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Abstract. Properties of the integral of powers of log Γ(x) from 0 to 1 are con-
sidered. Analytic evaluations for the first two powers are presented. Empirical
evidence for the cubic case is discussed.

1. Introduction

The evaluation of definite integrals is a subject full of interconnections of many
parts of Mathematics. Since the beginning of Integral Calculus, scientists have
developed a large variety of techniques to produce magnificent formulae. A partic-
ularly beautiful formula due to J. L. Raabe [11] is

(1.1)

∫ 1

0

log

(

Γ(x + t)√
2π

)

dx = t log t − t, for t ≥ 0,

which includes the special case

(1.2) L1 :=

∫ 1

0

log Γ(x) dx = log
√

2π.

Here Γ(x) is the gamma function defined by the integral representation

(1.3) Γ(x) =

∫ ∞

0

ux−1e−udu,

for Re x > 0. Raabe’s formula (1.1) can be obtained from the Hurwitz zeta function

(1.4) ζ(s, q) =
∞
∑

n=0

1

(n + q)s

via the integral formula

(1.5)

∫ 1

0

ζ(s, q + t) dq =
t1−s

s − 1

coupled with Lerch’s formula

(1.6)
∂

∂s
ζ(s, q)

∣

∣

∣

s=0
= log

(

Γ(q)√
2π

)

.

An alternative proof is obtained by differentiating (1.1) and assuming the special
value (1.2).

An interesting extension of these formulas to the p-adic Gamma function has
appeared in [3].
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Two of the current authors have investigated definite integrals involving the
Hurwitz zeta function [5, 6]. As an unexpected corollary, the formula for the integral
of log2 Γ(x)

(1.7) L2 :=

∫ 1

0

log2 Γ(x) dx =
γ2

12
+

π2

48
+

1

3
γL1 +

4

3
L2

1 − (γ + 2L1)
ζ′(2)

π2
+

ζ′′(2)

2π2

was produced. Here, γ is Euler’s constant defined by

(1.8) γ = lim
n→∞

n
∑

k=1

1

k
− log n.

The natural question addressed here is that of an analytic expression for the
family of integrals

(1.9) Ln :=

∫ 1

0

logn Γ(x) dx, for n ∈ N

extending the values of L1 and L2 given above. Section 2 presents a direct approach
to the evaluation of L1, very close in spirit to the original proof given by Raabe.
The proof employs only elementary properties of the gamma function. Section 3
contains a new proof of the value of L2 based on the Fourier series expansion of
log Γ(x). A similar expression for L3 remains an open question. The quest for
such an expression is connected to a special kind of multiple zeta values known
as Tornheim sums. The study of their relation with the value of L3 has began in
[7, 8]. Section 4 discusses a family of trigonometric integrals {Sn} that appear in
the evaluation of L2. A notion of weight is introduced and a recurrence for this
family shows directly that Sn is a homogeneous form. The study of the loggamma
integrals considered in this paper has been motivated by our conjecture that Ln is
a homogeneous form of weight n. This remains open for n ≥ 3.

2. A Riemann sum approach to the evaluation of L1

In this section we present an elementary evaluation of the formula for L1. The
formula was originally obtained by E. Raabe [11] and it appears as entry 6.441.2 in
the classical table [9].

Theorem 2.1. The integral L1 is given by

(2.1)

∫ 1

0

log Γ(x) dx = log
√

2π.

Proof. Partition the interval [0,1] into n subintervals of length 1/n to produce

∫ 1

0

log Γ(x) dx = lim
n→∞

n
∑

k=1

1

n
log Γ

(

k

n

)

.(2.2)



INTEGRALS OF POWERS OF LOGGAMMA 3

On the other hand, assuming n is even,

1

n

n
∑

k=1

log Γ

(

k

n

)

=
1

n
log

(

n
∏

k=1

Γ

(

k

n

)

)

=
1

n
log





n/2
∏

k=1

Γ

(

k

n

)

Γ

(

1 − k

n

)





=
1

n
log





n/2
∏

k=1

π

sin(πk/n)





= log
√

π − log





n/2
∏

k=1

sin(πk/n)





1/n

.

The reflection formula Γ(x)Γ(1 − x) = π/ sin πx for the gamma function has been
employed in the third line.

The classical trigonometric identity

n−1
∏

k=1

sin

(

πk

n

)

=
n

2n−1

now yields

1

n

n
∑

k=1

log Γ

(

k

n

)

= log

( √
2π

(2n)1/2n

)

.

Let n → ∞ to obtain the result. The case n odd is treated similarly. �

3. The evaluation of L2

The expression for L2 given in (1.7) was obtained in [5] using integrals involving
the Hurwitz zeta function ζ(z, s), defined in (1.4). Differentiate the identity

(3.1)

∫ 1

0

ζ(z′, x)ζ(z, x) dx =
2Γ(1 − z) Γ(1 − z′)

(2π)2−z−z′
ζ(2 − z − z′) cos

(

π(z − z′)

2

)

,

with respect to z and z′ and then set z = z′ = 0. Then, the formula of Lerch (see
[12], page 271)

(3.2)
d

dz
ζ(z, x)

∣

∣

∣

z=0
= log Γ(x) − log

√
2π,

produces the result.
In this section we provide a new proof of (1.7) based on the Fourier expansion

of log Γ(x) :

log Γ(x) = L1 −
1

2
log(2 sinπx) +

1

2
(γ + 2L1)(1 − 2x) +(3.3)

+
1

π

∞
∑

k=1

log k

k
sin 2πkx.

This expansion was given by E. Kummer [10]; the reader will find a detailed proof
in [1].
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Define

g(x) = L1 −
1

2
log(2 sin πx) +

1

2
(γ + 2L1)(1 − 2x),(3.4)

s(x) =
1

π

∞
∑

k=1

log k

k
sin 2πkx,

so that

(3.5) L2 =

∫ 1

0

s2(x) dx + 2

∫ 1

0

s(x)g(x) dx +

∫ 1

0

g2(x) dx.

Each term in this sum is now considered separately.

First term. The orthogonality of the trigonometric terms on [0, 1] yields
∫ 1

0

s2(x) dx =
1

π2

∑

k1,k2

log k1

k1

log k2

k2

∫ 1

0

sin(2πk1x) sin(2πk2x) dx =
1

π2

∑

k

log2 k

k2
.

Therefore

∫ 1

0

s2(x) dx = ζ′′(2)/2π2 using
∞
∑

k=1

log2 k

k2
= ζ′′(2).

Second term. In view of the vanishing of

∫ 1

0

sin(2πkx) dx = 0, for k ≥ 1, the

“cross term” in (3.5) reduces to

2

∫ 1

0

g(x) s(x) dx = − 1

π

∞
∑

k=1

log k

k

∫ 1

0

sin(2πkx) log(2 sinπx) dx

− 2(γ + 2L1)

π

∞
∑

k=1

log k

k

∫ 1

0

x sin(2πkx) dx.

Integration by parts yields

∫ 1

0

x sin(2πkx) dx = − 1

2πk
, converting the last series

into

∞
∑

k=1

log k

k2
= −ζ′(2).

The evaluation

∫ 1

0

sin(2πkx) log(2 sinπx) dx = 0 appears as 4.384.1 in [9]. It follows

that

∫ 1

0

g(x)s(x) dx = −ζ′(2)

2π2
(γ + log 2π).

Third term. The last term in (3.5) is

∫ 1

0

g2(x) dx = L2
1 +

π2

48
+

1

12
(γ + 2L1)

2,

where we have employed

(3.6)

∫ 1

0

log(2 sin πx) dx =

∫ 1

0

(1 − 2x) log(2 sinπx) dx = 0

and

(3.7)

∫ 1

0

log2(2 sinπx) dx =
π2

12
.

The second integral in (3.6) is seen to vanish by using the change of variables
t = 1−x. The evaluation (3.7) is proven in Section 4. Every term in (3.5) has been
evaluated, confirming (1.7).
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Note 3.1. A second proof of (1.7) can be obtained from the Fourier expansion

(3.8) log Γ(x) = a0 +

∞
∑

n=1

an cos(2πnx) +

∞
∑

n=1

bn sin(2πnx),

with a0 = L1, an = 1
2n and bn = A+log n

πn , with A = γ + 2L1. This appears in [5]
(formulas (6.3) and (6.4)) and it follows directly from entries 6.443.1 and 6.443.3
in [9]. Parseval’s identity gives

(3.9) L2 = a2
0 +

1

2

∞
∑

n=1

a2
n +

1

2

∞
∑

n=1

b2
n,

which leads to (1.7).

4. A family of log-trigonometric integrals

This section considers the family of integrals

(4.1) Sn = (−1)n

∫ 1

0

logn(sin πx)dx.

The special cases n = 1 and n = 2 appeared in the evaluation of L2 given in Section
3. These integrals were analyzed in [2], where the value

(4.2) Sn =
(−1)n

√
π2n

(

d

dα

)n Γ(α + 1
2 )

Γ(α + 1)

∣

∣

∣

α=0

was employed to produce the exponential generating function

(4.3)

∞
∑

n=0

Sn
xn

n!
=

1√
π

Γ
(

1−x
2

)

Γ
(

1 − x
2

) .

From there, the author derived the recurrence

(4.4) Sn+1 = Sn log 2 +
n
∑

j=1

(1 − 2−j)ζ(j + 1)
n!

(n − j)!
Sn−j .

Note 4.1. The initial condition for (4.4) is S1 = log 2. This result, due to Euler,
appeared in detail in [4], page 182. The value S2 = π2/12 + log2 2 is now ob-
tained from the recurrence. These two integrals appear in [9] as 4.241.7 and 4.261.9
respectively. The next two values

(4.5) S3 =
1

4
π2 log 2 + log3 2 +

3

2
ζ(3)

and

(4.6) S4 =
19π4

240
+

1

2
π2 log2 2 + log4 2 + 6 log 2 ζ(3)

do not appear in [9].

Note 4.2. Certain families of integrals can be transformed into homogeneous poly-
nomials by replacing the real numbers appearing in their evaluation by variables.
Each number x is provided a weight w(x) and at the moment this weight assignem-
net is only motivated empirically. For example, introduce the variables

(4.7) z0 = log 2, and z1 = π,
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and

(4.8) zj = ζ(j)1/j .

Therefore, the number ζ(j) = zj
j has weight w(ζ(j)) = j. The weight satisfies

w(ab) = w(a)+w(b). Therefore the weights to π and ζ(j) described above produce
the consistent assignment of weight 2m to both sides of the equation

(4.9) ζ(2m) =
22m−1|B2m|

(2m)!
π2m.

Rational numbers have weight 0.
The integrals Sn are now expressed as

S1 = z0(4.10)

S2 = z2
0 + 1

12z2
1

S3 = 1
4z0z

2
1 + z3

0 + 3
2z3

3

S4 = 19
240z4

1 + 1
2z2

0z2
1 + z4

0 + 6z0z
3
3 .

The recurrence (4.4) gives a direct proof of the next result.

Theorem 4.3. The integral Sn gives a homogeneous polynomial of degree n.

The integrals Sn appear in many interesting situations. For instance, let

(4.11) Ω(z) =
4Γ(z)

z Γ2(z/2)
=

∞
∏

j=1

(1 + z
2j )2

(1 + z
j )

with coefficients {cj} in its Taylor series representation:

(4.12) Ω(z) =

∞
∑

j=0

cj
zj

j!
.

It has been observed that Sn is given by

(4.13) Sn = Hn(log 2)

where

(4.14) Hn(z) =

n
∑

k=0

(−1)k

(

n

k

)

ckzn−k.

5. A related family of integrals

In this section we consider expressions for the integrals

(5.1) Tn,j =

∫ 1

0

[log Γ(x)]
j

[log Γ(1 − x)]
n−j

dx,

for n ∈ N and 0 ≤ j ≤ n. These integrals are intimately connected to the family
{Sk} described in Section 4.

Lemma 5.1. The integrals Tn,j satisfy the symmetry rule

(5.2) Tn,j = Tn,n−j .

Proof. The change of variables x 7→ 1 − x does it. �



INTEGRALS OF POWERS OF LOGGAMMA 7

Theorem 5.2. Let n ∈ N. Then

(5.3)

n
∑

j=0

(

n

j

)

Tn,j =

n
∑

k=0

(

n

k

)

(log π)n−kSk.

Proof. Expand the n-th power of the logarithm of the reflection formula for the
gamma function Γ(x)Γ(1 − x) = π/ sinπx. �

Corollary 5.3. The integral L1 has the value log
√

2π.

Proof. The previous theorem yields

(5.4) T1,0 + T1,1 = S0 log π + S1.

Clearly S0 = 1 and S1 = log 2 was given in Note 4.1. Applying symmetry (T1,0 =
T1,1) gives the result. �

Note 5.4. The case n = 2 of Theorem 5.2 yields

(5.5) T2,2 + T2,1 =
1

2

[

S0 log2 π + 2S1 log π + S2

]

,

that is,
∫ 1

0

log2 Γ(x) dx +

∫ 1

0

log Γ(x) log Γ(1 − x) dx =
1

24

(

12 log2(2π) + π2
)

.

Similarly, n = 3 gives
∫ 1

0

log3 Γ(x) dx+3

∫ 1

0

log2 Γ(x) log Γ(1−x) dx =
1

8

(

π2 log(2π) + 4 log3(2π) + 6ζ(3)
)

.

Problem 5.5. It has been observed using Mathematica that the sum on the right-
hand side of (5.3) is the integral Sn after replacing log 2 by log 2π. For example,
S2 = π2/12 + log2 2 becomes

π2

12
+ (log 2 + log π)2 =

π2

12
+ log2 2 + 2 log 2 log π + log2 π.

This is the right-hand side of (5.3) for n = 2. At the moment, a proof is lacking.

Theorem 5.6. Let Kn = Q(ζ(2), · · · , ζ(n)) and assume log 2 and log π are tran-
scendental over it. Write Sn as

(5.6) Sn =
n
∑

j=0

αn,j logj 2.

Under the assumptions of Problem 5.5 the coefficients αn,j satisfy

(5.7) αn,j =

(

n

j

)

αn−j,0.

Proof. The recurrence (4.4) shows that Sn is a polynomial in log 2 written in the
form (5.6). It follows from (4.4) that the coefficients αn,j are in the field Kn. The
transcendence of log π over Kn, yields relations among the coefficients αn,j . A
simple calculation produces

(5.8)

n−i
∑

j=0

αn,i+j

(

i + j

i

)

logj 2 =

(

n

i

) n−i
∑

j=0

αn−i,j logj 2,
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for 0 ≤ i ≤ n. The special case i = n gives αn,n = α0,0 = 1. Therefore Sn is a
monic polynomial in log 2, a result that comes directly from (4.4).

The further assumption that log 2 is transcendental over Kn produces

(5.9)

(

i + j

i

)

αn,i+j =

(

n

i

)

αn−i,j , 0 ≤ i ≤ n, 0 ≤ j ≤ n − i.

The choice j = 0 and 0 < i ≤ n yields (5.7). The case i = 0 yields no information.
Therefore every element of a row in the array {αn,k : 0 ≤ k ≤ n, n ≥ 0}, except
the first one, is determined by the first column. �

Note 5.7. The first few terms of the undetermined first column are given by
α1,0 = 0, α2,0 = 1

2ζ(2), α3,0 = 3
2ζ(3), α4,0 = 3

4 (ζ2(2) + 7ζ(4), and

α5,0 = 15
2 (ζ(2)ζ(3) + 3ζ(5)). It would be of interest to develop an algorithm to

determine a priori the values of αm,0 without the use of the recurrence (4.4).

5.1. An experimental observation. . Denote by Md the set of all monomials in
the variables z1 = π, ζ(3), ζ(5), ζ(7), · · · with weight d. Then

(5.10) αn,n−j =
∑

m∈Md

C(m)(n − d + 1)d m

for some rational coefficients C(m) to be determined. Experiments have detected
some interesting properties of C(m). These will be explored in future work. For
example,

(5.11) C
(

zi1
1 ζ(3)i2ζ(5)i3 · · ·

)

= C
(

zi1
1

)

C
(

ζ(3)i2
)

C
(

ζ(5)i3
)

· · ·
and the base cases can be computed as follows:

C(z1) = 1, C
(

zk
1

)

=

(k−1)/2
∑

i=1

ζ(2i)
1 − 21−2i

k − 1
C
(

zk−2l
1

)

and C
(

ζ(j)i
)

=
(1 − 21−j)i

ji i!
.

6. Analytic expressions for L3

Attempts to produce a simple form for L3 in terms of known special functions
have produced some elaborate ones. The next two represent the type of expressions
obtained:

Formula 1. The integral L3 is given by

L3 =
3

16
+

(γ + 2L1)
2 + log

√
2(γ + 2L1)

4π2
ζ(3)

+
(γ + log(4π))

8π2
ζ′(3) +

1

16π2
ζ′′(3) +

(γ + 2L1)

2π2

∑

n

∑

k<n

log(k)

nk(n − k)

+
1

2π2

∑

n

∑

k<n

log(k) log(n)

nk(n − k)
− 1

4π2

∑

n

∑

k<n

log(k) log(n)

nk(n + k)
+ 3L1L2 − 2L3

1.

Formula 2. The second expression for L3 is given in terms of the functions

T±(z, m) =

∞
∑

n=1

G±
m(n)

nz
,
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where

G±
m(n) =

n−1
∑

k=1

logm k

(

1

k
∓ 1

n + k

)

.

Define

cγ,π = γ + 2 log
√

2π

then

16π2

∫ 1

0

log3

(

Γ(x)√
2π

)

dx = (4c2
γ,π + 2cγ,π log 2 + 3)ζ(3) + 2(cγ,π + log 2)ζ′(3)

+ζ′′(3) + 8cγ,πT+(2, 1) − 8T ′
+(2, 1) + 4T ′

−(2, 1).

Expanding the integrand on the left produces L3 and other terms containing L1

and L2. The main challenge is in evaluating the double sums, in terms of known
values of special functions.

7. An Experimental Mathematics approach to L3

The weights introduced in Note 4.2 are now extended to include the Euler con-
stant γ defined in (1.8). Therefore γ is the desingularization of the harmonic series
ζ(1). The assignment w(γ) = 1 is consistent with the weights given to ζ(j) for
j ≥ 2. The value w(log π) = 1 is empirical.

The rule that differentiation increases the weight by 1 is motivated by the exam-
ple below. The explicit formulas for L1 and L2 given in (1.2) and (1.7), respectively,
motivated the following conjecture.

Conjecture 7.1. The integral Ln is a homogeneous form of degree n.

This section contains experimental studies conducted in order to decide this
conjecture for n = 3. From the experimental point of view, it is natural to employ
methods for finding integer relations; the celebrated PSLQ algorithm is specifically
designed for this task, but also lattice reduction algorithms like LLL can be used.
Once that we have a rough idea which mathematical constants may appear in the
result, we can build a basis by considering certain combinations (products) of these
constants.

To recover L2, we could start with π, log 2, logπ, γ, ζ′(2), ζ′′(2) and take all prod-
ucts of the form pq where p is a polynomial in π, log 2, log π, γ of degree at most 2,
and q is either 1, ζ′(2), or ζ′′(2). All these products are then homogenized to total
degree 2 using the variable z1 = π. The resulting basis consists of 30 elements and
LLL needs less than a second to find the correct integer relation (a precision of 70
decimal digits was necessary for that).

However, the integral L3 so far resisted this approach. It seems reasonable to
include quantities like ζ′′′(2) and ζ(3) into the basis. By considering all combina-
tions of degree 3 the number of basis elements easily exceeds 100—depending on
the restrictions that are imposed. Although L3 was evaluated to more than 400
digits, no relation could be found. This indicates that either higher precision is
needed, or that another mathematical constant enters the game. Similar attempts
on L4 did not succeed either.

One final experimental observation. High precision numerical evaluation of
the integrals Ln have shown that Ln ∼ n! as n → ∞. The ratio Ln to n! can be
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written as the series

(7.1)
Ln

n!
=

∞
∑

i=1

(−1)i+1 ai

in

for some positive constants ai, meaning that the convergence of Ln to n! is fairly
fast. The first two terms have been numerically determined to be a1 = 1 and a2 = γ
(the Euler constant), but we have been unable to identify the other constants.
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support of NSF-DMS 0713836.
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