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The method of regularized Stokeslets in three dimensions:
Analysis, validation, and application to helical swimming
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The method of regularized Stokeslets is a Lagrangian method for computing Stokes flow driven by
forces distributed at material points in a fluid. It is based on the superposition of exact solutions of
the Stokes equations when forces are given by a cutoff function. We present this method in three
dimensions, along with an analysis of its accuracy and performance on the model problems of flow
past a sphere and the steady state rotation of rigid helical tubes. Predicted swimming speeds for
various helical geometries are compared with experimental data for motile spirochetes. In addition,
the regularized Stokeslet method is readily implemented in conjunction with an immersed boundary
representation of an elastic helix that incorporates passive elastic properties as well as mechanisms
of internal force generation. @005 American Institute of PhysidDOI: 10.1063/1.1830486

I. INTRODUCTION cous forces are much larger than inertial forces in the realm
of microorganism motility, one may use the Stokes equations

There has been enormous success in the study of lowo describe the fluid dynamics. The force-generating organ-
Reynolds number fluid dynamics by representing solutionssm is accounted for by suitable contributions to a force den-
of the Stokes equations as a superposition of fundamentaity term in the fluid dynamics equations. The force of an
solutions, known as Stokeslets, due to the linearity of theorganism on the fluid is a delta-function layer of force sup-
equations. The formulation of the boundary element methoghorted only by the region of fluid that coincides with mate-
for Stokes flow is based on the numerical evaluation of distial points along the surface of the organism; away from
tributions of Stokeslet&the velocity field induced by a point these points, this force is zero. The methodology developed
force in an unbounded regipalong surface$ Slender body here will ultimately allow the coupling of the force-
theories use distributions of Stokeslets and other elemengenerating mechanisms of a spirochete’s internal flagella
along the centerline of a thin tube to approximate the velocwith its passive elastic structures and the surrounding vis-
ity field due to the motion of the tube in the fluid’ cous fluid.

The method of regularized Stokesletriginally intro- The goal of this paper is twofold. First, we present the
duced by Corte? s based on the computation of the velocity regularized Stokeslet method in three dimensions, along with
field due to a distribution of modified expressions for thean analysis of its accuracy and performance for two test
Stokeslet in which the singularity has been removed. Thé@roblems. Second, we present initial results related to the
regularized expression is derived as the exact solution to thewimming of helical bacteria in three dimensions. There is
Stokes equations consistent with forces given by regularizetio restriction placed upon the amplitude or wavelength of
delta functions. In this Lagrangian method, trajectories ofthe helix, and the thickness of the helix is a parameter that
fluid particles are tracked throughout the simulation. Thecan be varied. We examine both the steady longitudinal pro-
method is particularly useful when the particles are placed@ression of a rigid helix that rotates as a result of an exter-
along a surface that deforms due to time-dependent, forcéally imposed torque, and the swimming dynamics of an
driven fluid motion. Since the Stokes equations are linearelastic helical body whose rotation is driven by simple, in-
direct summation may be used to compute the velocity aternal motors.
each of the immersed boundary points in order to advance a
time step. This method is related to boundary integral; sTOKES FLOW DRIVEN BY REGULARIZED
method$ when the forces lie on the surface of a smoothFORCES
connected set. However, the method of regularized Stokes-

lets can also be used in cases where the forces are applied at N the next two sections, we present the method of regu-
a discrete collection of points that do not necessarily aplarlzed Stokeslet based on exact solutions of the Stokes equa-

proximate a smooth interface. tions for body forces represented by smooth localized ele-

One application that motivates this work is the develop-Ments satisfying the incompressible flow Stokes equations,
ment of models for the fluid dynamics of motile spiroch&tes uV2u - Vp=—-go.x—Xx), (1a)
based upon aimmersed boundary framewofkSince vis-

V.u=0, (1b)

@Electronic mail: cort th.tulane.ed . . .
b)HEZJZ?,IiE 22}, ﬁ?éﬁfhﬂﬁ.an;zgﬁe ! where ¢(x) is a cutoff functionwith the property that
®Electronic mail: amedovik@math.tulane.edu Jpx)dx=1. We think of ¢(x) as a radially symmetric,
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smooth approximation to a three-dimensio(gD) delta dis- V2P4(X,Xg) = 87V (X — Xo).
tribution, so thatg¢(x) is concentrated near=0 ande is a ) ) ] .
small parameter that controls the spreading. Due to the linlt iS convenient to introduce the functio®" and B€ as the
earity of the equations, the solution for multiple forces of thefr®€-space solutions of the equations
same_form can be obta_ined by superposition._ Regularization V2GE(X) = ¢ (x), V2BE(x) = GX(x),
techniques that use this type of cutoff function have been
used extensively in other Lagrangian methods in fluidwhich depend only on the specific form of the cutoff function
dynamic&® and convection-diffusiotf processes. ¢.. These functions allow us to express the pressure as

One of the goals in this section is to develop a boundary- €
. i . IGE(X = Xg)
integral representation of Stokes flow with the use of regu- Pi(X,Xo) = 8m—————.
larized forces, since the flow generated by these is given by X,
an integral with nonsingular kernel. One advantage of thigsing Eq.(5a), we find that the regularized Green’s function
f(_)rmulat|on is that it leads to stable numer_lcal con_1putat|onsfOr Stokes flow is
since there is no need to evaluate nearly-singular integrals of
the type that arise in the presence of a singiart inte- S (xxg) = 877[ #BE(X — Xo)
grable kernel. However, since the cutoff function ap- 7o X I
proaches a delta distribution &s- 0, the theory developed ) ] o ] o )
here includes the traditional formulation in that limit. An- Thls_expreSS|on §at|sf|es exactly the mgompr_essmlllty condi-
other advantage is that the solutions are well defined everyion in Eq.(5b). Since the stress tensoris defined as
where even when the forces are not applied on a closed sur- Uy
face but along curves or even discrete points. Those cases 0ik(X) == dikp(X) +M<g + X)
cannot be approached with the traditional boundary-integral K !
formulation, since they lead to singular nonintegrable kerwe find that
nels. In these cases, the regularization parameter plays the
role of a physical parameter that me_rely g_ives the e_xtqnt of ﬁk(X-Xo) __ dkpf(X,Xo) + M( 95 (X,Xo) . 5S€kj(X,X0)>.
the region where the force is applied since the limit as Xy X%
e— 0 of the resulting velocity does not exist. (8)

We introduce the regularized Green’s function for the

velocity S%(x,xo) and write the solution of Eq$la) and(1b) ~ For a given radially-symmetric cutoff functiog,, the auxil-
in the form iary functionsG¢ andB¢ are derived first, and the solution is

found from Eqgs.(6)—(8).

(6)

- §G(x - Xo)} : (7)

1
Ui(x) = == Sj(X,Xo)g;- (2
' SWMSGJ o) A. A specific choice of cutoff ¢,
(Here, and throughout this manuscript, we use the Einstein In our computations, we use the cutoff function,
summation conventionThis expressiorg; is also known as 4
aregularized StokesleSimilarly, we write the pressure and bX—Xo) = %
stress tensor associated with the flow as 8m(r’+ €

9

1 . wherer =|x—Xg||. The exponent in the denominator controls
p(x) = ETPJ' (X.X0)Gj. @ the decay of the function ds| — <. In Sec. Il we show that
the regularization error in the numerical approximation is
1 O(€?) if the cutoff function has finite second moment. This
o(x) = gTTﬁk(X,Xo)gj- (4 requires the denominator to behave asymptotically"asith
m>5. We choose the function above for convenience in ana-
We note that the Stokes equati¢he), implies that the Iytically calculating various moments ofp.. With this

regularized velocity Green'’s function must satisfy choice, one can establish
IP{(X,Xo) 2r2 + 5¢
2 0 _ € —
V2§;(X,Xo) = T == 875 (X~ Xo) (5a) Pi(x,Xo) = (X = Xo,j)(|,2+—62)5/2' (108

for any j andk and whered,; is the Kronecker delta. Simi-

larly, from the incompressibility conditiofilb) we conclude r2+2¢ (6= %)(§~%)

that 3el'(X’XO) = 5” (r2+ 62)3/2 + (r2+ 62)3/2 ) (10b)
Bisg (5b) — B(X — Xo,) (X = X0.,) (X — X0

3Xi TiEjk(XaXO) = (r2+ 62)5/2
for anyj. The last two equations are equivalent to the Stokes &2
_ _ : i = X0i) O + (X = Xg.1) S + (X — Gij
equations written for the Green’s functions. _ 3 = %)) ()2(1 ;Oél)z it (%~ o) ”].
We take the derivative of E5a) with respect tog, sum (re+e)
overk, and use Eq(5b) to get the relation (100
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These expressions are regularized versions of the well- n
known fundamental solution of the Stokes equations. The
regularization modifies the fundamentaingulay solution
particularly in the near field;, <O(e), while in the far field
e<r the modification is negligible. In the limit as— 0, the
cutoff function approaches a delta distribution, and the above
expressions tend to the singular solution of the Stokes equa-
tions. This is, in fact, the case, as one can verify thatrfor
#0,

. X| = Xo,)
lim P(x,X0) = P(X,Xo) = 2—1—1—( s
e—0 r
s (% — X )(X % ) FIG. 1. Schematic of the volume used to derive the boundary integral for-
“mosej(xyxo) — S‘?(Xaxo) = _rlj_ + A ,lrg | J ’ mulation of Stokes flow.
€—

IimOTﬁk(x,xo) =T (X.Xo) 1 1
¢ us(x) = S—Si(x,xo)gj, (X)) = —Ti(X,X0)g;,
T 8m

_ =606 = X0,) (X = Xo,) (X — Xo )
= = ,

and note that the coefficients are arbitrary to find that

, ando must satisfy the following reciprocal relation for ajty

whereS{ is known as a Stokeslet.
1 9 .

B. The boundary integral equations 877#(9_Xk(s€jgik = MU T = Ujb(X = Xo). (11)

It is well known that Stokes flow in smooth bounded sets_, . . . . . .
This is our version of the Lorentz reciprocal identity.

may be represented in terms of boundary integrals involving We now let€) be the exterior of the solid body inside

the boundary values of the velocity and the surface f¢see a large ball containind (refer to Fig. 1, and we integrate
Ref. 1). This representation is often derived from the Lorentz Y n ® g % we integ
the above expression ove) to get

reciprocal identity relating two solutions of Stokes equations,
and identifying one of them with the flow generated by a 1 p
point force of strengttg located atx,. Here we present a 8| %
modified version of the reciprocal identity, where one solu- TH I 7%
tion is identified with the flow due to a regularized force.

Let D be a solid body and assume thats outsideD. :f U;j(X) (X = Xg)dV(x),
Let (u,p) satisfy @

[S;(X,X0) aik(X) = st (X) Tijp (X, X0) JAV(X)

which contains th@onsingularkernelsS® and T€. Using the

pVu=-Vp=0, V-u=0, divergence theorem we write

and define the associated stress tensor by 1
‘f [S (X, X0) T (X) M = et (X) Ty (X, Xo) Ny JAS(X)
= =DSy, + (%_FO?—U) 877/"“ 9]
Oik pok+ m X o% .
. . . = f U;j(X) pe(X = Xg)dV(X),
Let (u¢,p) be the solution of the Stokes equation with a a
regularized force of strengtl centered akg, ) )
wheren is the outward unit vector normal to the boundary

uV2us- Vps=-gp(x—-x,), V -u‘=0, Q. The boundary(} includes the boundaryD of the solid
} . body as well as the boundary of the ball containihgTak-
and define the associated stress tensor by ing the limit as the radius of this ball tends to infinity, we find
€ € that the only contributions to the surface integral above that
. . aus  dug :
o =—p ik"‘,u(g + 5) remain are the ones from the surfacedf Then one can
k i

write the last equation in terms of the boundary tractipn

Sincedoy(x)/ x:=0 andaos (x)/ dx =g bx—xg), we find =-oy Ny (since the normal vector points in®) as

that . .

_ —f Sij (X, %o) fids(x) = —f Ui (X) T (X, Xo)nds(x)

Ly € 8mu ) ip 87J p

Ix (Uf o = Uiay) = Ujgj (X = Xo).
k

:J U;j(X) de(x = Xg)dV(X). (12
Q

We can now substitute the expressions
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For comparison, the usual derivation of the boundarylll. THE METHOD OF REGULARIZED STOKESLETS

integral formulation of Stokes flow is done using a point

force instead of the regularized force used here. The resultin N this section, we describe the numerical method and
the singular case, found in Ref. 1, is the formula provide error analysis. The method is based on a simple dis-

cretization of Eq.(15). For N Stokeslets located along the

1 f §( It dstx) surface of the solid bodip, we approximate the fluid veloc-
8wl p j XX TidSX ity at any pointxg with
1 0 B 1 N 3
- 8_ ui(X)Tijk(XvXO)nkdqx) - uj (Xo), (13) uj(XO) = —E E Séj(xnixo)gn‘iAn, (16)
7D 87 i o1 i=1

which can also be obtained from E@L2) after taking the

limit e— 0 and passing the limit inside the integrals.
Since D represents a solid body, the velocity insibe

must necessarily satisfy the zero-deformation condition

where g,; is the ith component of the force on the fluid
applied atx, and A, is the quadrature weight of thith
particle. In the rest of this section, we analyze the two types
of errors associated with this approximation: the regulariza-
au Uy tion error on the left side of the equation and the discretiza-
— +—==0. . . . . .

X % tion error in the integral approximation.

Consequently, the pressupeis constant insideD and the A The regularization error

stress tensor inside the solid body reduces to a constant mul-  comparing the left sides of Eq15) and Eq.(16), the

tiple of the identity matrixoy=-péy. We conclude that for  error due to the regularization, is introduced in the ap-

eachj proximation of the integral
d
—[S: (X,Xg) o (X) ]dV(x) = 0,
fD D1 (XX o) JAVX) J RUCREACEPOLIVEN 17)
R
so that if we integrate Eq11) in the regionD and use f as ) o )
the outward normal t®, we find that for the velocityu which is continuous across the boundary

dD but whose gradient is typically discontinuous there. The
13 . order of the approximation of this integral depends on how
—2 Ui () Tijic (X, Xo) nids(X) far the evaluation poink, is from dD. In this analysis we

87 .
Tik=1/D will use the specific cutoff in Eq(9) although other cutoff
functions can be designed based on the analysis. We note that
= 5 Uj(X) (X = Xo)dV(X). (14 for this radially symmetric cutoff we have

Adding Eq.(12) to Eq.(14) and using the continuity of the f 5.00dx= 47TfR2 Lllrzd
velocity ondD, we arrive at Ry <[IX| <Ry € R 8m(r2+ )72

r3(2r?+5€) | R

1
fRS U;(X) pe(X = X)dV(X) = = 8 /-LfD S (x,xp)fids(x). = 212+ 2)572
T
(15

Equation(15) is the formula that provides the basis for the
method of regularized Stokeslets discussed next. We note
that our numerical method computes the solution of #q)
based on elements of the form given in E8), whereg is

the Stokeslet strength. Since the Stokeslet strength representkis inequality shows that although the cutgif has infinite
force exerted by the body on the fluid, it has the opposit&support, most of its masd —¢?) is concentrated in a ball of
sign as the tractiong=—f. radius R,=\5¢/2. If the velocity components;(x) satisfy

We point out that, since the Green's function in Etf)  |y| < C and since the cutoff function is positive, we have that
is regular, the formula is valid even if the traction is concen-

trated at a single point. Consider, for examge,dD and the
traction given byf,(x)=f;6?°°(x-2), where &° is a two- LS Uj(X) pe(x ~ X)dV(x) = e Uj(X) he(X ~ Xo)dVI(x)
dimensional Dirac delta. Then E(L5) implies that =

Ry

From this one can check that

J b (X)dx < € wheneveR, = V5¢/2 < R;.
Ry<Ix|

+0(é),
1 ~
f . U0) $elx =x0)dVX) = = 2 (@ Xo) iy whereR,=\5e/2,
For any multi-indexk, we define thekth moment of the
which is also a regular expression. cutoff as
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N S (x X0 gidsX)

87T,U« D i=1

M(de) = f xKep (x)dx.
]RS

Since ¢(x) is radially symmetric and scales like(x)
=1/E4,(x/ €), we have that = 8—2 2 S (s,50)9(9I(9)ds, (18)
THn=1Jp,i=1
Mi(e) :ckf rk2¢ (r)dr = éM (), whereJ(s)=|dX(s)/ 5| is the Jacobian of the transformation

RS ands, is the material point that corresponds to the evaluation

point Xo. The last integral can be approximated by any

quadrature rule using points indexed dpyvithin each patch,

so that

whereC,=0 for |k| odd due to symmetry.

We assume first that the field poirg is located in the
fluid such that digixy,JD) > R. and that the velocity(x) is
smooth enough in a ball of radiug. centered ak, for the 1

. . o d
following Taylor expansion to be valid: 8l o |21 S (X, X0)gids(x)
Ju; (Xo) N3
Uj(x) = Uj(xo) + 2 04— X0~ IS 5 (5,900 (8)s) dsidsw, (19
8Tino1in q
3
?U;(Xo) where (As;As,w), represents the weight associated with
3 1 q
¥ k,zl (4= X0 0% = XO') X DX + O =l pointq in patchn. In the computations presented here we use
the trapezoidal rule which requires estimates of the second
Then, derivatives of the integrand in order to find an error bound.
For the two-dimensional trapezoidal rule, an error estimate
f Uj(X) (X = Xo)dV(X) on a single computational cell is given by
[Ix|<R¢
2u f f F(s1,5,)ds,ds, ~ 7As;As) E F(sT\s))
= Uj(Xo) X —Xo)dV(X) + 2 —07]—(x0) cell mk=1
< Xk
h=Fe . ~ ASAS,(PFIOD) + A, ASYPFIOD), 20
X f XX b (x)dV(X) + O(€%) = Uj(x) + O(€), where(s]',s§) represents the coordinates of thek corner of
IIXI<Re the cell, and

where the first-_order derivative terms d(_) not appear due to  F(s;,s)) = §(S1,5,5)9i(51,52)I(S1,Sy).

the symmetry inM;(¢,). The equation indicates that the _

regularization error i©(e?) when distx,, JD) > R.. From the reg_ulanzed Stokeslet formula, E#jOb), one can
When distx,, dD) < R, the field pointx, is too close to ~ deduce that, ig=ex,

the boundary ofD and the Taylor expansion is not valid. 1

Instead, one expansion is valid negrand outside oD, and Sj(x,xo) = ;Séj(gi £,

a different expansion is valid negg and insideD. However,

sinceu; is continuous but its gradient is typically discontinu- and therefore

ous acrosgD, the symmetry irM(¢,) which eliminated the IS (X X 19

O(e) error is no longer available and the regularization error Si(x.Xo) =2 Si(€.80)

is only O(e) when 0<dist(xy, /D) <R.. I A&
and

B. The discretization error

PSi(x,x0) _ 1 PS (£ &)

If we approximate the left-hand side of E@L5) with X Xy € 0EDEn

uj(Xo), the equation reduces to a Fredholm equation of the

first kind for the tractiorf for a given surface velocity. The Since the functions Sf(g &), [&S€(§ &)1/0&, and

kernel on the right side of Eq15) is nonsingular but its [(923‘(§ &)1/ 0&0&, are bounded and assumirgy(s;,s,)

derivatives can be large and they enter into the estimate afnd J(s1 s,) have bounded derivatives up to order 2, the

the error in the quadrature EQL6). trapezoid rule error in Eq(20) for a single computational
Let a pointx&€ dD be described in Lagrangian form by cell is

x=X(s,t), wheres=(s;,s,) is a material point on the surface. c C

We assume that the surfag® can be covered by patch®g Err = {ASEASZ<_ + 22 4 _3)}

for n=1,...,N and that there is a smooth function that maps € €

each patch to a rectangle such that the Jacobian of this map o Ct , Cs

has no singular points. In this case, the integral on the right +0 ASlAsz(_ + 2 + _3) .

side of Eq.(15) can be written in terms of the Stokeslets € €

strengths as We mention that better estimates of quadrature formulas for
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weakly singular integrals have been derived elsewlisee,

for example, Ref. 12 In order to estimate the global error, S‘j(x,xo)fibds(x) =0,
we multiply the local error for a single computational cell by P

the total number of computational cells, and conclude that

the method of regularized Stokeslets in Efj6) approxi- J uF(x)Tﬁk(x,xo)nkds(x)ZSW f u]-b(x)gbf(x—xo)dx.
mates Eq(15) with accuracy D D

We note that the integral on the right-hand side of the last
equation is approximately equal u{)’(xo) when xq is well
AS% Ai insideD (as long as the support @i, is insideD), it equals
O\z)*0 8 +O(e) 21D 4 whenx, is well outsideD and is a i b
€ 0 pprommatel)éuI (Xo)
whenxg is on the boundary since the integral includes about
half of the support ofp..
with g=1 at evaluation pointg, on or near the boundagD Equation(22) then reduces to
and withg=2 at points sufficiently far fronaD.
f UPO0) belx = Xo)lx = f U)X = x)dV(X).  (23)
D D

C. Verification of rigid body motion

We expect that if the boundary of a closed fluid domainThis shows thauj(x0)=u}’(xo) for points insideD on account
moves with the velocity of a rigid body in Stokes flow, then of the arbitrariness of the support ¢f.
the entire enclosed region will move as a rigid body. In this
section, we verify this analytically. In the following section,
we present numerical evidence that the fluid velocity fieldy, ExaMPLE 1: TRANSLATING SPHERE
inside a translating sphere, computed using regularized
Stokeslets, is consistent with rigid body motion. Consider the fluid motion produced by a solid sphere of
Our numerical method is based on the Lorentz reciprocatadiusa translating with velocityU=(0,0,U;)T in a Stokes
identity Eq. (11). When applied to a fluid domai®, the flow of viscosity u. The exact solution for the velocity field

identity yields u=(uy,U,,us)" at a pointx=(x;,%,,Xs) " outside the sphere is
(see, for instance, Ref. 13
3aU;( 1 a2
1 1 Uy (Xq, X0, X3) = T2 \ 375 X1X3,
_f S (x,o) fids(x) + _f Ui (X) Tk (X, Xo) i ds(x)
8mu ) ip 87Jip
Up(Xq, X x)—3au3(i—a—2)xx
=f Ui(X) el x = Xo)AV(X). (22) T e o
D
3aU;( 1 a2 au a?
Us(Xq, X0, X3) = 4 s(ﬁ - E)X?" 4_r3<3 + F) ,
Now supposéJ and Q2 are constant vectors. Based on Egs.
(5a), (5b), and(8), we find that 3aUsx,
p(XliX21X3) = pO + E r3 . (24)
ITE(X,Xo) Herer is the distance from the point to the center of the
— == 8mGij (X = Xo) sphere. Note that, inside the solid sphere, the velocity is

M =(0,0,U,)". The hydrodynamic traction on the sphere is

and f(x)=- ?;—ZU. (25)
The traction on a translating sphere is indeed independent of
position. This is only true for a sphere due to symmetry.
i[(ﬂ X X) T (X, X0) ] = = 87( X X): (X = Xo). In order to apply the method of regularized Stokeslets to
Xy e e this test problem, we discretize the surface of the unit sphere
(a=1) using a six-patch structured grid. It is constructed by
placing the sphere inside a cube with ldix N uniform grid
These equations can be used to prove that if the boundaiynh each face. The computational grid results from the inter-
velocity of the fluid volumeD is consistent with rigid-body section of sphere’s surface with lines joining the center of the
motion, u’=U+Q X (x-x,), then the corresponding traction sphere and the nodes on the ctibin this way, the approxi-
is fibz—o-ijnjzpni and the following identities can be estab- mate grid size on the sphereAs=27ma/4N. At each of the
lished: points on the surface, we apply the force in E2p). Using
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Grid size 6x24x24

FIG. 2. L2 norm of the error in the third component of

velocity on the sphere as a function of the regulariza-
tion parametere. The surface of the sphere was dis-
cretized using a six-patch 2424 fixed grid.

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Eqg. (16), we can compute the resulting velocity at the pointsthe error at a point on the surface of the sphere. The top

on the surface, and compare it to the exact solutiordashed line is the error at a point half a radius outside the

(0,0,Uy)". sphere. The exact value of the velocity is given by the sur-
We examine the errors in the third component of surfacdace integral on the right side of E¢L5) which can also be

velocity with U;=-1. Figure 2 shows the dependence of theobtained accurately by computing the volume integral on the

L2 norm of the surface velocity error on the regularizationleft side of Eq.(15). We do this numerically using a very fine

parametek for a fixed six-patch grid, 24 24 points on each grid and the exact velocity field in E§24).

patch. This gives a discretization size of abdig=0.065. Figure 5 shows the error in the computed velocity as a

Note that for large values @fthe error grows linearly and as function of the regularization parametert both a point on

€ is reduced, the error initially decreases but is ultimatelythe surface of the spheftp graph and a point in the exte-

overtaken by the increasing quadrature error, as suggested kigr of the sphere far from the surfa¢keottom graph Note

the error bound in Eq21). that on the surface of the sphere this error increases linearly
Figure 3 shows th&2 norm of the surface velocity error for large values ofe. The point corresponding te=0 was

for a fixed € as the grid is refined, from a six-patch X422  computed by avoiding placing a force vector at the evalua-

grid down to a six-patch 192192 grid. Note that for the tion point. The bottom graph shows the velocity error at a

three finest grids, the regularization error dominates, and thpoint farther from the sphere where the computation is more

finer discretization is not advantageous. For the coarsesiccurate. These errors are smaller in magnitude and depend

grids, the quadratic dependence &siis apparent. guadratically one as the analysis in the previous sections
Figure 4 shows the quadrature error in the computationndicates. For small values of, the discretization errors

of the surface integral in Eq19) at two pointsx, for various  dominate and are nonzero since the grid is fixed.

As=As;=As, and fixede=0.01. The bottom dashed line is We verified that the velocity field given by our model

inside the sphere is consistent with solid body motion. We
imposed the surface boundary condition to be the velocity

o6 Regularization, & = 0.01 U+x X Q, whereU=(0,0,1)T andQ=(0,0,1)T. This repre-
0.14
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grid size FIG. 4. Log-log plot of the discretization error in the computation of the

velocity field due to a translating sphere. The two dashed lines show the
FIG. 3. L2 norm of the error in the third component of velocity on the error at two different locations in space. The regularization parameter was
sphere as a function of grid size for a fixed regularization parameter fixed at e=0.01. The solid line has slope two, indicating a discretization
=0.01. error O(As?) for small values ofAs=As,;=As, (large abscissa valuges
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Error in the velocity at the point (1,0,0)
T

0.07 T T T T T

FIG. 5. Numerical computation of the velocity at two

o 002 004 006 008 01 012 014 016 0.8 0.2 different points in the fluid for various values ef The
Regularization parameter, & discretization was fixed with a 6060 grid on each of
x 107 Error in the velocity at the point (1.5,0,0) the six patches. The top graph shows the velocity error
4 T T T T T T T T T at a point on the surface of the sphere; the bottom graph

shows the velocity error at a point far from the surface.

0 i f 1 1 ] ) ] ) 1
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Regularization parameter, ¢

sents translation and rotation of the surface of the spherequations allows us to represent these forces in terms of re-
Given this surface velocity, we computed the correspondingistance matrices acting on the velodityand angular veloc-
Stokeslets strengths as described in the following section arity © vectors of the rigid motior,

used them to compute the velocity field on the plas®.2

inside the sphere. Thecomponent of the velocity field at all F=-uTU+PQ), (28
points was 1+4< 1074, giving the correct rate of translation.
The radial component of thry velocity of all points was L=-u(PU+RQ). (29

+1 X 1075, indicating that, in addition to the translation, the
planez=0.2 inside the sphere simply rotates. The rotationaHere 7, P, andR are 3X 3 resistance matrices that depend
velocity of all points(x,y,0.2 was computed to be 1+5 only upon the geometry of the solid body.

X 107 times \x2+y?, indicating the correct angular velocity. In the case of a sphere, it is apparent due to symmetry
that the translation and rotation resistance matrifasd R

A. Computation of resistance matrices are constant multiples of the identity, and tft 0. In fact,

for a sphere one can easily compute the total hydrodynamic fdfcim-

In this section, we discuss the computation of resistancduced by a translating sphere with constant velotityoy
matrices that describe the linear relationship between the tdhteégrating the traction in Eq25) over the surface of the
tal hydrodynamic force and torque and the translational anaphere to get t.he cIassmgI resEI:t—Gw_,uaU. In the case of
angular velocities of a rigid body moving in a Stokes flow. & SPhere rotating about its center with aggular velo€ty
We compare the resistance matrices generated by the methfif total hydrodynamic torque is=-8mua’(d. Therefore,

of regularized Stokeslets for a moving sphere to those knowF_he resistancc_a ma;rices for a sphere of radausare 7
from classical theory. =6maZ andR=8ma’Z.

The total hydrodynamic force exerted on the solid whose The method of regularized _St0|_<esle_ts has been presented
boundary experiences the tractibis as a way to (_:ompu_te 'Fhe yelocﬂy field in St(_)kes flow result-
ing from a given distribution of forces localized at a set of
points. Consider the discretization of the surface of an object
F :f f(x)ds(x) (26) by the points X;,Xo,...,Xy, and consider Stokeslets of
D strengthg;,0,, ...,0y applied at these points. The linear re-
lationship between the velocities and the forces at these

d the total hydrod ic t is gi b
and the total hydrodynamic forque IS given by points may be calculated froi6):

L= f x X f(x)ds(x). (27) 1 22
D um,j = _E 2 sej(xnaxm)gn,i An- (30)
THn=1 i=1
In the case of a rigid body, we decompose the force into
a drag force due to translational motion of the body, and a-leregn:(gnyl,gnyz,gnyg)T, j=1,2,3, andn=1,...,N. We may

force due to rotation of the body. The linearity of the Stokeswrite this relationship in matrix vector form,
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1 TABLE I. Computed diagonal entries of the resistance mafriar different
u= —Ag, (31 regularization and discretization parameters.
8mu
€ Grid size
where the vectors of lengthNBare u=(uy,Us,...,uy)" and 6X12X12  6X24X24  6X36xX36  6x48x48

9=(01,95,...,9n)", and A is a AN X 3N matrix whose entries

. N 19.36 19.38 19.39 19.39
depend upon the coordinateg x», ..., Xy, the regularization
. N 0.05 18.88 19.09 19.10 19.10
parametere, and the surface discretization.
. . . .001 16.47 18.33 18.69 18.80
Conversely, one may also use the linear relationship in
ct 18.85 18.85 18.85 18.85

Eqg. (31) to compute the Stokeslet strengths that generate 3o
specified velocity of the solid body. The matrik is a dis-
cretization of the single-layer potential on the right side of
Eg. (15) which is known not to be invertible in general. For
example, consider a normal force of constant magnitude ap- -1.6x10° 1.2x10° 1.8x101°
plied to the surface of a sphere. This pressurelike force will ~ p=| 40x10° -1.0x10° -2.2x 1028,
not cause any fluid motion due to the incompressibility in B 9 g 9
Eq. (5b) regardless of the magnitude of the forces. In alge- S1x 107 1.2x10 7.0x 10
braic terms, the matrix4 has a nontrivial null space and

therefore, a unique solution of E@1) is not guaranteed. For 25.09 41x 101 1.2x 1010
the computation of the total forde in Eq. (28) on the sur- R=| 4.0x 1010 25.09 —2.2¢10°
face of the sphere, this is not a problem since the symmetry _ 10 10

of the sphere implies that forces of the fogix) =cn(x) will 1.0>10 3.8x10 25.09
have no contribution to the value Bf In our computation of
the Stokesletg from Eq.(30), we found that using the itera-
tive proceduresMRES with zero initial guess works well.

In order to illustrate how the method of regularized
Stokeslets can be used to assemble the resistance matri
7,P, andR, we apply a constant velocity of=(1,0,07 to
each pointx;,j=1,2,...,N on the surface of the solid, in a

fluid of viscosity u=1. We then use Eq31) to solve for the ¢ 75 the regularization and discretization parameters are
Stokeslet strengthg. The traction then is given by=-g.  \afineqd. By looking at the last column, corresponding to the
The traction is mt_egrated over the boundary _to arrive at th‘?inest grid, one can appreciate the linear convergence in
tot_al hydronynam|c_force vectdF. However, in this case o, e other hand, by looking at the row corresponding to
U=(1,0,0", and 2=0. Using Eq.(28), the entries of the €=0.01, one can see the convergence as the discretization

first column of the translation resistance matfixmust be g, ¢ i reduced. Table Il presents similar convergence results
equal to the total hydrodynamic for¢e Similarly, the first ¢ R

column of the resistance matrfi®” must be equal to the total

hydrodynamic torque computed by integrating X f;,

j=1,2,...,N over the boundarysee Eq.29)]. The remain-

ing columns of7 and P are computed by applying transla- V- MOTION OF A RIGID HELICAL BODY

tional velocities in the other two coordinate directions, and In this section. we consider a riaid helical tube of non-

using Eq.(31) to solve for the forces. A systematic applica- . o : 9 .

tion of rigid rotations about each of the three coordinate axe&®0 th|ckn_ess N a vIScous fluid. We present comparisons of

enables us to assemble the rotational resistance matrix ~ Oo' numerical results with experlmgntal r?su'ts on two re-
We calculate the resistance matrices for a sphere of re{‘-”‘ted test_ problem; based upo_n_thls hehcallgeome{tiy:

dius a=1, where our discretization used a six-patch grid,computatlon of resistance coefficients for helical tubes and

48x 48 points on each face, and a regularization paramete(b) computation of the forward progression of a rigid helix

€=0.01. For these values, the analytical solution for theséjue to an externally imposed torque.
matrices iIs7=6nwZ~ 18.8%, R=8wZ~25.13%, andP=0.
The computed values of the matrices are

Since the method of regularized Stokeslets has been applied
to points on the surface of the sphere, we expect the error in
the computation to b&(e) in addition to errors in the itera-
tive solver and the computation of the global quantities. The
@ifdiagonal entries of the matrices show very little error
while the nonzero diagonal entries show an error of abeut 5
Table | presents the convergence of the diagonal values

TABLE Il. Computed diagonal entries of the resistance maRifor differ-

18.80 1.3x 109 -6.7x 10710 ent regularization and discretization parameters.
7=1-9.8x10%° 1880 -25x10|, . Grid size
-7.1x101° 15x1071° 18.80 6X12x12  6X24x24  6x36X36  6x48x48
0.1 27.09 27.16 27.16 27.16
-33xX 1010 —16%x10° -23%x10° 0.05 25.53 26.08 26.10 26.11
,PT: —1.4% 10—10 1.5X 10—11 1.2% 10—10 0.01 19.62 23.89 24.80 25.09

10 10 1 Exact 25.133 25.133 25.133 25.133
5.3X 10 3.9X 10 1.9x10
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TABLE IIl. Experimental measurement of resistance coefficients as reported in Ref. 14. All coefficients were
normalized by Gru.

L (cm) L/x ¢ (deg Tas Pas Ras
5.2 5 55 0.67 0.032 0.076
7.8 5 39 0.71 0.038 0.060
9.4 5 20 0.74 0.018 0.031
3.1 3 55 0.48 0.023 0.053
7.5 7 56 0.91 0.053 0.130
A. Resistance coefficients signed helical tubes with parameters similar to those

specified in Ref. 14. The tube is constructed based on a he-

In Stokes flow, the linear relationships in Eq28) and . .
LI}_cal centerline(x.,Ye,Z;) given by

(29) between forces and torques and translational and ang
lar velocities of a rigid object involve resistance matrices X.(S) = Rcod27z/N), Yy.(S) =Rsin(2mzJ/\),

whose entrieslepend only upon the geometf/ the object.

Purcelt* designed a physical experiment that could be used 0<z=<L,

to back out these resistance coefficients. A helical wire was

dropped under its own weight into silicon oil. The experi- WhereR is the radius of the helix ana is the pitch. We
ments measured the wire’s sinking speed and rate of rotatiogonsider only helices wheteis an integer multiple ok. We

and then used those values to estimate the resistance coeffssume that each cross section is circular with raajusp-
cients from mathematical formulas. In particular, the force resenting the thickness of the tube. This tube is discretized
the linear velocity and the angular velocity, were assumed t#Vith M cross sections along its length withpoints each.

point in the direction of the helix axis, which is equivalentto ~ We performed computations with a range of thickness
reducing Eqs(28) and (29) to scalar equations relating the Parameters, and found good agreement with the experimental
vector magnitudes |inear|y W|th proportiona”ty Constantsdata for helical tubes with diameters in the range of about
~uT3s —pPas and R 33 (since the axes of the helices are 0.5-1.0 mm, equivalent to 18—-24 US standard gauge wire.
assumed to be aligned with tizeaxis). The specified helix We present results for a helical tube diameter @f

parameters weréd, the ratioL/\, and the pitch anglep ~ =0.025 cmin Table IV. The regularization parameter was set
defined by to €=0.01 and we computed the corresponding resistance
coefficients as described previously for a grid consisting of
27R 400 i d 6 poi i
tang=——. cross sections and 6 points per cross section.

The resistance coefficients in Table IV compare very
The helix radiusR was allowed to vary in order to design the well with the experimental values in Table Il for all of the
helices that fit the other parameters. Results deduced fro'plaram(_eter_ combinations. To assess the eﬁect_of the _tubes
discretization, we chose the parameters associated with the

Purcell's experiments recorded in a lab notebook were inf, f Table IV and d th di
cluded in Ref. 14, and are shown in Table Ill. However, therg 'St row of Table and we computed the corresponding

was no information specified on the thickness of the Wiregt':‘SiSt"’mCe coefficients for two grids of different levels of
used in these experiments refinement while keeping=0.01. The results in Table V

For comparison, we use the method of regularizeoshow additional improvement in the agreement with finer

Stokeslets to calculate the resistance coefficients of the help_lscretlzatlons.

cal tubes, as we dlq for the sphere in the preceding secuo%_ Rigid helix: Externally imposed torque
Although our numerical experiments involve external forces
as well as externally applied torques that do not exist in  Spirochetes are an order of bacteria characterized by a
Purcell's experiment of a sinking wire, the resistance matri-unique cellular anatomy and mode of motiﬁﬁ’f’ and in-

ces should, nevertheless, be equivalent, since the entries ddude the causative agents of syphilis and Lyme disease. The
pend only upon the geometry of the helical tube. We delocomotory ability of these pathogenic spirochetes enables

TABLE IV. Numerical computation of the resistance coefficients §810.01 and a grid of 400 cross sections
and 6 points per cross section. All coefficients were normalizedyy. 6

L (cm) L/X ¢ (deg Tas Ps3 Rz

5.2 5 55 0.6102 0.0303 0.0816
7.8 5 39 0.6823 0.0354 0.0736
9.4 5 20 0.6605 0.0141 0.0274
3.1 3 55 0.4356 0.0221 0.0496
7.5 7 56 0.7938 0.0391 0.1294
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TABLE V. Numerical computations of resistance coefficients lfer5.2, Pitch = 4
L/A=5, pitch angle 55°, and two grids with different levels of refinement.
All coefficients were normalized byfu.

Grid T3 Pa3 Ras
6400 0.6102 0.0303 0.0816
12X 800 0.6220 0.0316 0.0850 Pitch=8

B i R e
them to screw through viscous fluids and mucosal surface

The method of locomotion of these bacteria that lack exter
nal flagella has been puzzling. Their helical shape is im- Pitch = 12
parted to them by a rigid protoplasmic cylinder. This cylinder
is surrounded by a membrane referred to as the outer shea
The region between the outer sheath and the Cytoplasm s s N N N ™ N Nt ™ et
membrane is termed the periplasmic space. Within this re
gion are a number of internal or periplasmic flagella that
attach at either tip of the protoplasmic cylinder. There is
evidence that these periplasmic flagella rotate in a manng
similar to other bacteri& The rotation of these periplasmic
flagella cause the spirochete to swim.

Berg'’ proposed a model for spirochete motion in which
he showed that an external flagellum was not needed to pre Pitch = 20
duce the torque required to propel the helical cell. He as
sumed that the protoplasmic cylinder is semirigid, that the
periplasmic flagella rotate in the same manner as eXterNARIRNINI AU RIUWIRIUI WM
flagella of other bacteria, and that the outer sheath is flexibl
and free to rotate about the protoplasmic cylinder. Howevel
there is evidence, at least ireptospira that the outer sheath Pitch = 24
is quite fluid!® suggesting that it might not rotate as a single
sheet. Ignoring the internal structure of the cells, Ligh%ﬁﬂl
used a slender body approximation to analyze the fluid VEVNAARAAAAAAAAAAARARANAAANRNN
locity field in the vicinity of swimming spirochetes using
helical distributions of Stokeslets and dipoles. As discussea
above, Purcelf later examined the relationship between riG. 6. Finite helices of varying pitch. The lengttiewed from the side
forces and torques and velocities of rotating helical objects imadius of the centerline, and thickness were held fixed.
a viscous fluid.

In order to gain insight into spirochete motility, we turn
to the steady state rotational motion of a finite length, finite
body width, helix. We have demonstrated that we can use theadius of 0.088um. As shown in Fig. 6, we varied the num-
method of regularized Stokeslets to calculate resistance méer of pitches per body length, keeping the other helix and
trices for solid objects that describe the linear relationshipgeometrical parameters fixed. Once we computed the ratio of
between drag and rotational velocities and total force. Nangular velocity to translational velocity we determined the
restrictive assumptions about these solid objects need to beumber of rotations required for the organism to progress
made, such as slender bodies or small amplitude wave formene body length. Figure 7 shows the number of rotations as a
For a given helical geometry and width of the body, wefunction of the number of pitches per body length. If one
would like to compute the ratio between angular spget) considers this a measure of swimming efficiency, we see that
of the turning helix and the forward tranlational spe@d).  either too few pitches or too many are less efficient than the
This is done as follows. Once we have calculated the resignidrange values of 10-18 pitches per body length. In fact,
tance coefficients in the manner of the preceding section, wthe average pitch df. illini is 0.702um, which would be 17
set the total forcd= in Eq. (28) to zero as a requirement for pitches per body length, which falls in this range. Figure 8
steady state motioino acceleration We assume that the shows a high-voltage transmission photograph oEegp-
linear velocity and angular velocity are in the direction of thetonema illini Our calculations indicate that such an organism
helix axis which is aligned with the axis. Therefore, the would require roughly 128 rotations to progress one body
ratio |w/v| =T33/ Paq. length. In recent experiments of motile illini in buffer

We performed a set of experiments on helical geom-solution, free of polymers, Goldstéftreports that for a body
etries, some of which are shown in Fig. 6. Using experimeniength of 12um, the number of turns the body makes in
tal data forLeptonema illin/">*® we chose a body length of order to swim one body length is about 140. These data were
11.93um, and a body radius of 0.073bm, and a helix taken on a sample of eight cells, and the standard deviation

Pitch =186

R T VW W N N W W W
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FIG. 7. The number of rotations required to swim one body length as &
function of the number of pitches per body length. The bar indicates the
range of rotations measured by Goldstein lfoillini (Ref. 20.

from the average of 140 turns is 13. This range is shown asIG. 9. Schematic of a spirochete motor used to drive the motion in the
an error bar in Fig. 7. dynamic simulation. The arrows indicate the motor springs that contract
forcing the inner ring to rotate clockwise and the outer ring to rotate coun-
terclockwise. The motor springs periodically reattach to the next point of the

VI. MOTION OF AN ELASTIC HELICAL BODY outer ring to maintain the motion.

In this section we briefly describe the modeling of a
nonrigid, dynamically rotating helix in a viscous fluid using
the regularized Stokeslet method. As a first step in capturingtructural rings at segments on either end of the helix. The
the fluid-structure interactions between a spirochete and thetation will be driven by the contraction of these dynamic
surrounding fluid, we have developed an elastic model of @prings(see Fig. 9. As the springs between the rings con-
helix with rotation driven by internal motors. tract, these rings will counterrotate, causing the entire struc-

We choose an immersed boundary representation, whetare to rotate. When the tension of a spring falls below a
the outer sheath of the spirochete is modeled by a discrefgiven tolerance, the spring is reformed with an attachment
collection of points that are interconnected by sprifgse, point further away on the outer sheath ring. We think of the
for instance Refs. 21-23Circles of points are placed regu- space between the rings as the periplasmic space between the
larly about a centerline along the length of the helix, incell body and outer sheath in a true spirochete. In this model,
planes normal to the centerline. A series of springs arounwve do not explicitly represent the internal periplasmic fla-
the circular cross sections can be thought of as forming cirgella, but their action is modeled by the distribution of the
cular filaments or fibers. Similarly, other series of springsmotor springs. The rotation speed of the entire structure is
connecting the discrete points form longitudinal and right-not preset, but is determined by the stiffness constants of the
and left-handed helical filaments. In order to model the heli-motor springs and structural springs, along with the tension
cal shape, the resting lengths of these springs are held at thédlerance imposed. These dynamic springs are analogous to
lengths at the start of the simulation. We may vary the elastithose used to model the molecular motor dynein acting upon
properties of the outer sheath by varying the stiffness conmicrotubules in eukaryotic ciliat
stants of the springs that form each family of filaments. Our immersed boundary helical structure is coupled to

In order to generate rotation of the helix while conserv-the surrounding viscous incompressible fluid in the following
ing momentum and angular momentum, we add intemmal ~ manner. At the beginning of a time step, the state of the
tor springsthat connect rings on the outer sheath to innersystem is determined by the configuration of the discrete set

' FIG. 8. A high-voltage transmissidiiVEM) image of
a Leptonema illinj courtesy of the resource for the vi-
sualization of biological complexity that is supported
by the National Center for Research Resources, NIH
RR01219. The width of the photo is 2.@dm.
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FIG. 11. Snapshot of a portion of the elastic spirochete and corresponding
flow field on a plane perpendicular to the axis of the helix.

ol olbiii oliii oliii oliii

FIG. 10. Elastic spirochete shown at equally spaced time intervals during  Although large stiffness constants have been used for the
the dynamic simulation. structural springs, one can note the slight change in the shape
of the helix from the initial frame to the last. In particular,
note that the pitch length is no longer constant in the last
of material points that make up the outer sheath and the inngframe. The helix is elongated at the bottom, and somewhat
rings of the model spirochete. The restoring forces due t@ompressed at the top as it experiences resistance from the
each of the structural springs and motor springs contribute t9iscous fluid. We may also evaluate the flow field at any
resultant forceg, acting on the fluid at each material point point in space using E¢16). Figure 11 shows a snapshot of

Xn. These forces are used to determine the velocity at eade velocity field along a transverse plane to the helical struc-
discrete point using the summation in Ed|6). These veloci-  ture at a fixed time step.

ties are used to update the position4s of the material points
using a high-order integration schefife. . _ VII. CONCLUSION

Note that although the Stokes equations are steady, time
dependence appears in this model due to evolution of the We have presented the method of regularized Stokeslets
spring forces as the configuration of the material pointsor the numerical computation of Stokes flows in three di-
change. The geometry of the model spirochete can vary asfihensions driven by body forces applied along moving
responds to the motion of the viscous fluid. Likewise, theboundaries. The method had been presented previofesly
motion of the fluid is determined by the action of the struc-two-dimensional problems, although the accuracy of the
tural elastic forces and the motor forces applied at the eithemethod had been demonstrated only numerically. The
end of the model organism. method of regularized Stokeslets is based on the superposi-

We illustrate the capability of this model in Fig. 10, tion of exact solutions of the Stokes equations when forces
which shows a sequence of snapshots of a model spirochetge given by a cutoff function. In cases when the forces are
at equally spaced time intervals. The leftmost frame in Figdistributed over a surface, the method is interpreted as a
10 shows the regular geometry of this helical structure at theliscretization of a boundary integral, similar to a boundary
start of the simulation, when all the structural springs thatelement method. However, the points where the forces are
build the spirochete are at their rest lengths. Here the bodgpplied need not discretize a smooth surface; they may rep-
length is six times the pitctsee Fig. 10 The discretization resent a curve in three dimensions or a collection of ran-
of the surface includes 100 rings and 8 points per ring. Fivelomly distributed points. In these cases, the regularization
internal motor rings are placed within each end of the helix parameter plays the role of a physical parameter that merely
and motor springs under tension are activated at the start gfives the extent of the region where the force is applied since
the simulation. The dynamic action of these motor springghe limit ase— 0 of the resulting velocity does not exist.
that attach, break, and reattach to points on the outer rings Our analysis of the accuracy of the method of regular-
generate a steady rotation of the structure. Figure 10 showged Stokeslets shows that when the forces are on surfaces,
that these rotations result in steady progress in the swimmingart of the error is due to the regularization and depends only
direction. In fact, the swimming speed measured in thesen the cutoff parametes. Another part of the error is due to
dynamic calculations is very close to the swimming speedhe discretization of the surface integral and depends as
measured for a rigid helix with the same geometry using thevell as the discretization parameters. The regularization error
steady state model described earlier. is shown to beO(e) in a region of sizeD(\e) surrounding
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