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The method of regularized Stokeslets is a Lagrangian method for computing Stokes flow driven by
forces distributed at material points in a fluid. It is based on the superposition of exact solutions of
the Stokes equations when forces are given by a cutoff function. We present this method in three
dimensions, along with an analysis of its accuracy and performance on the model problems of flow
past a sphere and the steady state rotation of rigid helical tubes. Predicted swimming speeds for
various helical geometries are compared with experimental data for motile spirochetes. In addition,
the regularized Stokeslet method is readily implemented in conjunction with an immersed boundary
representation of an elastic helix that incorporates passive elastic properties as well as mechanisms
of internal force generation. ©2005 American Institute of Physics. fDOI: 10.1063/1.1830486g

I. INTRODUCTION

There has been enormous success in the study of low
Reynolds number fluid dynamics by representing solutions
of the Stokes equations as a superposition of fundamental
solutions, known as Stokeslets, due to the linearity of the
equations. The formulation of the boundary element method
for Stokes flow is based on the numerical evaluation of dis-
tributions of Stokesletssthe velocity field induced by a point
force in an unbounded regiond along surfaces.1 Slender body
theories use distributions of Stokeslets and other elements
along the centerline of a thin tube to approximate the veloc-
ity field due to the motion of the tube in the fluid.2–4

The method of regularized Stokeslets, originally intro-
duced by Cortez,5 is based on the computation of the velocity
field due to a distribution of modified expressions for the
Stokeslet in which the singularity has been removed. The
regularized expression is derived as the exact solution to the
Stokes equations consistent with forces given by regularized
delta functions. In this Lagrangian method, trajectories of
fluid particles are tracked throughout the simulation. The
method is particularly useful when the particles are placed
along a surface that deforms due to time-dependent, force-
driven fluid motion. Since the Stokes equations are linear,
direct summation may be used to compute the velocity at
each of the immersed boundary points in order to advance a
time step. This method is related to boundary integral
methods1 when the forces lie on the surface of a smooth
connected set. However, the method of regularized Stokes-
lets can also be used in cases where the forces are applied at
a discrete collection of points that do not necessarily ap-
proximate a smooth interface.

One application that motivates this work is the develop-
ment of models for the fluid dynamics of motile spirochetes6

based upon animmersed boundary framework.7 Since vis-

cous forces are much larger than inertial forces in the realm
of microorganism motility, one may use the Stokes equations
to describe the fluid dynamics. The force-generating organ-
ism is accounted for by suitable contributions to a force den-
sity term in the fluid dynamics equations. The force of an
organism on the fluid is a delta-function layer of force sup-
ported only by the region of fluid that coincides with mate-
rial points along the surface of the organism; away from
these points, this force is zero. The methodology developed
here will ultimately allow the coupling of the force-
generating mechanisms of a spirochete’s internal flagella
with its passive elastic structures and the surrounding vis-
cous fluid.

The goal of this paper is twofold. First, we present the
regularized Stokeslet method in three dimensions, along with
an analysis of its accuracy and performance for two test
problems. Second, we present initial results related to the
swimming of helical bacteria in three dimensions. There is
no restriction placed upon the amplitude or wavelength of
the helix, and the thickness of the helix is a parameter that
can be varied. We examine both the steady longitudinal pro-
gression of a rigid helix that rotates as a result of an exter-
nally imposed torque, and the swimming dynamics of an
elastic helical body whose rotation is driven by simple, in-
ternal motors.

II. STOKES FLOW DRIVEN BY REGULARIZED
FORCES

In the next two sections, we present the method of regu-
larized Stokeslet based on exact solutions of the Stokes equa-
tions for body forces represented by smooth localized ele-
ments satisfying the incompressible flow Stokes equations,

m¹2u − = p = − gfesx − x0d, s1ad

= ·u = 0, s1bd

where fesxd is a cutoff function with the property that
efesxddx=1. We think of fesxd as a radially symmetric,
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smooth approximation to a three-dimensionals3Dd delta dis-
tribution, so thatfesxd is concentrated nearx=0 ande is a
small parameter that controls the spreading. Due to the lin-
earity of the equations, the solution for multiple forces of the
same form can be obtained by superposition. Regularization
techniques that use this type of cutoff function have been
used extensively in other Lagrangian methods in fluid
dynamics8,9 and convection-diffusion10 processes.

One of the goals in this section is to develop a boundary-
integral representation of Stokes flow with the use of regu-
larized forces, since the flow generated by these is given by
an integral with nonsingular kernel. One advantage of this
formulation is that it leads to stable numerical computations
since there is no need to evaluate nearly-singular integrals of
the type that arise in the presence of a singularsbut inte-
grabled kernel. However, since the cutoff function ap-
proaches a delta distribution ase→0, the theory developed
here includes the traditional formulation in that limit. An-
other advantage is that the solutions are well defined every-
where even when the forces are not applied on a closed sur-
face but along curves or even discrete points. Those cases
cannot be approached with the traditional boundary-integral
formulation, since they lead to singular nonintegrable ker-
nels. In these cases, the regularization parameter plays the
role of a physical parameter that merely gives the extent of
the region where the force is applied since the limit as
e→0 of the resulting velocity does not exist.

We introduce the regularized Green’s function for the
velocity Sesx ,x0d and write the solution of Eqs.s1ad ands1bd
in the form

uisxd =
1

8pm
Sij

e sx,x0dgj . s2d

sHere, and throughout this manuscript, we use the Einstein
summation convention.d This expressionSij

e is also known as
a regularized Stokeslet. Similarly, we write the pressure and
stress tensor associated with the flow as

psxd =
1

8p
Pj

esx,x0dgj , s3d

siksxd =
1

8p
Tijk

e sx,x0dgj . s4d

We note that the Stokes equations1ad, implies that the
regularized velocity Green’s function must satisfy

¹2Skj
e sx,x0d −

]Pj
esx,x0d
]xk

= − 8pdkjfesx − x0d s5ad

for any j andk and wheredkj is the Kronecker delta. Simi-
larly, from the incompressibility conditions1bd we conclude
that

]Sij
e

]xi
= 0 s5bd

for any j . The last two equations are equivalent to the Stokes
equations written for the Green’s functions.

We take the derivative of Eq.s5ad with respect toxk, sum
over k, and use Eq.s5bd to get the relation

¹2Pesx,x0d = 8p = fesx − x0d.

It is convenient to introduce the functionsGe andBe as the
free-space solutions of the equations

¹2Gesxd = fesxd, ¹2Besxd = Gesxd,

which depend only on the specific form of the cutoff function
fe. These functions allow us to express the pressure as

Pj
esx,x0d = 8p

]Gesx − x0d
]xj

. s6d

Using Eq.s5ad, we find that the regularized Green’s function
for Stokes flow is

Skj
e sx,x0d = 8pF ]2Besx − x0d

]xk ] xj
− dkjG

esx − x0dG . s7d

This expression satisfies exactly the incompressibility condi-
tion in Eq. s5bd. Since the stress tensors is defined as

siksxd = − dikpsxd + mS ]ui

]xk
+

]uk

]xi
D ,

we find that

Tijk
e sx,x0d = − dikPj

esx,x0d + mS ]Sij
e sx,x0d
]xk

+
]Skj

e sx,x0d
]xi

D .

s8d

For a given radially-symmetric cutoff functionfe, the auxil-
iary functionsGe andBe are derived first, and the solution is
found from Eqs.s6d–s8d.

A. A specific choice of cutoff fe

In our computations, we use the cutoff function,

fesx − x0d =
15e4

8psr2 + e2d7/2, s9d

wherer =ix−x0i. The exponent in the denominator controls
the decay of the function asuxu→`. In Sec. III we show that
the regularization error in the numerical approximation is
Ose2d if the cutoff function has finite second moment. This
requires the denominator to behave asymptotically asrm with
m.5. We choose the function above for convenience in ana-
lytically calculating various moments offe. With this
choice, one can establish

Pj
esx,x0d = sxj − x0,jd

2r2 + 5e2

sr2 + e2d5/2, s10ad

Sij
e sx,x0d = di j

r2 + 2e2

sr2 + e2d3/2 +
sxi − x0,idsxj − x0,jd

sr2 + e2d3/2 , s10bd

Tijk
e sx,x0d =

− 6sxi − x0,idsxj − x0,jdsxk − x0,kd
sr2 + e2d5/2

−
3e2fsxi − x0,idd jk + sxj − x0,jddik + sxk − x0,kddi jg

sr2 + e2d5/2 .

s10cd
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These expressions are regularized versions of the well-
known fundamental solution of the Stokes equations. The
regularization modifies the fundamentalssingulard solution
particularly in the near field,r ,Osed, while in the far field
e! r the modification is negligible. In the limit ase→0, the
cutoff function approaches a delta distribution, and the above
expressions tend to the singular solution of the Stokes equa-
tions. This is, in fact, the case, as one can verify that forr
Þ0,

lim
e→0

Pj
esx,x0d = Pj

0sx,x0d ; 2
sxj − x0,jd

r3 ,

lim
e→0

Sij
e sx,x0d = Sij

0sx,x0d ;
di j

r
+

sxi − x0,idsxj − x0,jd
r3 ,

lim
e→0

Tijk
e sx,x0d = Tijk

0 sx,x0d

;
− 6sxi − x0,idsxj − x0,jdsxk − x0,kd

r5 ,

whereSij
0 is known as a Stokeslet.

B. The boundary integral equations

It is well known that Stokes flow in smooth bounded sets
may be represented in terms of boundary integrals involving
the boundary values of the velocity and the surface forcessee
Ref. 1d. This representation is often derived from the Lorentz
reciprocal identity relating two solutions of Stokes equations,
and identifying one of them with the flow generated by a
point force of strengthg located atx0. Here we present a
modified version of the reciprocal identity, where one solu-
tion is identified with the flow due to a regularized force.

Let D be a solid body and assume thatx is outsideD.
Let su ,pd satisfy

m¹2u − = p = 0, = ·u = 0,

and define the associated stress tensor by

sik = − pdik + mS ]ui

]xk
+

]uk

]xi
D .

Let sue ,ped be the solution of the Stokes equation with a
regularized force of strengthg centered atx0,

m¹2ue − = pe = − gfesx − x0d, = ·ue = 0,

and define the associated stress tensor by

sik
e = − pedik + mS ]ui

e

]xk
+

]uk
e

]xi
D .

Since]siksxd /]xk=0 and]sik
e sxd /]xk=−gifesx−x0d, we find

that

]

]xk
sui

esik − uisik
e d = ujgjfesx − x0d.

We can now substitute the expressions

ui
esxd =

1

8pm
Sij

e sx,x0dgj, sik
e sxd =

1

8p
Tijk

e sx,x0dgj ,

and note that the coefficientsgj are arbitrary to find thatu
ands must satisfy the following reciprocal relation for anyj :

1

8pm

]

]xk
sSij

e sik − muiTijk
e d = ujfesx − x0d. s11d

This is our version of the Lorentz reciprocal identity.
We now letV be the exterior of the solid bodyD inside

a large ball containingD srefer to Fig. 1d, and we integrate
the above expression overV to get

1

8pm
E

V

]

]xk
fSij

e sx,x0dsiksxd − muisxdTijk
e sx,x0dgdVsxd

=E
V

ujsxdfesx − x0ddVsxd,

which contains thenonsingularkernelsSe andTe. Using the
divergence theorem we write

1

8pm
E

]V

fSij
e sx,x0dsiksxdnk − muisxdTijk

e sx,x0dnkgdssxd

=E
V

ujsxdfesx − x0ddVsxd,

wheren is the outward unit vector normal to the boundary
]V. The boundary]V includes the boundary]D of the solid
body as well as the boundary of the ball containingD. Tak-
ing the limit as the radius of this ball tends to infinity, we find
that the only contributions to the surface integral above that
remain are the ones from the surface ofD. Then one can
write the last equation in terms of the boundary tractionf i

=−siknk ssince the normal vector points intoDd as

−
1

8pm
E

]D

Sij
e sx,x0df idssxd −

1

8p
E

]D

uisxdTijk
e sx,x0dnkdssxd

=E
V

ujsxdfesx − x0ddVsxd. s12d

FIG. 1. Schematic of the volume used to derive the boundary integral for-
mulation of Stokes flow.
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For comparison, the usual derivation of the boundary
integral formulation of Stokes flow is done using a point
force instead of the regularized force used here. The result in
the singular case, found in Ref. 1, is the formula

−
1

8pm
E

]D

Sij
0sx,x0df idssxd

−
1

8p
E

]D

uisxdTijk
0 sx,x0dnkdssxd = ujsx0d, s13d

which can also be obtained from Eq.s12d after taking the
limit e→0 and passing the limit inside the integrals.

SinceD represents a solid body, the velocity insideD
must necessarily satisfy the zero-deformation condition

]ui

]xk
+

]uk

]xi
= 0.

Consequently, the pressurep is constant insideD and the
stress tensor inside the solid body reduces to a constant mul-
tiple of the identity matrix,sik=−pdik. We conclude that for
eachj

E
D

]

]xk
fSij

e sx,x0dsiksxdgdVsxd = 0,

so that if we integrate Eq.s11d in the regionD and use −n as
the outward normal toD, we find that

1

8p
o

i,k=1

3 E
]D

uisxdTijk
e sx,x0dnkdssxd

=E
D

ujsxdfesx − x0ddVsxd. s14d

Adding Eq.s12d to Eq. s14d and using the continuity of the
velocity on]D, we arrive at

E
R3

ujsxdfesx − x0ddVsxd = −
1

8pm
E

]D

Sij
e sx,x0df idssxd.

s15d

Equations15d is the formula that provides the basis for the
method of regularized Stokeslets discussed next. We note
that our numerical method computes the solution of Eq.s1ad
based on elements of the form given in Eq.s2d, whereg is
the Stokeslet strength. Since the Stokeslet strength represents
force exerted by the body on the fluid, it has the opposite
sign as the traction,g=−f.

We point out that, since the Green’s function in Eq.s15d
is regular, the formula is valid even if the traction is concen-
trated at a single point. Consider, for example,z[]D and the

traction given by f isxd= f̃ id
2Dsx−zd, where d2D is a two-

dimensional Dirac delta. Then Eq.s15d implies that

E
R3

ujsxdfesx − x0ddVsxd = −
1

8pm
Sij

e sz,x0d f̃ i ,

which is also a regular expression.

III. THE METHOD OF REGULARIZED STOKESLETS

In this section, we describe the numerical method and
provide error analysis. The method is based on a simple dis-
cretization of Eq.s15d. For N Stokeslets located along the
surface of the solid bodyD, we approximate the fluid veloc-
ity at any pointx0 with

ujsx0d =
1

8pm
o
n=1

N

o
i=1

3

Sij
e sxn,x0dgn,iAn, s16d

where gn,i is the ith component of the force on the fluid
applied atxn and An is the quadrature weight of thenth
particle. In the rest of this section, we analyze the two types
of errors associated with this approximation: the regulariza-
tion error on the left side of the equation and the discretiza-
tion error in the integral approximation.

A. The regularization error

Comparing the left sides of Eq.s15d and Eq.s16d, the
error due to the regularizationfe is introduced in the ap-
proximation of the integral

E
R3

ujsxdfesx − x0ddVsxd s17d

for the velocityu which is continuous across the boundary
]D but whose gradient is typically discontinuous there. The
order of the approximation of this integral depends on how
far the evaluation pointx0 is from ]D. In this analysis we
will use the specific cutoff in Eq.s9d although other cutoff
functions can be designed based on the analysis. We note that
for this radially symmetric cutoff we have

E
R1,ixi,R2

fesxddx = 4pE
R1

R2 15e4r2

8psr2 + e2d7/2dr

= U r3s2r2 + 5e2d
2sr2 + e2d5/2 U

R1

R2

.

From this one can check that

E
R1,ixi

fesxddx ø e2 wheneverRc ; Î5e/2 ø R1.

This inequality shows that although the cutofffe has infinite
support, most of its masss1−e2d is concentrated in a ball of
radius Rc=Î5e /2. If the velocity componentsujsxd satisfy
uuju,C and since the cutoff function is positive, we have that

E
R3

ujsxdfesx − x0ddVsxd =E
ixiøRc

ujsxdfesx − x0ddVsxd

+ Ose2d,

whereRc=Î5e /2.
For any multi-indexk, we define thekth moment of the

cutoff as
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M ukusfed =E
R3

xkfesxddx.

Since fesxd is radially symmetric and scales likefesxd
=1/e3f1sx /ed, we have that

M ukusfed = CkE
R3

rk+2fesrddr = ekM ukusf1d,

whereCk=0 for uku odd due to symmetry.
We assume first that the field pointx0 is located in the

fluid such that distsx0,]Dd.Rc and that the velocityusxd is
smooth enough in a ball of radiusRc centered atx0 for the
following Taylor expansion to be valid:

ujsxd = ujsx0d + o
k=1

3

sxk − x0,kd
]ujsx0d

]xk

+ o
k,i=1

3

sxk − x0,kdsxi − x0,id
]2ujsx0d
]xk ] xi

+ Osix − x0i3d.

Then,

E
ixiøRc

ujsxdfesx − x0ddVsxd

= ujsx0dE
ixiøRc

fesx − x0ddVsxd + o
k,i

]2uj

]xk ] xi
sx0d

3E
ixiøRc

xkxifesxddVsxd + Ose2d = ujsx0d + Ose2d,

where the first-order derivative terms do not appear due to
the symmetry inM1sfed. The equation indicates that the
regularization error isOse2d when distsx0,]Dd.Rc.

When distsx0,]Dd,Rc, the field pointx0 is too close to
the boundary ofD and the Taylor expansion is not valid.
Instead, one expansion is valid nearx0 and outside ofD, and
a different expansion is valid nearx0 and insideD. However,
sinceuj is continuous but its gradient is typically discontinu-
ous across]D, the symmetry inM1sfed which eliminated the
Osed error is no longer available and the regularization error
is only Osed when 0ødistsx0,]Dd,Rc.

B. The discretization error

If we approximate the left-hand side of Eq.s15d with
ujsx0d, the equation reduces to a Fredholm equation of the
first kind for the tractionf for a given surface velocity. The
kernel on the right side of Eq.s15d is nonsingular but its
derivatives can be large and they enter into the estimate of
the error in the quadrature Eq.s16d.

Let a pointx[]D be described in Lagrangian form by
x=Xss,td, wheres=ss1,s2d is a material point on the surface.
We assume that the surface]D can be covered by patchesPn

for n=1,… ,N and that there is a smooth function that maps
each patch to a rectangle such that the Jacobian of this map
has no singular points. In this case, the integral on the right
side of Eq.s15d can be written in terms of the Stokeslets
strengths as

1

8pm
E

]D
o
i=1

3

Sij
e sx,x0dgidssxd

=
1

8pm
o
n=1

N E
Pn

o
i=1

3

Sij
e ss,s0dgissdJssdds, s18d

whereJssd= u]Xssd /]su is the Jacobian of the transformation
ands0 is the material point that corresponds to the evaluation
point x0. The last integral can be approximated by any
quadrature rule using points indexed byq within each patch,
so that

1

8pm
E

]D
o
i=1

3

Sij
e sx,x0dgidssxd

<
1

8pm
o
n=1

N

o
i=1

3

o
q

Sij
e ssq,s0dgissqdJssqdsDs1Ds2wdq, s19d

where sDs1Ds2wdq represents the weight associated with
point q in patchn. In the computations presented here we use
the trapezoidal rule which requires estimates of the second
derivatives of the integrand in order to find an error bound.
For the two-dimensional trapezoidal rule, an error estimate
on a single computational cell is given by

E E
cell

Fss1,s2dds1ds2 − 1
4Ds1Ds2 o

m,k=1

2

Fss1
m,s2

kd

< Ds1
3Ds2s]2F/]s1

2d + Ds1Ds2
3s]2F/]s2

2d, s20d

wheress1
m,s2

kd represents the coordinates of them, k corner of
the cell, and

Fss1,s2d = Sij
e ss1,s2,s0dgiss1,s2dJss1,s2d.

From the regularized Stokeslet formula, Eq.s10bd, one can
deduce that, ifj=ex,

Sij
e sx,x0d =

1

e
Sij

e sj,j0d,

and therefore

]Sij
e sx,x0d
]xk

=
1

e2

]Sij
e sj,j0d
]jk

and

]2Sij
e sx,x0d

]xk ] xm
=

1

e3

]2Sij
e sj,j0d

]jk ] jm
.

Since the functions Sij
e sj ,j0d, f]Sij

e sj ,j0dg /]jk, and
f]2Sij

e sj ,j0dg /]jk]jm are bounded and assuminggiss1,s2d
and Jss1,s2d have bounded derivatives up to order 2, the
trapezoid rule error in Eq.s20d for a single computational
cell is

Err = OFDs1
3Ds2SC1

e
+

C2

e2 +
C3

e3 DG
+ OFDs1Ds2

3SC1

e
+

C2

e2 +
C3

e3 DG .

We mention that better estimates of quadrature formulas for
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weakly singular integrals have been derived elsewheressee,
for example, Ref. 12d. In order to estimate the global error,
we multiply the local error for a single computational cell by
the total number of computational cells, and conclude that
the method of regularized Stokeslets in Eq.s16d approxi-
mates Eq.s15d with accuracy

OSDs1
2

e3 D + OSDs2
2

e3 D + Oseqd s21d

with q=1 at evaluation pointsx0 on or near the boundary]D
and withq=2 at points sufficiently far from]D.

C. Verification of rigid body motion

We expect that if the boundary of a closed fluid domain
moves with the velocity of a rigid body in Stokes flow, then
the entire enclosed region will move as a rigid body. In this
section, we verify this analytically. In the following section,
we present numerical evidence that the fluid velocity field
inside a translating sphere, computed using regularized
Stokeslets, is consistent with rigid body motion.

Our numerical method is based on the Lorentz reciprocal
identity Eq. s11d. When applied to a fluid domainD, the
identity yields

1

8pm
E

]D

Sij
e sx,x0df idssxd +

1

8p
E

]D

uisxdTijk
e sx,x0dnkdssxd

=E
D

ujsxdfesx − x0ddVsxd. s22d

Now supposeU andV are constant vectors. Based on Eqs.
s5ad, s5bd, ands8d, we find that

]Tijk
e sx,x0d
]xk

= − 8pdi jfesx − x0d

and

]

]xk
fsV 3 xdiTijk

e sx,x0dg = − 8psV 3 xd jfesx − x0d.

These equations can be used to prove that if the boundary
velocity of the fluid volumeD is consistent with rigid-body
motion,ub=U+V3 sx−xcd, then the corresponding traction
is f i

b=−si jnj =pni and the following identities can be estab-
lished:

E
]D

Sij
e sx,x0df i

bdssxd = 0,

E
]D

ui
bsxdTijk

e sx,x0dnkdssxd = 8pE
D

uj
bsxdfesx − x0ddx.

We note that the integral on the right-hand side of the last
equation is approximately equal toui

bsx0d when x0 is well
insideD sas long as the support offe is insideDd, it equals
0 whenx0 is well outsideD and is approximately12ui

bsx0d
whenx0 is on the boundary since the integral includes about
half of the support offe.

Equations22d then reduces to

E
D

ui
bsxdfesx − x0ddx =E

D

ujsxdfesx − x0ddVsxd. s23d

This shows thatujsx0d=uj
bsx0d for points insideD on account

of the arbitrariness of the support offe.

IV. EXAMPLE 1: TRANSLATING SPHERE

Consider the fluid motion produced by a solid sphere of
radiusa translating with velocityU=s0,0,U3dT in a Stokes
flow of viscositym. The exact solution for the velocity field
u=su1,u2,u3dT at a pointx=sx1,x2,x3dT outside the sphere is
ssee, for instance, Ref. 13d

u1sx1,x2,x3d =
3aU3

4
S 1

r3 −
a2

r5Dx1x3,

u2sx1,x2,x3d =
3aU3

4
S 1

r3 −
a2

r5Dx2x3,

u3sx1,x2,x3d =
3aU3

4
S 1

r3 −
a2

r5Dx3
2 +

aU3

4r
S3 +

a2

r2D ,

psx1,x2,x3d = p0 +
3

2

aU3x3

r3 . s24d

Here r is the distance from the pointx to the center of the
sphere. Note that, inside the solid sphere, the velocity isU
=s0,0,U3dT. The hydrodynamic traction on the sphere is

fsxd = −
3m

2a
U. s25d

The traction on a translating sphere is indeed independent of
position. This is only true for a sphere due to symmetry.

In order to apply the method of regularized Stokeslets to
this test problem, we discretize the surface of the unit sphere
sa=1d using a six-patch structured grid. It is constructed by
placing the sphere inside a cube with anN3N uniform grid
on each face. The computational grid results from the inter-
section of sphere’s surface with lines joining the center of the
sphere and the nodes on the cube.11 In this way, the approxi-
mate grid size on the sphere isDs=2pa/4N. At each of the
points on the surface, we apply the force in Eq.s25d. Using
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Eq. s16d, we can compute the resulting velocity at the points
on the surface, and compare it to the exact solution
s0,0,U3dT.

We examine the errors in the third component of surface
velocity with U3=−1. Figure 2 shows the dependence of the
L2 norm of the surface velocity error on the regularization
parametere for a fixed six-patch grid, 24324 points on each
patch. This gives a discretization size of aboutDs=0.065.
Note that for large values ofe the error grows linearly and as
e is reduced, the error initially decreases but is ultimately
overtaken by the increasing quadrature error, as suggested by
the error bound in Eq.s21d.

Figure 3 shows theL2 norm of the surface velocity error
for a fixede as the grid is refined, from a six-patch 12312
grid down to a six-patch 1923192 grid. Note that for the
three finest grids, the regularization error dominates, and the
finer discretization is not advantageous. For the coarser
grids, the quadratic dependence onDs is apparent.

Figure 4 shows the quadrature error in the computation
of the surface integral in Eq.s19d at two pointsx0 for various
Ds=Ds1=Ds2 and fixede=0.01. The bottom dashed line is

the error at a point on the surface of the sphere. The top
dashed line is the error at a point half a radius outside the
sphere. The exact value of the velocity is given by the sur-
face integral on the right side of Eq.s15d which can also be
obtained accurately by computing the volume integral on the
left side of Eq.s15d. We do this numerically using a very fine
grid and the exact velocity field in Eq.s24d.

Figure 5 shows the error in the computed velocity as a
function of the regularization parametere at both a point on
the surface of the spherestop graphd and a point in the exte-
rior of the sphere far from the surfacesbottom graphd. Note
that on the surface of the sphere this error increases linearly
for large values ofe. The point corresponding toe=0 was
computed by avoiding placing a force vector at the evalua-
tion point. The bottom graph shows the velocity error at a
point farther from the sphere where the computation is more
accurate. These errors are smaller in magnitude and depend
quadratically one as the analysis in the previous sections
indicates. For small values ofe, the discretization errors
dominate and are nonzero since the grid is fixed.

We verified that the velocity field given by our model
inside the sphere is consistent with solid body motion. We
imposed the surface boundary condition to be the velocity
U+x3V, whereU=s0,0,1dT andV=s0,0,1dT. This repre-

FIG. 2. L2 norm of the error in the third component of
velocity on the sphere as a function of the regulariza-
tion parametere. The surface of the sphere was dis-
cretized using a six-patch 24324 fixed grid.

FIG. 3. L2 norm of the error in the third component of velocity on the
sphere as a function of grid size for a fixed regularization parametere
=0.01.

FIG. 4. Log-log plot of the discretization error in the computation of the
velocity field due to a translating sphere. The two dashed lines show the
error at two different locations in space. The regularization parameter was
fixed at e=0.01. The solid line has slope two, indicating a discretization
error OsDs2d for small values ofDs=Ds1=Ds2 slarge abscissa valuesd.
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sents translation and rotation of the surface of the sphere.
Given this surface velocity, we computed the corresponding
Stokeslets strengths as described in the following section and
used them to compute the velocity field on the planez=0.2
inside the sphere. Thez component of the velocity field at all
points was 1±4310−4, giving the correct rate of translation.
The radial component of thexy velocity of all points was
±1310−5, indicating that, in addition to the translation, the
planez=0.2 inside the sphere simply rotates. The rotational
velocity of all points sx,y,0.2d was computed to be 1±5
310−4 timesÎx2+y2, indicating the correct angular velocity.

A. Computation of resistance matrices
for a sphere

In this section, we discuss the computation of resistance
matrices that describe the linear relationship between the to-
tal hydrodynamic force and torque and the translational and
angular velocities of a rigid body moving in a Stokes flow.
We compare the resistance matrices generated by the method
of regularized Stokeslets for a moving sphere to those known
from classical theory.

The total hydrodynamic force exerted on the solid whose
boundary experiences the tractionf is

F =E
]D

fsxddssxd s26d

and the total hydrodynamic torque is given by

L =E
]D

x 3 fsxddssxd. s27d

In the case of a rigid body, we decompose the force into
a drag force due to translational motion of the body, and a
force due to rotation of the body. The linearity of the Stokes

equations allows us to represent these forces in terms of re-
sistance matrices acting on the velocityU and angular veloc-
ity V vectors of the rigid motion,1

F = − msT U + PVd, s28d

L = − msPTU + RVd. s29d

HereT, P, andR are 333 resistance matrices that depend
only upon the geometry of the solid body.

In the case of a sphere, it is apparent due to symmetry
that the translation and rotation resistance matricesT andR
are constant multiples of the identity, and thatP=0. In fact,
one can easily compute the total hydrodynamic forceF in-
duced by a translating sphere with constant velocityU by
integrating the traction in Eq.s25d over the surface of the
sphere to get the classical resultF=−6pmaU. In the case of
a sphere rotating about its center with angular velocityV,
the total hydrodynamic torque isL =−8pma3V. Therefore,
the resistance matrices for a sphere of radiusa are T
=6paI andR=8pa3I.

The method of regularized Stokeslets has been presented
as a way to compute the velocity field in Stokes flow result-
ing from a given distribution of forces localized at a set of
points. Consider the discretization of the surface of an object
by the points x1,x2,… ,xN, and consider Stokeslets of
strengthg1,g2,… ,gN applied at these points. The linear re-
lationship between the velocities and the forces at these
points may be calculated froms16d:

um,j =
1

8pm
o
n=1

N

o
i=1

3

Sij
e sxn,xmdgn,i An. s30d

Heregn=sgn,1,gn,2,gn,3dT, j =1,2,3, andm=1,… ,N. We may
write this relationship in matrix vector form,

FIG. 5. Numerical computation of the velocity at two
different points in the fluid for various values ofe. The
discretization was fixed with a 60360 grid on each of
the six patches. The top graph shows the velocity error
at a point on the surface of the sphere; the bottom graph
shows the velocity error at a point far from the surface.
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u =
1

8pm
Ag, s31d

where the vectors of length 3N are u=su1,u2,… ,uNdT and
g=sg1,g2,… ,gNdT, andA is a 3N33N matrix whose entries
depend upon the coordinatesx1,x2,… ,xN, the regularization
parametere, and the surface discretization.

Conversely, one may also use the linear relationship in
Eq. s31d to compute the Stokeslet strengths that generate a
specified velocity of the solid body. The matrixA is a dis-
cretization of the single-layer potential on the right side of
Eq. s15d which is known not to be invertible in general. For
example, consider a normal force of constant magnitude ap-
plied to the surface of a sphere. This pressurelike force will
not cause any fluid motion due to the incompressibility in
Eq. s5bd regardless of the magnitude of the forces. In alge-
braic terms, the matrixA has a nontrivial null space and
therefore, a unique solution of Eq.s31d is not guaranteed. For
the computation of the total forceF in Eq. s28d on the sur-
face of the sphere, this is not a problem since the symmetry
of the sphere implies that forces of the formgsxd=cnsxd will
have no contribution to the value ofF. In our computation of
the Stokesletsg from Eq.s30d, we found that using the itera-
tive procedureGMRES with zero initial guess works well.

In order to illustrate how the method of regularized
Stokeslets can be used to assemble the resistance matrices
T ,P, andR, we apply a constant velocity ofu j =s1,0,0dT to
each pointx j , j =1,2,… ,N on the surface of the solid, in a
fluid of viscositym=1. We then use Eq.s31d to solve for the
Stokeslet strengthsg. The traction then is given byf =−g.
The traction is integrated over the boundary to arrive at the
total hydrodynamic force vectorF. However, in this case
U=s1,0,0dT, and V=0. Using Eq.s28d, the entries of the
first column of the translation resistance matrixT must be
equal to the total hydrodynamic forceF. Similarly, the first
column of the resistance matrixPT must be equal to the total
hydrodynamic torque computed by integratingx j 3 f j ,
j =1,2,… ,N over the boundaryfsee Eq.s29dg. The remain-
ing columns ofT andPT are computed by applying transla-
tional velocities in the other two coordinate directions, and
using Eq.s31d to solve for the forces. A systematic applica-
tion of rigid rotations about each of the three coordinate axes
enables us to assemble the rotational resistance matrixR.

We calculate the resistance matrices for a sphere of ra-
dius a=1, where our discretization used a six-patch grid,
48348 points on each face, and a regularization parameter
e=0.01. For these values, the analytical solution for these
matrices isT=6pI<18.85I, R=8pI<25.133I, andP=0.
The computed values of the matrices are

T = 1 18.80 1.33 10−9 − 6.73 10−10

− 9.83 10−10 18.80 − 2.53 10−11

− 7.13 10−10 1.53 10−10 18.80
2 ,

PT = 1− 3.33 10−10 − 1.63 10−9 − 2.33 10−9

− 1.43 10−10 1.53 10−11 1.23 10−10

5.33 10−10 3.93 10−10 1.93 10−11 2 ,

P = 1− 1.63 10−9 1.23 10−9 1.83 10−10

4.03 10−9 − 1.03 10−9 − 2.23 10−8

− 5.13 10−9 1.23 10−8 − 7.03 10−92 ,

R = 1 25.09 4.13 10−11 1.23 10−10

4.03 10−10 25.09 − 2.23 10−9

− 1.03 10−10 − 3.83 10−10 25.09
2 .

Since the method of regularized Stokeslets has been applied
to points on the surface of the sphere, we expect the error in
the computation to beOsed in addition to errors in the itera-
tive solver and the computation of the global quantities. The
off-diagonal entries of the matrices show very little error
while the nonzero diagonal entries show an error of about 5e.

Table I presents the convergence of the diagonal values
of T as the regularization and discretization parameters are
refined. By looking at the last column, corresponding to the
finest grid, one can appreciate the linear convergence ine.
On the other hand, by looking at the row corresponding to
e=0.01, one can see the convergence as the discretization
size is reduced. Table II presents similar convergence results
for R.

V. MOTION OF A RIGID HELICAL BODY

In this section, we consider a rigid helical tube of non-
zero thickness in a viscous fluid. We present comparisons of
our numerical results with experimental results on two re-
lated test problems based upon this helical geometry:sad
computation of resistance coefficients for helical tubes and
sbd computation of the forward progression of a rigid helix
due to an externally imposed torque.

TABLE I. Computed diagonal entries of the resistance matrixT for different
regularization and discretization parameters.

e Grid size

6312312 6324324 6336336 6348348

0.1 19.36 19.38 19.39 19.39

0.05 18.88 19.09 19.10 19.10

0.01 16.47 18.33 18.69 18.80

Exact 18.85 18.85 18.85 18.85

TABLE II. Computed diagonal entries of the resistance matrixR for differ-
ent regularization and discretization parameters.

e Grid size

6312312 6324324 6336336 6348348

0.1 27.09 27.16 27.16 27.16

0.05 25.53 26.08 26.10 26.11

0.01 19.62 23.89 24.80 25.09

Exact 25.133 25.133 25.133 25.133
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A. Resistance coefficients

In Stokes flow, the linear relationships in Eqs.s28d and
s29d between forces and torques and translational and angu-
lar velocities of a rigid object involve resistance matrices
whose entriesdepend only upon the geometryof the object.
Purcell14 designed a physical experiment that could be used
to back out these resistance coefficients. A helical wire was
dropped under its own weight into silicon oil. The experi-
ments measured the wire’s sinking speed and rate of rotation,
and then used those values to estimate the resistance coeffi-
cients from mathematical formulas. In particular, the force,
the linear velocity and the angular velocity, were assumed to
point in the direction of the helix axis, which is equivalent to
reducing Eqs.s28d and s29d to scalar equations relating the
vector magnitudes linearly with proportionality constants
−mT33, −mP33, and −mR33 ssince the axes of the helices are
assumed to be aligned with thez axisd. The specified helix
parameters wereL, the ratio L /l, and the pitch anglef
defined by

tanf =
2pR

l
.

The helix radiusR was allowed to vary in order to design the
helices that fit the other parameters. Results deduced from
Purcell’s experiments recorded in a lab notebook were in-
cluded in Ref. 14, and are shown in Table III. However, there
was no information specified on the thickness of the wires
used in these experiments.

For comparison, we use the method of regularized
Stokeslets to calculate the resistance coefficients of the heli-
cal tubes, as we did for the sphere in the preceding section.
Although our numerical experiments involve external forces
as well as externally applied torques that do not exist in
Purcell’s experiment of a sinking wire, the resistance matri-
ces should, nevertheless, be equivalent, since the entries de-
pend only upon the geometry of the helical tube. We de-

signed helical tubes with parameters similar to those
specified in Ref. 14. The tube is constructed based on a he-
lical centerlinesxc,yc,zcd given by

xcssd = Rcoss2pzc/ld, ycssd = Rsins2pzc/ld,

0 ø zc ø L,

where R is the radius of the helix andl is the pitch. We
consider only helices whereL is an integer multiple ofl. We
assume that each cross section is circular with radiusa, rep-
resenting the thickness of the tube. This tube is discretized
with M cross sections along its length withN points each.

We performed computations with a range of thickness
parameters, and found good agreement with the experimental
data for helical tubes with diameters in the range of about
0.5–1.0 mm, equivalent to 18–24 US standard gauge wire.
We present results for a helical tube diameter ofa
=0.025 cm in Table IV. The regularization parameter was set
to e=0.01 and we computed the corresponding resistance
coefficients as described previously for a grid consisting of
400 cross sections and 6 points per cross section.

The resistance coefficients in Table IV compare very
well with the experimental values in Table III for all of the
parameter combinations. To assess the effect of the tube’s
discretization, we chose the parameters associated with the
first row of Table IV and we computed the corresponding
resistance coefficients for two grids of different levels of
refinement while keepinge=0.01. The results in Table V
show additional improvement in the agreement with finer
discretizations.

B. Rigid helix: Externally imposed torque

Spirochetes are an order of bacteria characterized by a
unique cellular anatomy and mode of motility,15,6 and in-
clude the causative agents of syphilis and Lyme disease. The
locomotory ability of these pathogenic spirochetes enables

TABLE III. Experimental measurement of resistance coefficients as reported in Ref. 14. All coefficients were
normalized by 6pm.

L scmd L /l f sdegd T33 P33 R33

5.2 5 55 0.67 0.032 0.076

7.8 5 39 0.71 0.038 0.060

9.4 5 20 0.74 0.018 0.031

3.1 3 55 0.48 0.023 0.053

7.5 7 56 0.91 0.053 0.130

TABLE IV. Numerical computation of the resistance coefficients fore=0.01 and a grid of 400 cross sections
and 6 points per cross section. All coefficients were normalized by 6pm.

L scmd L /l f sdegd T33 P33 R33

5.2 5 55 0.6102 0.0303 0.0816

7.8 5 39 0.6823 0.0354 0.0736

9.4 5 20 0.6605 0.0141 0.0274

3.1 3 55 0.4356 0.0221 0.0496

7.5 7 56 0.7938 0.0391 0.1294
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them to screw through viscous fluids and mucosal surfaces.
The method of locomotion of these bacteria that lack exter-
nal flagella has been puzzling. Their helical shape is im-
parted to them by a rigid protoplasmic cylinder. This cylinder
is surrounded by a membrane referred to as the outer sheath.
The region between the outer sheath and the cytoplasmic
membrane is termed the periplasmic space. Within this re-
gion are a number of internal or periplasmic flagella that
attach at either tip of the protoplasmic cylinder. There is
evidence that these periplasmic flagella rotate in a manner
similar to other bacteria.16 The rotation of these periplasmic
flagella cause the spirochete to swim.

Berg17 proposed a model for spirochete motion in which
he showed that an external flagellum was not needed to pro-
duce the torque required to propel the helical cell. He as-
sumed that the protoplasmic cylinder is semirigid, that the
periplasmic flagella rotate in the same manner as external
flagella of other bacteria, and that the outer sheath is flexible
and free to rotate about the protoplasmic cylinder. However,
there is evidence, at least inLeptospira, that the outer sheath
is quite fluid,18 suggesting that it might not rotate as a single
sheet. Ignoring the internal structure of the cells, Lighthill2,19

used a slender body approximation to analyze the fluid ve-
locity field in the vicinity of swimming spirochetes using
helical distributions of Stokeslets and dipoles. As discussed
above, Purcell14 later examined the relationship between
forces and torques and velocities of rotating helical objects in
a viscous fluid.

In order to gain insight into spirochete motility, we turn
to the steady state rotational motion of a finite length, finite
body width, helix. We have demonstrated that we can use the
method of regularized Stokeslets to calculate resistance ma-
trices for solid objects that describe the linear relationship
between drag and rotational velocities and total force. No
restrictive assumptions about these solid objects need to be
made, such as slender bodies or small amplitude wave forms.
For a given helical geometry and width of the body, we
would like to compute the ratio between angular speedsuvud
of the turning helix and the forward tranlational speedsuvud.
This is done as follows. Once we have calculated the resis-
tance coefficients in the manner of the preceding section, we
set the total forceF in Eq. s28d to zero as a requirement for
steady state motionsno accelerationd. We assume that the
linear velocity and angular velocity are in the direction of the
helix axis which is aligned with thez axis. Therefore, the
ratio uv /vu= uT33/P33u.

We performed a set of experiments on helical geom-
etries, some of which are shown in Fig. 6. Using experimen-
tal data forLeptonema illini,15,16 we chose a body length of
11.93mm, and a body radius of 0.0735mm, and a helix

radius of 0.088mm. As shown in Fig. 6, we varied the num-
ber of pitches per body length, keeping the other helix and
geometrical parameters fixed. Once we computed the ratio of
angular velocity to translational velocity we determined the
number of rotations required for the organism to progress
one body length. Figure 7 shows the number of rotations as a
function of the number of pitches per body length. If one
considers this a measure of swimming efficiency, we see that
either too few pitches or too many are less efficient than the
midrange values of 10–18 pitches per body length. In fact,
the average pitch ofL. illini is 0.702mm, which would be 17
pitches per body length, which falls in this range. Figure 8
shows a high-voltage transmission photograph of aLep-
tonema illini. Our calculations indicate that such an organism
would require roughly 128 rotations to progress one body
length. In recent experiments of motileL. illini in buffer
solution, free of polymers, Goldstein20 reports that for a body
length of 12mm, the number of turns the body makes in
order to swim one body length is about 140. These data were
taken on a sample of eight cells, and the standard deviation

TABLE V. Numerical computations of resistance coefficients forL=5.2,
L /l=5, pitch angle 55°, and two grids with different levels of refinement.
All coefficients were normalized by 6pm.

Grid T33 P33 R33

63400 0.6102 0.0303 0.0816

123800 0.6220 0.0316 0.0850

FIG. 6. Finite helices of varying pitch. The lengthsviewed from the sided,
radius of the centerline, and thickness were held fixed.
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from the average of 140 turns is 13. This range is shown as
an error bar in Fig. 7.

VI. MOTION OF AN ELASTIC HELICAL BODY

In this section we briefly describe the modeling of a
nonrigid, dynamically rotating helix in a viscous fluid using
the regularized Stokeslet method. As a first step in capturing
the fluid-structure interactions between a spirochete and the
surrounding fluid, we have developed an elastic model of a
helix with rotation driven by internal motors.

We choose an immersed boundary representation, where
the outer sheath of the spirochete is modeled by a discrete
collection of points that are interconnected by springsssee,
for instance Refs. 21–23d. Circles of points are placed regu-
larly about a centerline along the length of the helix, in
planes normal to the centerline. A series of springs around
the circular cross sections can be thought of as forming cir-
cular filaments or fibers. Similarly, other series of springs
connecting the discrete points form longitudinal and right-
and left-handed helical filaments. In order to model the heli-
cal shape, the resting lengths of these springs are held at their
lengths at the start of the simulation. We may vary the elastic
properties of the outer sheath by varying the stiffness con-
stants of the springs that form each family of filaments.

In order to generate rotation of the helix while conserv-
ing momentum and angular momentum, we add internalmo-
tor springs that connect rings on the outer sheath to inner

structural rings at segments on either end of the helix. The
rotation will be driven by the contraction of these dynamic
springsssee Fig. 9d. As the springs between the rings con-
tract, these rings will counterrotate, causing the entire struc-
ture to rotate. When the tension of a spring falls below a
given tolerance, the spring is reformed with an attachment
point further away on the outer sheath ring. We think of the
space between the rings as the periplasmic space between the
cell body and outer sheath in a true spirochete. In this model,
we do not explicitly represent the internal periplasmic fla-
gella, but their action is modeled by the distribution of the
motor springs. The rotation speed of the entire structure is
not preset, but is determined by the stiffness constants of the
motor springs and structural springs, along with the tension
tolerance imposed. These dynamic springs are analogous to
those used to model the molecular motor dynein acting upon
microtubules in eukaryotic cilia.21

Our immersed boundary helical structure is coupled to
the surrounding viscous incompressible fluid in the following
manner. At the beginning of a time step, the state of the
system is determined by the configuration of the discrete set

FIG. 7. The number of rotations required to swim one body length as a
function of the number of pitches per body length. The bar indicates the
range of rotations measured by Goldstein forL. illini sRef. 20d.

FIG. 8. A high-voltage transmissionsHVEMd image of
a Leptonema illini, courtesy of the resource for the vi-
sualization of biological complexity that is supported
by the National Center for Research Resources, NIH
RR01219. The width of the photo is 2.81mm.

FIG. 9. Schematic of a spirochete motor used to drive the motion in the
dynamic simulation. The arrows indicate the motor springs that contract
forcing the inner ring to rotate clockwise and the outer ring to rotate coun-
terclockwise. The motor springs periodically reattach to the next point of the
outer ring to maintain the motion.
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of material points that make up the outer sheath and the inner
rings of the model spirochete. The restoring forces due to
each of the structural springs and motor springs contribute to
resultant forcesgn acting on the fluid at each material point
xn. These forces are used to determine the velocity at each
discrete point using the summation in Eq.s16d. These veloci-
ties are used to update the positions of the material points
using a high-order integration scheme.24

Note that although the Stokes equations are steady, time
dependence appears in this model due to evolution of the
spring forces as the configuration of the material points
change. The geometry of the model spirochete can vary as it
responds to the motion of the viscous fluid. Likewise, the
motion of the fluid is determined by the action of the struc-
tural elastic forces and the motor forces applied at the either
end of the model organism.

We illustrate the capability of this model in Fig. 10,
which shows a sequence of snapshots of a model spirochete
at equally spaced time intervals. The leftmost frame in Fig.
10 shows the regular geometry of this helical structure at the
start of the simulation, when all the structural springs that
build the spirochete are at their rest lengths. Here the body
length is six times the pitchssee Fig. 10d. The discretization
of the surface includes 100 rings and 8 points per ring. Five
internal motor rings are placed within each end of the helix,
and motor springs under tension are activated at the start of
the simulation. The dynamic action of these motor springs
that attach, break, and reattach to points on the outer rings
generate a steady rotation of the structure. Figure 10 shows
that these rotations result in steady progress in the swimming
direction. In fact, the swimming speed measured in these
dynamic calculations is very close to the swimming speed
measured for a rigid helix with the same geometry using the
steady state model described earlier.

Although large stiffness constants have been used for the
structural springs, one can note the slight change in the shape
of the helix from the initial frame to the last. In particular,
note that the pitch length is no longer constant in the last
frame. The helix is elongated at the bottom, and somewhat
compressed at the top as it experiences resistance from the
viscous fluid. We may also evaluate the flow field at any
point in space using Eq.s16d. Figure 11 shows a snapshot of
the velocity field along a transverse plane to the helical struc-
ture at a fixed time step.

VII. CONCLUSION

We have presented the method of regularized Stokeslets
for the numerical computation of Stokes flows in three di-
mensions driven by body forces applied along moving
boundaries. The method had been presented previously5 for
two-dimensional problems, although the accuracy of the
method had been demonstrated only numerically. The
method of regularized Stokeslets is based on the superposi-
tion of exact solutions of the Stokes equations when forces
are given by a cutoff function. In cases when the forces are
distributed over a surface, the method is interpreted as a
discretization of a boundary integral, similar to a boundary
element method. However, the points where the forces are
applied need not discretize a smooth surface; they may rep-
resent a curve in three dimensions or a collection of ran-
domly distributed points. In these cases, the regularization
parameter plays the role of a physical parameter that merely
gives the extent of the region where the force is applied since
the limit ase→0 of the resulting velocity does not exist.

Our analysis of the accuracy of the method of regular-
ized Stokeslets shows that when the forces are on surfaces,
part of the error is due to the regularization and depends only
on the cutoff parametere. Another part of the error is due to
the discretization of the surface integral and depends one as
well as the discretization parameters. The regularization error
is shown to beOsed in a region of sizeOsÎed surrounding

FIG. 10. Elastic spirochete shown at equally spaced time intervals during
the dynamic simulation.

FIG. 11. Snapshot of a portion of the elastic spirochete and corresponding
flow field on a plane perpendicular to the axis of the helix.
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the moving boundaries but the error improves toOse2d away
from the boundaries. For a fixed discretization, the discreti-
zation error is inversely proportional to a power ofe, making
it possible to find an optimal value of the regularization pa-
rameter.

The results of the analysis were validated using two test
problems. The well-known flow around a sphere was used to
evaluate the performance of the method and the errors inside
the sphere as well as at positions near and far from the
boundary of the sphere. The calculations agree with the
analysis. The formula that relates the velocity of the particles
to the force applied at them can be used to compute the force
required to generate a given velocity; that is, it can be used to
impose a velocity boundary condition. Assuming a linear de-
pendence of the force and torque on velocity, resistance ma-
trices for the sphere were computed and compared with
known analytical values. The results show that as the nu-
merical parameters are refined, the computed values are
within the error estimates of the exact values.

A second test problem was that of the solid-body motion
of a helical tube. The computed resistance coefficients were
compared with the experimental data obtained by Purcell14

for helical tubes of various lengths, pitches, and pitch angles.
Although the thickness of the wires used in the experiments
was not known, most of the coefficients computed were
within 10% of the reported values.

In addition, using the geometrical data obtained forLep-
tonema illinialong with our method for computing resistance
matrices, we numerically estimated the ratio of angular speed
to swimming slineard speed of these spirochetes. The ratio
was computed for helices of fixed body lengthsviewed from
the sided, fixed helical diameter and fixed body radius, but
with the number of pitches per body length varied. Our cal-
culations show that this ratio is minimumsindicating higher
swimming efficiencyd, for pitch lengths in the range
0.6628–1.193mm. This range includes theL. illini average
pitch length of 0.702mm.15

Finally, we have presented a dynamic computation of the
motion of an elastic helical tube driven by internal motors.
This example illustrates how the coupling of the passive
elastic properties of the body, active internal force genera-
tion, and fluid motion may be achieved. We will use this
methodology in future work to build models that encompass
increasing levels of detail of the internal structure and physi-
ology of spirochetes.
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