
− ν

2

)

.
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Proof. Example 3.11 gives
∫ ∞

0

ts−1Kν(t) dt =

√
π

2νΓ(ν + 1/2)

∫ 1

0

x−2ν−1(1− x2)ν−1/2

∫ ∞

0

tν+s−1e−t/x dt dx

=

√
π Γ(ν + s)

2νΓ(ν + 1/2)

∫ 1

0

xs−ν−1(1− x2)ν−1/2 dx

=

√
π Γ(ν + s)

2ν+1Γ(ν + 1/2)

∫ 1

0

u(s−ν)/2−1(1− u)ν+1/2−1 du

=

√
π Γ(ν + s) Γ( s−ν

2 )Γ(ν + 1/2)

2ν+1Γ(ν + 1/2)Γ( s+ν+1
2 )

= 2s−2Γ

(

s+ ν

2

)

Γ

(

s− ν

2

)

.

�

An alternative proof is offered next.

Proof. Since Kν = K−ν , we may assume that ν > 0. By the Mellin inversion
formula, the evaluation (5.3) is equivalent to

(5.4) Kν (ax) =
1

2πi

∫ c+i∞

c−i∞
2s−2a−sΓ

(s

2
+

ν

2

)

Γ
(s

2
− ν

2

)

x−s dx

where c > ν. The integrand has poles at s = ±ν − 2n for n = 0, 1, 2, . . .. Assuming
that ν 6∈ Z, all poles are of first order and the residue at s = ±ν − 2n is 2 (−1)

n
/n!.

Closing the contour of (5.4) to the left and collecting the residues yields

1

2

∞
∑

n=0

(−1)
n

n!

[

Γ (ν − n)
(ax

2

)−ν+2n

+ Γ (−ν − n)
(ax

2

)ν+2n
]

.

Using Euler’s reflection formula in the form

Γ (µ− n) =
(−1)

n

Γ (1− µ+ n)

π

sin (πµ)
,

this becomes

π

2 sin (πν)

∞
∑

n=0

1

n!

[

1

Γ (1− ν + n)

(ax

2

)−ν+2n

− 1

Γ (1 + ν + n)

(ax

2

)ν+2n
]

.

The definitions (1.6) and (1.7) show that this last term is Kν(ax), as claimed. �

Example 5.2. Entry 3.389.4 of [8] is

(5.5)

∫ ∞

a

x(x2 − a2)ν−1e−µx dx =
2ν−1/2

√
π

µ1/2−νaν+1/2Γ(ν)Kν+1/2(aµ),

where we have replaced the original parameter u in [8] by a in order to avoid confusion
with the parameter µ. This identity is now verified.
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Use the formula (5.2) to replace the term e−µx and reverse the order of integration
to obtain
∫ ∞

a

x(x2 − a2)ν−1e−µx dx =
1

2πi

∫ c+i∞

c−i∞
µ−sΓ(s)

(
∫ ∞

a

x1−s(x2 − a2)ν−1 dx

)

ds.

Lemma 5.2. The inner integral is given by

(5.6)

∫ ∞

a

x1−s(x2 − a2)ν−1 dx =
1√

πΓ(s)
a2ν−sΓ

(s

2
− ν
)

Γ(ν)2s−2Γ

(

s

2
+

1

2

)

.

Proof. Let x = at and t = y−1/2 to produce
∫ ∞

a

x1−s(x2 − a2)ν−1 dx = a2ν−s

∫ ∞

1

t1−s(t2 − 1)ν−1 dt

=
1

2
a2ν−s

∫ 1

0

ys/2−ν−1(1− y)ν−1 dy

=
1

2
a2ν−sB (s/2− ν, ν)

=
a2ν−sΓ(s/2− ν) Γ(ν)

2Γ(s/2)
.

Now employ the duplication formula for the gamma function

(5.7) Γ(2s) =
22s−1

√
π

Γ(s)Γ(s+ 1
2 )

to obtain the result. �

This produces
∫ ∞

a

x(x2 − a2)ν−1e−µx dx =
a2νΓ(ν)

8π3/2i

∫ c+i∞

c−i∞

(aµ

2

)−s

Γ

(

s

2
+

1

2

)

Γ
(s

2
− ν
)

ds.

The parameter ν is assumed to be real. Now shift the contour of integration by
z = s− ν + 1

2 to obtain, with c′ = c− ν + 1
2 ,

∫ ∞

a

x(x2 − a2)ν−1e−µx dx =

Γ(ν)√
π

(

2

µ

)ν−1/2

aν+1/2

∫ c′+i∞

c′−i∞

(aµ

2

)−z 1

4
Γ

(

z

2
+

ν + 1/2

2

)

Γ

(

z

2
− ν + 1/2

2

)

dz.

The result now follows from Lemma 5.1.

Example 5.3. The special case ν = 1
2 of Example 5.2 is

(5.8)

∫ ∞

a

xe−µx dx√
x2 − a2

= aK1(aµ).

This appears as entry 3.365.2 of [8].
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Example 5.4. Entry 3.366.2 is

(5.9)

∫ ∞

0

(x+ β) e−µx dx
√

x2 + 2βx
= βeβµK1(βµ).

To evaluate this result, let t = x+ β and use Example 5.3.

6. A family of integrals and a recurrence

Section 3.461 of [8] contains four entries that are part of the family

(6.1) fn(a, b) :=

∫ ∞

0

x2n exp
(

−a
√

x2 + b2
)

dx.

The evaluation of this family is discussed in this section.

The change of variables t =
√
x2 + b2 produces

(6.2) fn(a, b) =

∫ ∞

b

t(t2 − b2)n−
1
2 e−at dt.

This integral was evaluated in Example 5.2 as

(6.3) fn(a, b) =
b√
π
Γ(n+ 1

2 )

(

2b

a

)n

Kn+1(ab).

The example n = 0 appears as entry 3.461.6 in the form

(6.4)

∫ ∞

0

exp
(

−a
√

x2 + b2
)

dx = bK1(ab).

The remaining examples of the stated family are simplified using the recurrence

(6.5) Kν(z) =
2(ν − 1)

z
Kν−1(z) +Kν−2(z).

Example 6.1. Entry 3.461.7 states that

(6.6) f1(a, b) =

∫ ∞

0

x2exp
(

−a
√

x2 + b2
)

dx =
2b

a2
K1(ab) +

b2

a
K0(ab).

The form given in (6.3) is

(6.7) f1(a, b) =
b2

a
K2(ab).

The recurrence (6.5) gives

(6.8) K2(ab) =
2

ab
K1(ab) +K0(ab)

which produces the result.

Example 6.2. The same procedure used in Example 6.1 gives the evaluation of
entry 3.461.8 as

(6.9) f2(a, b) =

∫ ∞

0

x4exp
(

−a
√

x2 + b2
)

dx =
12b2

a3
K2(ab) +

3b3

a2
K1(ab)
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and entry 3.461.9 as

(6.10) f3(a, b) =

∫ ∞

0

x6exp
(

−a
√

x2 + b2
)

dx =
90b3

a4
K3(ab) +

15b4

a3
K2(ab).

Remark 6.1. The recurrence (6.5) converts the evaluation of fn(a, b) into an
expression depending only upon K0(ab) and K1(ab). For instance,

(6.11) f2(a, b) =
12b2

a3
K0(ab) +

(

24b

a4
+

3b3

a2

)

K1(ab)

and

(6.12) f3(a, b) =

(

360b2

a5
+

15b4

a3

)

K0(ab) +

(

720b

a6
+

120b3

a4

)

K1(ab).

Experimentally we discovered that introducing the scaling

(6.13) gn(c) =
a2n2nn!

b (2n)!
fn(a, b)

and label c = ab and x = K0(c), y = K1(c), the expressions for the integrals simplify.
The first few polynomials are

g3(c) = c(c2 + 24)x+ 8(c2 + 6)y

g4(c) = 12c(c2 + 16)x+ (c4 + 72c2 + 384)y

g5(c) = c(c4 + 144c2 + 1920)x+ 6(3c4 + 128c2 + 640)y

g6(c) = 24c(c4 + 80c2 + 960)x+ (c6 + 288c4 + 9600c2 + 46080)y.

Properties of the polynomials appearing in the coefficients will be reported elsewhere.
For example, the function gn(c) satisfies the differential equation

(6.14) b2g′′n(b)− (2n− 1)bg′n(b)−
(

(ab)2 + 2n+ 1
)

gn(b) = 0,

and also the recurrence

(6.15) gn+2(b)− 2(n+ 2)gn+1(b)− (ab)2gn(b) = 0.

7. A hyperexponential example

This section discusses several evaluations of entry 3.323.3

(7.1)

∫ ∞

0

exp
(

−β2x4 − 2γ2x2
)

dx = 2−3/2 γ

β
eγ

4/2β2

K1/4

(

γ4

2β2

)

.

This example also appears as entry 3.469.1 in the form

(7.2)

∫ ∞

0

exp
(

−µx4 − 2νx2
)

dx =
1

4

√

2ν

µ
exp

(

ν2

2µ

)

K1/4

(

ν2

2µ

)

.

The change of variables x = γt/β converts (7.1) into the form

(7.3)

∫ ∞

0

e−2b(t2+1)2 dt = 2−3/2e−bK1/4(b),

with b = γ4/2β2. A similar change of variables converts (7.2) to (7.3).
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7.1. A traditional proof. Recall that Kν is defined in terms of Iν . The defini-
tion of Iν as the series (1.7) is equivalent to the hypergeometric representation

(7.4) Γ(ν + 1)Iν(x) =
(x

2

)ν

0F1

( −
ν + 1

∣

∣

∣

∣

x2

4

)

.

Applying Kummer’s second transformation, see for instance [Andrews-Askey-Roy, Sec-
tion 4.1], to (7.4) one obtains

(7.5) Γ(ν + 1)Iν(x) =
(x

2

)ν

e−x
1F1

(

ν + 1
2

2ν + 1

∣

∣

∣

∣

2x

)

.

Consider the integral in (7.3). The change of variables x = t2 followed by a series
expansion and the further change of variables s = x2 gives

∫ ∞

0

e−2b(t2+1)2 dt =
1

2
e−2b

∫ ∞

0

x−1/2e−2bx2−4bx dx

=
1

2
e−2b

∞
∑

k=0

(−4b)k

k!

∫ ∞

0

xk−1/2e−2bx2

dx

=
1

4
e−2b

∞
∑

k=0

(−4b)k

k!

∫ ∞

0

sk/2−3/4e−2bs ds

=
1

4
e−2b

∞
∑

k=0

(−4b)k

k!

Γ(1/4 + k/2)

(2b)k/2+1/4

=
e−2b

4(2b)1/4

∞
∑

k=0

(−2
√
2b)k

k!
Γ

(

k

2
+

1

4

)

.

Writing the terms according to the parity of the index k produces
∫ ∞

0

e−2b(t2+1)2 dt =
e−2b

4(2b)1/4

[ ∞
∑

k=0

(8b)k

(2k)!
Γ

(

k +
1

4

)

− 2
√
2b

∞
∑

k=0

(8b)k

(2k + 1)!
Γ

(

k +
3

4

)

]

.

Now use the definition of the Pochhammer symbol

(7.6) (a)k =
Γ(a+ k)

Γ(a)

to write

(7.7) Γ
(

k + 1
4

)

=
(

1
4

)

k
Γ
(

1
4

)

, Γ
(

k + 3
4

)

=
(

3
4

)

k
Γ
(

3
4

)

,

and

(7.8) (2k)! = 22k
(

1
2

)

k
(1)k, (2k + 1)! = 22k

(

3
2

)

k
(1)k

to produce
∫ ∞

0

e−2b(t2+1)2 dt =
e−2b

4(2b)1/4

[

Γ

(

1

4

) ∞
∑

k=0

(2b)k

k!

(1/4)k
(1/2)k

− 2
√
2bΓ

(

3

4

) ∞
∑

k=0

(2b)k

k!

(3/4)k
(3/2)k

]

=
e−2b

4(2b)1/4

{

Γ

(

1

4

)

1F1

(

1/4

1/2

∣

∣

∣

∣

2b

)

− 2
√
2bΓ

(

3

4

)

1F1

(

3/4

3/2

∣

∣

∣

∣

2b

)}

.
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Applying the representation (7.5) of Iν gives

(7.9)

∫ ∞

0

e−2b(t2+1)2 dt =
π

4
e−b

(

I−1/4(b)− I1/4(b)
)

.

This completes the traditional proof.

7.2. An automatic proof. This second proof of (7.1) is computer generated.
The reader will find in [11] a selection of examples from [8] where similar computer
generated proofs are described.

The condition Reβ2 > 0, stated below, ensures convergence of the integral. Ob-
serve that the left-hand side of (7.10) is analytic in both γ and β, while the right-hand
side needs to be interpreted such that it shares this analyticity. In order to not worry
about taking the right branch-cuts on the right-hand side, we restrict to γ > 0 and
β > 0. These conditions can then be removed at the end of the argument by analytic
continuation.

Theorem 7.1. For complex γ, β such that Re
(

β2
)

> 0, we have

(7.10) F (γ) :=

∫ ∞

0

exp
(

−β2x4 − 2γ2x2
)

dx = 2−3/2 γ

β
exp

(

γ4

2β2

)

K1/4

(

γ4

2β2

)

.

Proof. Since the integrand is hyperexponential, we can apply the Almkvist-
Zeilberger algorithm [1], which is a differential analogue to Zeilberger’s celebrated
summation algorithm for hypergeometric summands. These algorithms sometimes are
also subsumed under the name WZ theory. In the following we denote the integrand
by f (x, γ) := exp

(

−β2x4 − 2γ2x2
)

. Using creative telescoping one finds that

(7.11)
(

A+Dx · 4γ3x
)

· f (x, γ) = 0

where A := β2γD2
γ −

(

4γ4 + β2
)

Dγ − 4γ3 and Dx = d
dx , Dγ = d

dγ . Hence it follows

that

A ·
∫ T

0

f (x, γ) dx =

∫ T

0

A · f (x, γ) dx

= −
∫ T

0

Dx · 4γ3x · f (x, γ) dx

= −4γ3T · f (T, γ) .

In the limit T → ∞, we therefore have

A ·
∫ ∞

0

f (x, γ) dx = 0.

Let G(γ) be the right-hand side of (7.10). In the light of the differential equation (1.5)
satisfied by the modified Bessel function K1/4, a direct calculation shows that G(γ) is
also annihilated by A, that is

A ·G (γ) = A · 2−3/2 γ

β
exp

(

γ4

2β2

)

K1/4

(

γ2

2β2

)

= 0.
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Thus the claim follows by checking that F (0) = G(0) and F ′(0) = G′(0). The explicit
evaluations

F (0) =

∫ ∞

0

exp
(

−β2x4
)

dx =
Γ (1/4)

4
√
β

F ′ (0) =

[

−4γ

∫ ∞

0

x2 exp
(

−β2x4 − 2γ2x2
)

dx

]

γ=0

= 0

confirm that these values agree with G(0) and G′(0). �

Remark 7.1. It remains to explain how the relation (7.11) can be found using
the Mathematica package HolonomicFunctions [10]. After loading the package, one
just has to type:

In[1]:= CreativeTelescoping[Exp[−b̂ 2 ∗ xˆ4 − 2 ∗ ĉ 2 ∗ xˆ2],Der[x],Der[c]]

Out[1]= {{b2cD2

c
+ (−b

2 − 4c4)Dc − 4c3}, {4c3x}}

Remark 7.2. Instead of to (7.1), the creative telescoping approach can also be
applied to (7.3). However, in that case, the task of comparing initial values is not
so simple, as the integral (7.3) does not converge for b = 0. As a solution one could
compute the initial values at b = 1 but the resulting integrals are not trivial themselves.

7.3. An evaluation by the method of brackets. This method was developed
by I. Gonzalez and I. Schmidt in [7] in the context of definite integrals coming from
Feynman diagrams. The complete operational rules are described in [5, 6]. Even
though this is a formal method for integration, some of the rules have been made
rigorous in [2]. A code has been produced in [9].

The basic idea is to associate a bracket to the divergent integral

(7.12) 〈a〉 =
∫ ∞

0

xa−1 dx.

This extends to the integral of a function expanded in power series: let f be a formal
power series

(7.13) f(x) =

∞
∑

n=0

anx
αn+β−1.

The symbol

(7.14)

∫ ∞

0

f(x) dx
·
=
∑

n

an〈αn+ β〉

represents a bracket series assignement to the integral on the left. Rule 7.2 describes
how to evaluate this series.

The symbol

(7.15) φn =
(−1)n

Γ(n+ 1)
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will be called the indicator of n, it gives a simpler form for the bracket series associated
to an integral. For example,

(7.16)

∫ ∞

0

xa−1e−x dx
·
=
∑

n

φn〈n+ a〉.

The integral is the gamma function Γ(a) and the right-hand side its bracket expansion.

Rule 7.1. For α ∈ C, the expression

(7.17) (a1 + a2 + · · ·+ ar)
α

is assigned the bracket series

(7.18)
∑

m1,··· ,mr

φ1,2,··· ,r a
m1

1 · · · amr
r

〈−α+m1 + · · ·+mr〉
Γ(−α)

,

where φ1,2,··· ,r is a short-hand notation for the product φm1
φm2

· · ·φmr
.

Rule 7.2. The series of brackets

(7.19)
∑

n

φnf(n)〈an+ b〉

is given the value

(7.20)
1

a
f(n∗)Γ(−n∗)

where n∗ solves the equation an+ b = 0.

Rule 7.3. A two-dimensional series of brackets

(7.21)
∑

n1,n2

φn1,n2
f(n1, n2)〈a11n1 + a12n2 + c1〉〈a21n1 + a22n2 + c2〉

is assigned the value

(7.22)
1

|a11a22 − a12a21|
f(n∗

1, n
∗
2)Γ(−n∗

1)Γ(−n∗
2)

where (n∗
1, n

∗
2) is the unique solution to the linear system

a11n1 + a12n2 + c1 = 0,(7.23)

a21n1 + a22n2 + c2 = 0,

obtained by the vanishing of the expressions in the brackets. A similar rule applies to
higher dimensional series, that is,
∑

n1

· · ·
∑

nr

φ1,··· ,rf(n1, · · · , nr)〈a11n1 + · · · a1rnr + c1〉 · · · 〈ar1n1 + · · · arrnr + cr〉

is assigned the value

(7.24)
1

|det(A)|f(n
∗
1, · · · , n∗

r)Γ(−n∗
1) · · ·Γ(−n∗

r),

where A is the matrix of coefficients (aij) and {n∗
i } is the solution of the linear system

obtained by the vanishing of the brackets. The value is not defined if the matrix A is
not invertible.
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Rule 7.4. In the case where the assignment leaves free parameters, any divergent
series in these parameters is discarded. In case several choices of free parameters are
available, the series that converge in a common region are added to contribute to the
integral.

The method of brackets is now employed to verify (7.1) in its original form

∫ ∞

0

exp
(

−β2x4 − 2γ2x2
)

dx = 2−
3

2

γ

β
e

γ4

2β2 K1/4

(

γ4

2β2

)

.

Start with the bracket-series

∫ ∞

0

e−(β2x4+2γ2x2) dx =

∫ ∞

0

∑

n1

φn1
(β2x4 + 2γ2x2)n1 dx

=

∫ ∞

0

∑

n1

φn1
x2n1(β2x2 + 2γ2)n1 dx

and expand the term (β2x2 + 2γ2)n1 in a double bracket series to obtain

∫ ∞

0

e−(β2x4+2γ2x2) dx =

∫ ∞

0

∑

n1

φn1
x2n1

(

∑

n2

∑

n3

φn2
φn3

(β2x2)n2(2γ2)n3
〈−n1 + n2 + n3〉

Γ(−n1)

)

dx

=
∑

n1

∑

n2

∑

n3

φn1
φn2

φn3

2n3β2n2γ2n3

Γ(−n1)
〈2n1 + 2n2 + 1〉 〈−n1 + n2 + n3〉

The result is a 3-dimensional sum with two brackets. The rules state that the integral
is now expressed as a single sum in the free parameter coming from solving the system

2n1 + 2n2 + 1 = 0

−n1 + n2 + n3 = 0.

The system is of rank 2, so there are three cases to consider according to the
choice of the free parameter.

Case 1: n1 free: the resulting system is

2n2 = −2n1 − 1

n2 + n3 = n1,

and the corresponding matrix has det(A) = −2. The solutions are n∗
3 = 2n1 +

1
2 and

n∗
2 = −n1 − 1

2 . The resulting sum is

∑

n1

(−1)n122n1−1/2β−2n1−1γ4n1+1Γ(−2n1 − 1/2)Γ(n1 + 1/2)

Γ(n1 + 1)Γ(−n1)

and it vanishes due to the presence of Γ(−n1) in the denominator.
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Case 2: n2 free: in this case the matrix of coefficients satisfies det(A) = 2 and the
solutions are n∗

1 = −n2 − 1
2 and n∗

3 = −2n2 − 1
2 . The resulting sum

∑

n2

(−1)n22−2n2−3/2β2n2γ−4n2−1Γ(2n2 +
1
2 )

Γ(n2 + 1)

is divergent, so it is discarded.

Case 3: n3 free: then det(A) = 4 and n∗
1 = 1

2n3 − 1
4 and n∗

2 = − 1
2n3 − 1

4 . The
corresponding series is

∑

n3

(−1)n32n3−2β−n3−1/2γ2n3Γ(n3/2 + 1/4)

Γ(n3 + 1)
=

1

4
√
β

∑

n3

(−1)n3δn3
Γ( 12n3 +

1
4 )

Γ(n3 + 1)
,

with δ = 2γ2/β. In order simplify the result split the sum according to the parity of
n3 to produce

S :=
1

4
√
β

∞
∑

n=0

δ2n
Γ(n+ 1

4 )

Γ(2n+ 1)
− 1

4
√
β

∞
∑

n=0

δ2n+1 Γ(n+ 3
4 )

Γ(2n+ 2)
.

Now use (7.7) and (7.8) to produce

S =
1

4
√
β

{

Γ

(

1

4

)

1F1

(

1/4

1/2

∣

∣

∣

∣

δ2

4

)

− δΓ

(

3

4

)

1F1

(

3/4

3/2

∣

∣

∣

∣

δ2

4

)}

.

The claim is thus seen to be equivalent to the identity

Γ

(

1

4

)

1F1

(

1/4

1/2

∣

∣

∣

∣

b

)

− 2
√
bΓ

(

3

4

)

1F1

(

3/4

3/2

∣

∣

∣

∣

b

)

=
√
2b1/4eb/2K1/4

(

b

2

)

,

where b = δ2/4. The identity to be established is now expressed in terms of the Bessel
function Iν using (1.7). The result is

Γ

(

1

4

)

1F1

(

1/4

1/2

∣

∣

∣

∣

b

)

−2
√
bΓ

(

3

4

)

1F1

(

3/4

3/2

∣

∣

∣

∣

b

)

= πb1/4eb/2
(

I−1/4

(

b

2

)

− I1/4

(

b

2

))

.

Using the expansion (1.6) shows that the right-hand side of the previous expression is
πeb/2 times the series

∞
∑

k=0

1

Γ(k + 3/4)k!

b2k

24k−1/2
−

∞
∑

k=0

1

Γ(k + 5/4)k!

b2k+1/2

24k+1/2
.

Each of these series can be simplified. Introduce c = b2/16 and write

∞
∑

k=0

1

Γ(k + 3/4)k!

b2k

24k−1/2
=

√
2

Γ(3/4)

∞
∑

k=0

1

(3/4)k

ck

k!
=

√
2

Γ(3/4)
0F1

( −
3/4

∣

∣

∣

∣

c

)

and
∞
∑

k=0

1

Γ(k + 5/4)k!

b2k+1/2

24k+1/2
=

√
b√

2Γ(5/4)

∞
∑

k=0

1

(5/4)k

ck

k!
=

√
b√

2Γ(5/4)
0F1

( −
5/4

∣

∣

∣

∣

c

)
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The proof of the main identity (7.1) by the method of brackets is now reduced to
verifying

(7.25) Γ

(

1

4

)

1F1

(

1/4

1/2

∣

∣

∣

∣

b

)

− 2
√
bΓ

(

3

4

)

1F1

(

3/4

3/2

∣

∣

∣

∣

b

)

=

πeb/2

{ √
2

Γ(3/4)
0F1

( −
3/4

∣

∣

∣

∣

c

)

− 0F1

( −
5/4

∣

∣

∣

∣

c

)

}

.

The exponents appearing in the series above are either integers or 1
2 plus an

integer. Matching these two types separately shows that the main evaluation follows
from the identities

1F1

(

1/4

1/2

∣

∣

∣

∣

b

)

= eb/20F1

( −
3/4

∣

∣

∣

∣

b2

16

)

and 1F1

(

3/4

3/2

∣

∣

∣

∣

b

)

= eb/20F1

( −
5/4

∣

∣

∣

∣

b2

16

)

.

These are special cases of Kummer’s second transformation which is exhibited in
the equivalence of (7.4) and (7.5). This completes the proof of Example 7.1.
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