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The Evaluation of
Integrals: A Personal

Story
Victor H. Moll

T
he fall semester of 1992 was a promis-
ing one for me. I had just returned from
an extended sabbatical at the University
of Utah, I was going to be considered for
tenure, and I would be teaching the be-

ginning graduate course in analysis. This article
tells the story of how this promise was fulfilled,
but in very unexpected ways.

One of the analysis students (George Boros),
older than the rest and for many years a part-time
instructor in the area, had finally decided to pur-
sue a Ph.D. in mathematics. He was well known in
New Orleans mathematical circles as “the person
who can compute any integral.” Having spent my
graduate-student years at Courant Institute, I was
comfortably unaware of integrals and did not think
that this could be serious mathematics. I was
wrong.

At the end of the academic year this student
asked me to be his adviser. I agreed but cautioned:
“George, nobody is going to give you a doctorate
in mathematics for computing integrals.” His re-
sponse was that he was aware of this and if I was
willing to suggest a general topic for the qualifiers,
he would accept my choice. At that time Henry
McKean and I were in the process of writing the
book [6], so I suggested that George read the man-
uscript and that his qualifiers be related to ellip-
tic curves. After a successful exam it came time for
a thesis problem, and when I started to suggest
some possibilities, he interrupted me with: “I have
my own problems.” This was a surprise. It was even
more of a surprise to discover that new things can

still be said today about the mundane subject of
integration of rational functions of a single variable
and that this subject has connections with branches
of contemporary mathematics as diverse as com-
binatorics, special functions, elliptic curves, and dy-
namical systems.

A Formula for the Quartic
In order to satisfy my curiosity, George told me that∫∞

0

dx
(x4 + 6x2 + 1)3

=
219π

2048
√

2
.

My response was clear: “George, there are sym-
bolic languages that can do these things; you should
not waste your time.” Indeed, Mathematica yields
the answer

3π
8192

(
−31

√
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√
2 + 42
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3− 2

√
2

+ 42
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3 + 2
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2 + 31
√

6 + 4
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)
,

and George’s evaluation can be obtained by using
the FullSimplify command. Similarly,

1
π

∫∞
0

dx
(x4 + 6x2 + 1)51

=
32 · 132 · 17 · 53 · 59 · 61 · 67 ·N1 ·N2 ·N3 ·N4

2249
√

2
,

where N1, N2, N3, and N4 are the prime numbers

91297, 1518533, 44368952933,

and

10220677829087302935117744959039145564109.
The problem of integration of rational functions

R(x) = P (x)/Q(x) was considered by J. Bernoulli in
the eighteenth century. He completed the original
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attempt by Leibniz to find a general partial
fraction decomposition of R(x). The main diffi-
culty associated with this procedure is to obtain a
complete factorization over the real numbers of the
denominator Q(x) . Once this is known, the partial
fraction decomposition of R(x) can be computed.
The fact is that the primitive of a rational function
is always elementary: it consists of a rational part
(a new rational function) and a transcendental part
(the logarithm of a second rational function). In his
classic monograph [5], G. H. Hardy states: “The so-
lution of the problem (of definite integration) in the
case of rational functions may therefore be said to
be complete; for the difficulty with regard to the
explicit solution of algebraical equations is one
not of inadequate knowledge but of proved im-
possibility.” He goes on to add: “It appears from
the preceding paragraphs that we can always find
the rational part of the integral, and can find the
complete integral if we can find the roots of
Q(x) = 0 .”

But knowing that a problem admits a solution
in principle is not the same as being able to com-
pute the solution. The symbolic evaluations of in-
tegrals may take considerable time. The second
example above took around seventeen minutes to
compute. The Mathematica manual states that “def-
inite integrals that involve no singularities are
mostly done by taking limits of the indefinite in-
tegrals. Many other definite integrals are done
using Marichev-Adamchik Mellin transform meth-
ods. The results are often initially expressed in
terms of the Meijer G functions, which are con-
verted into hypergeometric functions using Slater’s
Theorem and then simplified.” Thus it is not en-
tirely clear what Mathematica is doing to compute
these integrals. Details can be found in [1]. I became
intrigued about George’s methods, which were
based upon the following result.

Theorem. Let a > −1 and let m be a natural num-
ber. Then the integral

N(a;m) :=
∫∞

0

dx
(x4 + 2ax2 + 1)m+1

is given by

π 2−m−3/2

(a + 1)m+1/2

m∑
j=0

(
2m + 1

2j

)
(a + 1)j

×
m−j∑
k=0

(
m− j
k

)(
2k + 2j
k + j

)
2−3(k+j)(a− 1)k.

The proof is elementary and employs Wallis’s in-
tegral formula

(1)
∫ π/2

0
cos2n ϕdϕ =

(
2n
n

)
π/22n+1.

The reader is invited to compare the expression
given in the theorem with the expression obtained
by residues.

The structure of N(a;m) now became clear. In
particular

Pm(a) :=
2m+3/2(a + 1)m+1/2

π
N(a;m)

is a polynomial in a of degree m. The theorem im-
plies that the coefficient dl(m) of the term al in the
polynomial Pm(a) is a triply indexed sum of ex-
pressions that are products of binomial coeffi-
cients, powers of 1/2, and plus or minus signs. The
first few polynomials are

P0(a) = 1,

P1(a) =
1
2

(2a + 3),

P2(a) =
3
8

(4a2 + 10a + 7),

P3(a) =
1
16

(40a3 + 140a2 + 172a + 77),

P4(a) =
5

128
(112a4+ 504a3+ 876a2+ 708a + 231).

The fear of reinventing the wheel now appeared.
It was quite possible that the polynomials Pm(a)
were well known. We1 wondered if there is a sim-
ple expression for the polynomials Pm(a) and
whether all their coefficients are positive. Col-
leagues told us that the Pm(a) must be expressible
in terms of hypergeometric functions, but an ini-
tial search in standard integral tables did not find
our quartic integral. Responding to an inquiry
about the coefficients dl(m) , Doron Zeilberger
replied: “…the triple sum that you have does not
seem to have a closed form in both m and l. For a
fixed m− l = p, it does, but as p gets bigger, the
‘closed form’ gets uglier.” Encouraged by this, we
searched for a proof that dl(m) > 0.

Ramanujan, Double Square Root, and
Positivity
The proof of positivity appeared from a most un-
expected place. It turns out that there is a con-
nection between the Taylor series of h(c) :=√
a +

√
1 + c at c = 0 and the polynomial Pm(a) .

This and a theorem of Ramanujan yield a simple
formula for the coefficients dl(m) .

The evaluation of the quartic integral described
in the previous section gives, in particular,∫∞

0

dx
bx4 + 2ax2 + 1

=
π

2
√

2
1√

a +
√
b
.

While playing around with the parameters, we no-
ticed that the derivatives of h(c) at c = 0 can be eval-
uated in terms of the quartic integrals. The fact is

1By now it was we.
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that the integrals N(a;k) are essentially the coeffi-
cients of the Taylor expansion of the double square
root h(c) at c = 0.

Theorem. The Taylor series expansion of h(c) =√
a +

√
1 + c , for c in a neighborhood of the origin,

is given by

h(c) =
√
a + 1 +

1
π
√

2

∞∑
k=1

(−1)k−1

k
N(a;k− 1)ck.

This expansion appears in several classical analy-
sis texts in the particular cases a = 1 and c = a2.

The next piece of the puzzle appeared from
Ramanujan’s work. In particular, Ramanujan’s
Master Theorem connects the coefficients of a
Taylor expansion

F (c) =
∞∑
n=0

(−1)n

n!
ϕ(n)cn

with the moments

Mn =
∫∞

0
cn−1F (c)dc

of the function F via Mn = (n− 1)!ϕ(−n) . Observe
that the application of the theorem requires ex-
tending the Taylor coefficients ϕ(n) from n ≥ 0 to
n < 0. Details of this theorem can be found in
Berndt’s first volume on Ramanujan’s Notebooks
[3]. We can apply the theorem to an appropriate de-
rivative of h(c) to establish a relation between the
original quartic integral N(a;m) and a new family
of integrals

Bm(a) :=
∫∞

0

xm−1 dx
(a +

√
1 + x )2m+1/2 .

Indeed, Ramanujan’s Master Theorem yields

Bm(a) =
26m+3/2

π

[
m
(

4m
2m

)(
2m
m

)]−1

N(a;m),

so we now need to evaluate Bm(a). A simple change
of variables shows that an evaluation of Bm(a) fol-
lows from one for the derivatives of the function

u(u2 − 1)m−1 at u = 1. To establish the values of
these derivatives, we need the following identity for
binomial coefficients:

∑
j≥0

(−1)k
(
m− 1
j

)(
2m− 2j − 1
k +m− 1

)

= 2m−k−1 k +m
m

(
m
k

)
.

This identity can be verified by using the power-
ful WZ-method described in [7]. We conclude that

(2)

Pm(a) = 2−2m
m∑
k=0

2k
(

2m− 2k
m− k

)(
m + k
m

)
(a + 1)k,

so now the coefficients dl(m) , given by the ex-
pression

(3) 2−2m
m∑
k=l

2k
(

2m− 2k
m− k

)(
m + k
m

)(
k
l

)
,

are clearly positive.
The expression (3) provides an efficient evalu-

ation of dl(m) if l is close to m. The natural ques-
tion of formulas that work well when l is small pro-
duced an unexpected and interesting problem. An
elementary calculation yields the existence of poly-
nomials αl and βl of degrees l and l − 1, respec-
tively, such that dl(m)l!m!2m+l can be written in the
form

αl(m)
m∏
k=1

(4k− 1)− βl(m)
m∏
k=1

(4k + 1).

We have conjectured that both families of poly-
nomials have all their zeros on the line where
Rem = −1/2.

The graphs of the zeros of Pm(a) suggest some
questions about their location. Figure 1 shows the
zeros of P75(a) and Figure 2 shows the zeros of all
the polynomials Pm(a) from m = 1 to m = 50.
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Figure 1: Zeros of the polynomial P75. Figure 2: Zeros of the polynomials Pm , 1 ≤m ≤ 50.
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Jn = 2−n
	n/2
∑
k=0

(
n
2k

)
Jk.

As before one can use this expression to generate
values of Jn and guess the formula

Jn =

(
2n
n

)
π/22n+1.

The critical point of an inductive proof is the iden-
tity

(4)
	n/2
∑
k=0

2−2k
(
n
2k

)(
2k
k

)
= 2−n

(
2n
n

)
.

Now comes the WZ-method to the rescue, for the
identity (4) is precisely the first example used in
[7, p. 113] to explain that procedure. Wilf and Zeil-
berger informed me that they do not recall why they
chose this example.

The method of proof described above (double
the angle, expand, and use the vanishing of odd
powers) yielded an unexpected transformation
when applied to integrals of higher degree. This re-
quires a little bit of background. The Landen trans-
formation a → (a + b)/2 and b →

√
ab leaves the el-

liptic integral

∫ π/2
0

dθ√
a2 cos2 θ + b2 sin2 θ

invariant, and iteration of this transformation 
produces, in the limit, the celebrated arithmetic-
geometric mean AGM(a, b) . It turns out that we
can find an analogous transformation to help 
evaluate integrals of rational functions that are
even. Here is an example of such a transformation
in the case of degree 6. Let

U =
∫∞

0

b0x4 + b1x2 + b2

x6 + a1x4 + a2x2 + 1
dx.

Then the transformation

(5)

a1 →
9 + 5a1 + 5a2 + a1a2

(a1 + a2 + 2)4/3
,

a2 →
a1 + a2 + 6

(a1 + a2 + 2)2/3
,

b0 →
b0 + b1 + b2

(a1 + a2 + 2)2/3
,

b1 →
b0(a2 + 3) + 2b1 + b2(a1 + 3)

a1 + a2 + 2
,

b2 →
b0 + b2

(a1 + a2 + 2)1/3

preserves the integral U. Moreover, the sequence
(an1 , a

n
2) defined by iteration of (5) converges to

(3,3), and there is a value L such that the sequence
(bn0 , b

n
1 , b

n
2 ) converges to (L,2L,L) precisely when

the initial integral converges. The invariance of U
shows that U = Lπ/2.

The Hypergeometric Connection
At this point it was clear to us that we should pro-
vide a proof of the formula (2) for Pm(a) based on
the theory of special functions. A more careful
examination of standard integral tables yielded
the formula∫∞

0

zν−1 dz
(z2 + 2az + 1)µ+1/2

=
2µΓ (1 + µ)B(−ν + 2µ + 1, ν)P−µµ−ν (a)

(a2 − 1)µ/2
,

[4, 3.252.11], where B is the classical beta integral
and Pµν (z) is the associated Legendre function.
Using the hypergeometric representation of the
latter, we can rewrite the right-hand side as

(
2

a + 1

)µ
B(2µ + 1− ν, ν)

× 2F1

[
ν − µ,1 + µ − ν; 1 + µ;

1− a
2

]
.

The expression (2) now follows directly but with an
extra bonus: the polynomials Pm(a) are part of the
Jacobi family

P (α,β)
m (a) =

m∑
k=0

(−1)m−k
(
m + β
m− k

)

×
(
m + k +α + β

k

)(a + 1
2

)k

corresponding to the parameter values α =m + 1/2
and β = −(m + 1/2).

It is safe to say that we would never have found
the connection between the quartic integrals and
the Taylor expansion of the double square root had
we known the most basic results in hypergeomet-
ric functions. Ignorance is bliss.

Wallis’s Formula and Landen
Transformations
Wallis’s integral formula (1) is completely elemen-
tary and is usually proved by showing that

Jn :=
∫ π/2

0
cos2n ϕdϕ

satisfies the recurrence Jn = 2n−1
2n Jn−1 . The recur-

rence can be used to generate values of Jn for
small n from which one can guess a general formula.
The proof of Wallis’s formula is thus reduced to
checking the guessed formula in the recurrence.

We stumbled upon a different proof while try-
ing to compute the integral of a rational function.
First observe that

Jn =
∫ π/2

0

(
1 + cos 2ϕ

2

)n
dϕ.

Now introduce ψ = 2ϕ , expand the power, and
simplify the result by observing that the odd pow-
ers of cosine integrate to zero. Hence
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One can produce formulas analogous to (5) for
rational functions of any even degree, but very
soon these expressions become unmanageable.
The geometric fact is that these Landen transfor-
mations convert an even rational function into its
direct image by the Newton map associated to the
equation z2 + 1 = 0. This interpretation yields a
proof of convergence of the process. The fact is that
the iterates of the rational Landen transformation
converge precisely when the initial data produce a
convergent integral.

In the example of degree 6, the determining
quantity is the resolvent

R(a1, a2) = 4a3
1 + 4a3

2 − 18a1a2 − a2
1a

2
2 + 27.

The locus of R(a1, a2) = 0 consists of two con-
nected components R± . The curve R+ is in the first
quadrant and contains the limiting point (3,3). The
integral U is finite precisely when R−(a1, a2) > 0.
There is also a dynamical interpretation. The first
two equations in (5) form a planar dynamical sys-
tem that has three fixed points, two of them on the
resolvent curve. The point (3,3) is an attractor, ex-
plaining in part the convergence of the iterates. The
second critical point is a saddle point, and the
curve R−(a1, a2) = 0 is its stable manifold. The dy-
namics below this curve are quite complicated.
Figure 3 shows the first 5,000 iterates starting in
this region.

A treatment of the elliptic Landen transforma-
tion appears in [6], so my original advice for
George’s qualifiers paid off.

The Integration of a General Rational
Function
The previous section gave some information about
how to integrate the even rational functions. Our
unsuccessful attempt to extend these methods to
the general case produced an interesting map on
the space of rational functions.

Consider the splitting of R(x) into its even and
odd parts

Re(x) =
R(x) + R(−x)

2

and
Ro(x) =

R(x)− R(−x)
2

.

Ignore the issue of convergence and integrate to
produce∫∞

0
R(x)dx =

∫∞
0
Re(x)dx +

∫∞
0
Ro(x)dx.

The integral of the even part can be analyzed, at
least partially, by the methods already described.
The integral of the odd part can be transformed to

-50 -40 -30 -20 -10

-10
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20

Figure 3: Dynamics associated with the rational
Landen transformation.

∫∞
0
Ro(x)dx =

1
2

∫∞
0

Ro(
√
x )√
x

dx

via x→ √
x. The new integrand is again rational, and

so we have produced a map F on the space of ra-
tional functions,

F(R)(x) =
R(
√
x )− R(−√x )

2
√
x

,

with the property∫∞
0
R(x)dx

=
∫∞

0
Re(x)dx +

1
2

∫∞
0

F(R)(x)dx.

Observe that even though replacing x by 
√
x de-

creases the degree of a function, the map F itself
does not necessarily decrease the degree. The ques-
tion of explicit integration of a rational function can
be separated into two parts:

• explicit integration of even rational functions,
• properties of F related to integration.
The map F itself is an object worthy of study.

In particular, the orbit {Fj (R) : j = 0, 1, 2, . . . } ,
starting at an arbitrary rational function R, is in-
teresting. In order to keep the coefficients of the
orbit under some control, we were led to study the
orbit of a rational function with all its poles of
modulus 1. The simplest case is the function
xj/(xa1 − 1), where a1 is an odd integer. A simple
calculation shows that

F

(
xj

xa1 − 1

)
=
xα1(j)

xa1 − 1
,

where

α1(j) =

{
(a1 − 1 + j)/2 if j is even,

(j − 1)/2 if j is odd.

In this case the study of the map F reduces to that
of α1 : Z→ Z . The dynamics of α1 are quite
interesting: for any initial j ∈ Z, the iterates αn1(j),
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n = 0, 1,… reach either the invariant set {0,1,2, . . . ,
a1 − 2} or the fixed-point set {−1, a1 − 1} in a 
finite number of steps. On the invariant set, the 
inverse of α1 is given by

{
2k + 1 if 0 ≤ k ≤ (a1 − 3)/2,
2k + 1− a1 if (a1 − 1)/2 ≤ k ≤ a1 − 2.

This has amusing number theoretical consequences:
if a1 is prime, then all orbits of F starting in the in-
variant set have the same length. Moreover, there
is a single orbit if and only if 2 is a primitive root
modulo a1 , that is, 2 is a generator of the group
{1,2, . . . , a1 − 1} under multiplication modulo a1 .

More generally, suppose a1, . . . , am are odd 
integers, and define

Tm(x) :=
m∏
k=1

(xak − 1)

and
Sm,j (x) :=

xj

Tm(x)
.

An elementary calculation shows that there are
polynomials Vp,j (x) such that the iterates of F
applied to Sm,j have the form

F(p)(Sm,j )(x) =
Vp,j (x)

Tm(x)
.

In the summer of 2001, Roopa Nalam, an under-
graduate at Tulane on her way to medical school,
proposed the following result, which remains open.

Conjecture. Assume gcd(a1, a2, . . . , am) = 1 , and
let LC(P ) denote the leading coefficient of a poly-
nomial P. Then

lim
p→∞

Vp,j (x)

LC(Vp,j (x))
× (x− 1)m

Tm(x)
=
Am+1(x)
x

,

where Am(x) is the Eulerian polynomial defined by
the generating function

1− x
1− x exp[λ(1− x)]

:=
∞∑
m=0

Am(x)
λm

m!
.

The situation in which gcd(a1, · · · , am) �= 1
seems more complicated.

Many other aspects of F are quite interesting. For
instance, every fixed point of F is a linear combi-
nation of functions of the form xqj−1/(1− xqj ) ,
where the qj are odd integers. On the other hand,
for each positive integer n, the rational functions
of the form

n∑
k=1

x2k−1−1Rk(x2k ),

where R1, . . . , Rn are arbitrary rational functions,
vanish after precisely n iterations of F.

Unimodality and Logconcavity
The symbolic study of the coefficients dl(m) , and in
particular of their graph, suggested that these coef-
ficients are unimodal. A finite sequence of real num-
bers {d0, d1, . . . , dm} is said to be unimodal if there
is an index m∗ , called the mode of the sequence,
such that dj increases up to j =m∗ and decreases
from then on. Our first proof of the unimodality of
dl(m) was elementary but long. Soon after, we were
able to give a very simple criterion for unimodality:
If P (x) is a polynomial with positive nondecreasing
coefficients, then P (x + 1) is unimodal with mode
	m−1

2 
. With the speed of electronic publishing, our
simpler proof appeared before the original one.

A property stronger than unimodality is that of
logarithmic concavity (or logconcavity for short),
meaning that dj+1dj−1 ≤ d2

j . We have conjectured
that {dl(m) : 0 ≤ l ≤m} is logconcave, but much
more seems to be true. Define the operator

L

(
{dj}

)
:= {d2

j − dj+1dj−1},

so that logconcave sequences are those positive se-
quences {dj} for which L({dj}) is also positive. We
say that {aj} is infinitely logconcave if Lp({aj}) is
a positive sequence for every natural number p. The
conjecture is that {dl(m)} is infinitely logconcave.
The prototype sequence in issues of unimodality
and logconcavity is the sequence of binomial 
coefficients. A reasonable first step would be to
prove that {

(
n
k

)
: 0 ≤ k ≤ n} is infinitely logcon-

cave.

SACNAS, SIMU, Puerto Rico, and
Convergence of Landen
The 1999 annual meeting of the Society for the
Advancement of Chicanos and Native Americans
(SACNAS) took place in Portland, Oregon. My col-
league Ricardo Cortez has been involved with this
association since his days as a graduate student.
That year he had organized a special session for
which he asked me to give a presentation.

At the end of my talk, two participants at the con-
ference, Ivelisse Rubio and Herbert Medina, wanted
to know if I would be interested in their REU (Re-
search Experiences for Undergraduates) Program
SIMU (Summer Institute in Mathematics for Un-
dergraduates). They told me that the program has
as a mission “to increase the number of Chi-
canos/Latinos and native Americans earning Mas-
ter and Ph.D. degrees and pursuing research careers
in the mathematical sciences.” They invited me to
direct a group of twelve students during the sum-
mer of 2000 at the University of Puerto Rico at Hu-
macao. The idea sounded very interesting, so I
agreed to do it. They warned me that “it is a lot of
work.” They were right. The program is structured
so that there are lectures during the first three
weeks, and students work on research projects for
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three and one-half weeks. The students were fan-
tastic, and the following generalization of the uni-
modality criterion [2] came out of one of their pro-
jects:

If P (x) is a polynomial with positive nondecreas-
ing coefficients, and n is a natural number, then
P (x + n) is unimodal with mode 	 m

n+1
 . In the dis-
cussion of this problem, we proved that unimodality
of a sequence plus negative second derivative, that
is, dj+1 − 2dj + dj−1 ≤ 0 , implies logconcavity.

Every Friday SIMU has an invited speaker, and
the next day there is a field trip. That summer, one
of the speakers was John Hubbard from Cornell Uni-
versity. During a trip to Arecibo’s observatory,
John asked me about the projects for the students.
I remember saying, “I won’t tell you; I would like
the students to solve them.” He then asked me
about my area of work. My standard response used
to be “classical analysis,” but I simply told him: “I
compute integrals for a living.” The geometric in-
terpretation of the rational Landen transforma-
tions came out of my argument to convince him that
not everything was done in the subject.
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About the Cover
This month's cover is a variation of Figure 3 of
Victor Moll's article—it zooms in on a smaller
region than displayed in Moll's article, and
plots many more iterations of the 2D Landen
transformation in formula (5) of his article,
starting with a more or less random point in
the chaotic domain of the transformation. The
color changes from red to violet as the itera-
tions proceed. The fine structure one sees is
striking, and also striking is that there does not
seem to be any simple or even satisfactory way
to account for all that is seen. Some Java ap-
plets allowing one to explore these and related
phenomena can be found at http://www.math.
ubc.ca/people/faculty/cass/covers/2002/
march/landen.html.
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