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Many physiological flows are driven by waves of muscular contractions passed along a tubular

structure. This peristaltic pumping plays a role in ovum transport in the oviduct and in rapid sperm

transport through the uterus. As such, flow due to peristalsis has been a central theme in classical

biological fluid dynamics. Analytical approaches and numerical methods have been used to study

flow in two-dimensional channels and three-dimensional tubes. In two dimensions, the effect of

asymmetry due to a phase shift between the channel walls has been examined. However, in three

dimensions, peristalsis in a non-axisymmetric tube has received little attention. Here, we present a

computational model of peristaltic pumping of a viscous fluid in three dimensions based upon the

method of regularized Stokeslets. In particular, we study the flow structure and mean flow in a three-

dimensional tube whose asymmetry is governed by a single phase-shift parameter. We view this as a

three-dimensional analog of the phase-shifted two-dimensional channel. We find that the maximum

mean flow rate is achieved for the parameter that results in an axisymmetric tube. We also validate

this approach by comparing our computational results with classical long-wavelength theory for the

three-dimensional axisymmetric tube. This computational framework is easily implemented and may

be adapted to more comprehensive physiological models where the kinematics of the tube walls are

not specified a priori, but emerge due to the coupling of its passive elastic properties, force

generating mechanisms, and the surrounding viscous fluid. VC 2011 American Institute of Physics.

[doi:10.1063/1.3622319]

I. INTRODUCTION

The transport of fluid due to waves of contractions

passed along a tube is prevalent in many physiological sys-

tems. In particular, mammalian reproduction relies upon per-

istaltic pumping of both the uterus and the oviducts

(fallopian tubes).1 Peristaltic motion of the walls of the ovi-

duct, along with ciliary beating, are essential for ovum trans-

port. Uterine peristalsis is responsible for rapid sperm

transport through the uterus toward the oviduct, the site of

fertilization. In addition, muscular contractions of the uterine

walls also create the flow field in which the fertilized ovum

is passively transported to the site of implantation.

Motivated in part by these physiological flows, there

have been many analytic and numerical investigations of the

fluid dynamics of peristalsis in two-dimensional channels

and three-dimensional tubes. Classical analytical models

assumed that the flow was inertia-free, and that the channel

or tube walls supported an infinite train of small amplitude

sine waves whose wavelengths were long compared to the

diameter of the conduit.2,3 These early studies, for both two-

dimensional channels and axisymmetric three-dimensional

tubes, examined the mean flow rate induced by the wave-

train, and elucidated the feature of bolus formation in the

wave frame when the conduit was sufficiently occluded.

This bolus was transported with the wave in the laboratory

frame, trapping fluid particles that circulated within it. More

recent analytical and numerical investigations extended our

understanding of peristalsis by including non-zero Reynolds

number dynamics,4 transport in finite tubes,5 the transport of

solid particles,6 the effects of viscoelasticity,7,8 and the

investigation of optimal channel shapes for pumping fluid.9

In addition, methods of dynamical systems have been used

to investigate the topology of flow structures in axisymmet-

ric tubes.10

During the secretory phase, when the embryo enters the

uterus, asymmetric contractions have been observed in

vivo.11 In an effort to understand the effect of asymmetry on

the fluid motion in the uterus, Eytan and Elad12 used lubrica-

tion theory to study the flow patterns in a two-dimensional

peristaltic channel with a phase shift between the walls.

They demonstrated that the maximum flow rate is achieved

when the channel was symmetric about its centerline, and

that bolus formation was also possible in asymmetric chan-

nels. Previous numerical simulations of flow in asymmetric

peristaltic channels, in both the Stokes and non-zero Reyn-

olds number regime, show similar streamline patterns.13,14

While the asymmetric peristaltic channel in two dimen-

sions has been well-studied, peristalsis in non-axisymmetric,

three-dimensional tubes has received much less attention.

Usha and Rao15 did investigate the peristaltic pumping of a

fluid in a pipe of elliptic cross sections, using long wave-

length and low Reynolds number assumptions. Under these

assumptions, they calculated that the flow rate increased

with a decrease in eccentricity of the elliptic cross sections,

and was maximal in the axisymmetric case.15 Each elliptic

cross section of the tubes considered had its major axis

aligned with the same direction. Here, we investigate
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peristaltic flow induced by a different sort of axial asymme-

try in a tube by introducing a phase-shift parameter. We

view this as a three-dimensional analog of the two-dimen-

sional channel model with a phase shift between the motility

of opposite walls.

We assume that the length and velocity scales of the per-

istaltic tube are such that the fluid is governed by the Stokes

equations of zero Reynolds number flow. In addition, as we

are motivated by the uterine and oviductal systems, we wish

to capture the flow in tubes whose wavelengths are consider-

ably larger than the average cross sectional diameter of the

tube. We use the method of regularized Stokeslets16,17 to

determine the flow generated by a distribution of regularized

forces on the tube surface. This numerical approach is grid-

free in the sense that the fluid region within the tube does not

require an underlying mesh. Along with our investigation of

the flow in the phase-shifted tube, we also demonstrate the

validity of this numerical method by comparing the flow

structures and mean flows calculated with those predicted by

the classical theory for the three-dimensional axisymmetric

tube. We note that although the focus of this paper is on tubes

with long wavelengths, this is not a restriction of the method.

II. METHODS

A. Phase-shifted tube geometry

Our goal is to introduce asymmetry into the tube using a

single phase-shift parameter. We do this by considering a fi-

nite tube whose longitudinal axis is the segment 0 � x � K
and whose cross sections, for a fixed value x, are the ellipses

y

raðx; tÞ

� �2

þ z

rbðx; tÞ

� �2

¼ 1 (1)

where

raðx; tÞ ¼ ro þ a sin
2p
k
ðx� ctÞ þ b

� �
; (2)

rbðx; tÞ ¼ ro þ a sin
2p
k
ðx� ctÞ

� �
: (3)

Here, k is the wavelength, c is the wave speed, ro is the

average tube radius, and a is an amplitude parameter, a � ro.

The occlusion ratio will be denoted by v¼ a=ro. We choose

K¼Mk to be an integer number of wavelengths. We note

the following:

• All cross sections are ellipses whose major and minor axes

are always aligned with the y and z axes. The parameter b
represents a phase shift between the sinusoidally varying

lengths of these major and minor axes.
• When the phase shift b¼ 0, the lengths of the major and

minor axes are equal for all time (ra(x, t)¼ rb(x, t)), and all

cross sections are circles, representing the axisymmetric

case, as depicted in Figure 1(a).
• For fixed values of t and b, the major axis of the cross sec-

tions is aligned with the y direction for some values of x
and aligned with the z direction for other values of x,

depending on whether ra(x, t)> rb(x, t). Necessarily, there

will be two values of x per spatial period where the cross

section is circular.

FIG. 1. The geometry of the tube at

t¼ .25 for (a) b¼ 0, (b) b¼p=2, and (c)

b¼p. Here, each tube supports two

wavelengths and has an occlusion ratio

of v¼ a=r0¼ 0.6. The thick elliptic lines

indicate cross sections of the tube at a

fixed position of x. Note that these cross

sections remain orthogonal to the x-axis

for all t. The left column shows the pro-

jected cross sections when looking down

through the tube.
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Tube geometries for b¼p=2 and p are shown in Figures

1(b) and 1(c), respectively. The left column of the figure

shows the projections of the cross sections of each of the

three tubes when looking down through the tube along the x-

axis. One can see that the smallest and largest radii of the cir-

cular cross sections in the axisymmetric case correspond to

roþ a and ro – a, the extreme lengths of the minor and major

axes of the elliptical cross sections in the non-zero b cases.

A perspective view and the projection of various cross sec-

tions are shown in Figures 2(a) and 2(b), respectively. Notice

that the cross sectional area varies significantly with x.

Since we are considering a tube that supports an integral

number of wavelengths, the total volume of the tube remains

constant as the wave passes along it. However, the volume

of the tube depends upon the phase shift b and the occlusion

ratio v. The volume of a single wavelength of the tube is

Vðb; vÞ ¼ pr2
o k 1þ v2

2
cosðbÞ

� �
: (4)

Even with a non-zero phase shift b, we may still define a

wave frame in which the flow is steady. The transformation

from the laboratory frame to this wave frame is given by

x� ¼ x� ct

y� ¼ y

z� ¼ z:

Below we will examine how the phase-shift parameter b
affects the overall mean flow achieved by the pumping,

along with the related flow structures in the wave frame.

B. Governing equations and boundary conditions

The flow is described by the steady Stokes equations

0 ¼ rpþ lD~uþ ~Fð~x; tÞ (5)

0 ¼ r �~u (6)

where l is the fluid viscosity, p is the pressure, ~u is the fluid

velocity, and ~F is the external force per unit volume applied

to the fluid. This external force field represents the force of

the tube walls on the fluid. The tube is of finite extent, open

at each end, and its surface acts as a source of forces in the

fluid domain, which is all of R3. In this unbounded domain,

we enforce the condition that the velocity decays at infinity.

Here, it is assumed that there is no imposed pressure drop

along the tube. We note that most of the classical theory of

peristalsis is for periodic tubes of infinite extent. However,

below we will compare our calculations with those for a peri-

odic axisymmetric tube, because it has been shown that

pumping performance is independent of tube length if there

is an integral number of waves along the tube.5

C. Numerical solution: Regularized Stokeslet
formulation

The objective of this study is to describe a model of

peristalsis in three dimensions for both axisymmetric and non-

axisymmetric tubes. We use the method of regularized Stokes-

lets (MRS),16,17 which is appropriate for the computation of

Stokes flows driven by external forces. The MRS has been

used extensively for the study of related problems in micro-

organism motility and bacterial processes (e.g., Refs. 18–24).

The MRS replaces a Dirac delta distribution of surface

forces with a regularized force field using basis functions /d

centered at discrete points on the surface.16,17 Given N points

~xkðtÞ discretizing the tube surface at time t and the force

~Fð~x; tÞ ¼
XN

k¼1

~f kðtÞ/dð~x�~xkðtÞÞ; (7)

the pressure and velocity at any point~x are given by

pð~x; tÞ ¼
XN

k¼1

~f kðtÞ � rGdð~x�~xkðtÞÞ; (8)

~uð~x; tÞ ¼ 1

l

XN

k¼1

ð~f kðtÞ � rÞrBd ~x�~xkðtÞð Þ
n

�~f kðtÞ � Gd ~x�~xkðtÞð Þ
o
: (9)

The functions Gd and Bd satisfy DGd ¼ /d and

DBd¼Gd, and are completely determined by the blob used.

Here, we choose the blob used in Refs. 16, 17

FIG. 2. (Color online) Depiction of selected tube cross sections at various

locations along one spatial period. The parameters used were r0¼ 1, a¼ 0.3,

k¼ 2p, b¼ 0.55p, and t¼ 0. All cross sections are ellipses with major and

minor axes aligned with the y and z axes. Panel (a) shows a perspective view

displaying the cross sections in one quadrant as well as the functions ra(x, t)
and rb(x, t) in Eqs. (2)–(3). Panel (b) shows the indicated cross sections

viewed from one end of the tube.
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/dð~x�~xkÞ ¼
15 d4

8p kð~x�~xkÞk2 þ d2
� �7=2

: (10)

Equation (9), when evaluated at all N points that discre-

tize the tube surface, must give the prescribed peristaltic

velocity ~uð~xkðtÞ; tÞ, which can be easily arrived at by differen-

tiation of Eqs. (2)–(3). The velocity specification at each of

these N surface points yields a linear system of 3N equations

for the unknown forces ~fkðtÞ that must be applied at those

points to achieve the specified velocities. Once the forces are

found by solving the linear system, Eq. (9) may be applied

directly to evaluate the fluid velocity at any point~x of interest.

In particular, by evaluating the fluid velocity within cross sec-

tions of the tube, we approximate the mean flow rate.

D. Computing the flow rate

The computation of the instantaneous flow rate involves

the numerical evaluation of

qðx; tÞ ¼
ð

Aðx;tÞ
uðx; y; z; tÞ dy dz

where x and t are fixed and A(x, t) is the area inside the

ellipse (y=ra)2þ (z=rb)2¼ 1. To do this, we first map the area

inside the ellipse to the unit disk D0 via the transformation

(y, z)¼ (raa, rbc), so that

qðx; tÞ ¼ rarb

ð
D0

uðx; raa; rbc; tÞ da dc: (11)

The unit disk is discretized into Np patches of equal area

by representing the disk as the union of Nr concentric annuli

of width h¼ 1=Nr. For a fixed k 2 1; 2;…;Nrf g, the area of

the annulus (k – 1)h< r< kh equals h2p(2k – 1) so that we

choose to place 3(2k – 1) points in this annulus at a radial

distance r¼ h(k – 1=2) and equally spaced in h. The patch of

area covered by each point (ak, ck) defined this way is

A¼ (p=3)h2, regardless of k. The distribution of points

within the unit disk is displayed in Figure 3. For a given

number Nr of annuli, the total number of points inside the

disk is Np ¼ 3N2
r . In our computations, we use Nr¼ 15. The

integral in Eq. (11) is approximated by the midpoint rule

qðx; tÞ � rarb
p
3

� �
h2
XNp

m¼1

uðx; raam; rbcm; tÞ:

Once we have computed the instantaneous flow rate

q(x, t), we may average it over one period of time T or we

may find the average flow rate per unit length of tube. The

time average is computed simply by averaging computed

values at discrete times since the flow rate is a periodic func-

tion of time. The average flow rate per unit length of tube is

computed using the trapezoid rule

�qTðxÞ ¼
1

T

ðT

0

qðx; tÞdt

� 1

T

XNT�1

k¼0

qðx; kDtÞDt; (12)

�qLðtÞ ¼
1

L

ðx0þL

x0

qðx; tÞdx � h

2L
ðqðx0; tÞ

þ qðx0 þ L; tÞ þ 2
XML�1

j¼1

qðx0 þ jh; tÞÞ; (13)

with Dt¼T=NT and h¼L=ML, where NT is the number of

quadrature points in a time period, and ML is the number of

quadrature points per wavelength. The results of this section

were obtained with NT¼ 20 and ML¼ 40.

III. RESULTS

Motivated by uterine peristalsis,25 we choose the tube

geometry whose parameters are given in Table I. The tube

supports two wavelengths, has a radius r0¼ 0.08k, and

undergoes oscillations with temporal period T¼ k=c. We

choose these as baseline parameters, and will examine the

pumping that results when varying the occlusion ratio

v¼ a=r0 and the value of the asymmetry parameter b. This

model problem will allow direct comparison between com-

puted flow rates and streamlines with those predicted by

classical analysis in the case of axisymmetric tubes. In addi-

tion, we will use the asymptotic value of flow rate to

FIG. 3. Discretization of the unit disk for computing the instantaneous flow

rate. The disk is represented by Nr annuli of width h¼ 1=Nr. The annulus

(k�1)h< r< kh for k 2 1; 2;…;Nrf g is subdivided into (6k – 3) angular sli-

ces so that Dh¼ 2p=(6k – 3). The quadrature points used in this annulus are

of the form a; cð Þ ¼ k � 1=2ð Þh cos nDhð Þ; sin nDhð Þð Þ for n¼ 1, 2,…,

(6k� 3). The total number of points used is 3N2
r , each covering an area of

A¼ h2(p=3).

TABLE I. Model parameters.

Symbol Units Value

Wavelength k mm 25.0

Tube radius ro mm 2.0

Wave speed c mm=s 1.25

Viscosity l gr=mm s 0.001

Frequency f 1=s 0.05

Period T¼ 1=f s 20

Channel length K¼ 2k mm 50
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calibrate our choice of the numerical regularization parame-

ter d with respect to the spacing Ds between discrete points

that resolve the tube surface.

In general, the time-averaged flow rate Q through a

cross section of the tube at x¼ xl is defined by

QðxlÞ ¼
1

T

ðT

0

ð
Aðxl;tÞ

uðxl; y; z; tÞ dydz dt (14)

where u is the axial component of velocity and A(xl, t) is the

tube’s cross-sectional area at x¼ xl at time t. Since the total

tube volume depends on v and b, for the purpose of compari-

son, it is best to non-dimensionalize the mean flow rate by

the tube volume divided by the time period

�QðxlÞ ¼
QðxlÞ

Vðb; vÞ=T
: (15)

A. Axisymmetric tube

We first focus our attention on the axisymmetric tube

with b¼ 0, for which asymptotic results in the long-wave-

length limit are available. In this case, the dimensional mean

flow rate was computed by Shapiro et al.3 to be

Qtheory ¼ ðp r2
o cÞ

4v2 1� v2

16

� �

1þ 3v2

2

� � :

Using our normalization factor in Eq. (15), the dimen-

sionless asymptotic mean flow rate becomes

�Qtheory ¼
1

1þ v2

2

� �
4v2 1� v2

16

� �

1þ 3v2

2

� � : (16)

We note that although our tube is finite, since we con-

strain it to support an integral number of wavelengths, we

can compare our calculations with the analytical solutions

for an infinite periodic tube.5

As an example of a long wavelength tube, we use a ge-

ometry based on Eq. (1) with r0=k¼ 0.08 (see Figure 4). We

discretize the surface of the tube by dividing it into NC cross

sections with NPj points around each circular cross section,

j¼ 1, 2,...NC. This is done in such a way as to keep the aver-

age distance Ds between surface points constant. Since we are

prescribing the kinematics of the surface points on the tube, at

any given time t we know the velocities at each of these

points. The forces on the tube surface and the internal fluid ve-

locity are computed as described in Sec. II. Figure 4 shows a

snapshot of several flow profiles in the laboratory frame along

a cross section of the axisymmetric tube with occlusion ratio

v¼ 0.3. As the surface wave is moving to the right, we see

that the profiles are largely pointing toward the right, except

in the occluded cross sections, where the flow is reversed.

In order to compute the mean flow rate achieved by the

pumping, we evaluate the fluid velocities at discrete points

within the circular cross sections at a few fixed stations along

the length of the tube. While the values of the time-averaged

flow over one period at different cross sections would neces-

sarily be the same in an infinite tube due to conservation of

mass, the values in the finite tube do not have the same

restriction. Figure 5 shows the time-averaged flow rate as a

function of axial location for tubes that are 2- and 3-wave-

lengths long. The horizontal line is the asymptotic mean flow

rate in Eq. (16). The figure shows that our computed values

are approximately constant at cross sections away from the

ends of tube. Our computed mean flow rate QSt is the space

average (using Eq. (13)) of these time-averaged flow rates.

The figure shows that the largest difference between the

computed flow rates and the asymptotic one is about 5.4%

(for 2 wavelengths) and 6.6% (for 3 wavelengths).

While the time-averaged flow rates are roughly constant,

the instantaneous flow rates for a given value of t vary signif-

icantly along the tube length. Figures 6(a) and 6(b) show in-

stantaneous flow rates as functions of axial position at t¼ 0

for tubes that are 2- and 3-wavelengths long, respectively.

The solid horizontal line is the asymptotic theory mean flow

rate. The dashed horizontal lines are the space average of the

oscillating functions over their respective domains computed

with Eq. (13) at t¼ 0 only. If we evaluated this space aver-

age at several values of t over a period, we would arrive at

the space-averaged flow rate as a function of time shown in

Figures 7(a) and 7(b). Note that the space average over the

entire tube shows more variation than the space-average over

the middle tube wavelength only. Also, the space averages

show less variation in time when the tube length is three

wavelengths rather than two. In either case, however, the

variations are due to the open ends of the tube.

For the model problem with v¼ 0.3, the asymptotic

mean flow rate given by Eq. (16) is �Qtheory ¼ 0:3018. For

instance, for this model problem, we choose 9 flow meters

spaced in the middle half of the tube, and compute the time-

averaged flow through each section. We take this value as

the reference mean flow rate of pumping, and compare our

FIG. 4. (Color online) Example of computed flow profiles in the axisymmetric tube at various cross sections. The Stokeslet strengths are first computed based

on velocity boundary conditions on the surface of the tube. Then, the instantaneous flow at various cross sections is computed and displayed here as surfaces

(approximate paraboloids) inside the tube. The figure shows that while the net flow is from left to right, there are sections of the tube where the flow is in the

opposite direction.
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computed mean flow rate for given surface discretizations Ds
and regularization parameters d. As discussed in Ref. 17, this

blob parameter (for the blob function in Eq. (10)) is best

taken to be comparable to the spacing between the discrete

points that discretize the surface. Figure 8(a) shows the rela-

tive difference between �Qtheory given in Eq. (16) and the

computed mean flow �QSt as a function of d=Ds for three dif-

ferent surface discretizations Ds¼ 0.5, 0.4, and 0.3 mm. We

see that, for a given surface discretization a very small regu-

larization parameter, relative to the spacing between discrete

surface points, results in an underresolved tube surface, and

leads to relative errors as high as 25%. Similarly, regulariza-

tion parameters that are large compared to the spacing

between discrete surface points result in a smeared force dis-

tribution at the surface that is of too wide an extent. We can

deduce that the optimal choice of regularization parameter

for this problem is d¼Ds. In fact, for d¼Ds¼ 0.3 mm, the

computed dimensionless mean flow rate is �QSt ¼ 0:3021,

which compares very well with the asymptotic theory.

Figure 8(b) compares the computations of the mean flow

as a function of the amplitude ratio v¼ a=ro with those pre-

dicted from Eq. (16). Here, we chose d¼Ds, with a surface

discretization of Ds¼ 0.28 mm. Note that even though the

analysis giving rise to �Qtheory assumed small amplitude oscil-

lations, flow rates at larger occlusion ratios, even v¼ 0.9,

agree very well with the computations that carry no such

assumption.

The long wavelength theory of Shapiro et al.3 also

included the calculation of the stream function in the steady

wave frame for the axisymmetric tube. In Figures 9(a) and

9(c), we plot the level curves of this stream function for the

occlusion ratio v¼ 0.3 and v¼ 0.6, respectively. These

should be compared to Figures 9(b) and 9(d) that show the

corresponding wave frame streamlines computed using the

method of regularized Stokeslets. For these occlusion ratios

of v¼ 0.3 and v¼ 0.6, bolus formation is achieved. We see

that the larger occlusion ratio results in a bolus of larger

extent than in the less occluded channel, which supports

more streamlines near the walls where particles are not

trapped, but carried along by the flow in this wave frame.

B. Non-axisymmetric tube

We now examine the characteristics of pumping in the

phase-shifted tube (b= 0). Although our model is not re-

stricted to the long wavelength regime, we again choose the

baseline parameters as in Table I above, but this time allow

for a non-zero phase shift b. We first examine the efficacy of

pumping as a function of b. Figure 10 shows the computed

normalized mean flow rate as a function of the phase shift

parameter b for the occlusion ratios v¼ 0.3 and v¼ 0.6. We

see that, in each case, the maximum mean flow is achieved

in the axisymmetric case b¼ 0, and that it decreases monot-

onically as the phase shift increases toward its maximal devi-

ation from axial symmetry at b¼p. The difference in flow

rate as asymmetry increases is more pronounced for the

larger occlusion, showing more than a seven-fold decrease.

This result is a three-dimensional analog of that found in

the two-dimensional phase-shifted channel analyzed by

Eytan and Elad.12 They demonstrated that the maximal flow

FIG. 5. Flow rate averaged over one temporal period as a function of axial

position in the tube, �qTðxÞ. The figure shows the result for cases when the

tube is 2 and 3 wavelengths long. The cross-sections near the center of the fi-

nite tube show a time-average flow rate that is approximately constant while

the cross-sections near the endpoints of the tube show the effect of the open

ends of the tube. The horizontal line shows the average flow rate given by

the asymptotic theory for an infinite periodic tube of small aspect ratio. The

largest difference between the computed flow rates and the asymptotic one

is about 5.4% (for 2 wavelengths) and 6.6% (for 3 wavelengths).

FIG. 6. Instantaneous flow rate at

t¼ 0.05 as a function of axial position in

the tube. Panel (a): A tube of 2 wave-

lengths. Panel (b): A tube of 3 wave-

lengths. In both cases, the solid horizontal

line is the theoretical asymptotic value

0.30181 and the horizontal dashed line is

the average flow rate in the tube com-

puted by integrating in x. The value in

panel (a) is 0.30575 and in panel (b) it is

0.31154. The parameters used were Ds �
0.49, v¼ 0.3, and d¼Ds.
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rate is achieved for the channel that is symmetric about its

centerline, and is actually zero when the walls of the channel

oscillate in parallel. In the latter case, the streamlines are

shown to have no component in the direction of pumping. In

our three-dimensional case, there is no value of b where all

cross sections have the same area, so the mean flow is non

zero in each case.

In order to gain some insight into our three-dimensional

case, we examine wave frame particle trajectories within the

axisymmetric tube for v¼ 0.6 (Figure 11) and compare these

to wave frame particle trajectories for b¼ p=2 (Figure 12).

While we see particles circulating with a bolus in both cases,

the closed wave frame streamlines in the axisymmetric case

lie within a plane with a fixed angle about the axis of sym-

metry. This is especially evident in Figure 11(c) that shows

the linear projections of the particle paths when looking

down through the tube axis. This angular symmetry is not

observed in the wave frame streamlines of the phase-shifted

tube in Figure 12(c). Here, we see that as the particles circu-

late, they also exhibit drift in the angular direction.

We also illustrate the angular dependence of the wave

frame streamlines for b¼p=2 in Figures 13(a)–13(e). Each

frame shows the two-dimensional streamlines of the flow

computed by projecting the wave frame velocity field onto a

plane with a fixed angle about the centerline of the tube. (If

this were the b¼ 0 axisymmetric case, each of the frames

would be identical.) Note that each frame does show a bolus,

and the center of the bolus occurs at the same cross-sectional

value of x. However, the walls of the tube are not the same

in each plane, and exhibit crests at different locations with

respect to the bolus center. In addition, the shape of the bolus

is also different in the various planes. We also note that

because these are projected two-dimensional streamlines of

the full three-dimensional flow, some of the streamlines do

not remain within the projected tube boundaries.

IV. DISCUSSION

The MRS is based upon the linear relationship between

forces applied at discrete points in three-space and the fluid

velocities at those points in an unbounded viscous fluid. The

errors in the computation of Stokes flow using the MRS are

of two types: (1) the discretization error due to the approxi-

mation of a continuous surface (i.e., the tube walls) by dis-

crete points and (2) the regularization error due to the

parameter d that replaces a point force by a regularized force.

It was shown in Ref. 17 that the regularization error is O(d)

in a region of size Oð
ffiffiffi
d
p
Þ surrounding the surface, but the

error improves to O(d2) away from the surface. Moreover, it

was also shown in Ref. 17 that the discretization error is

O(Ds2), where Ds is the average distance between points that

discretize the surface.

In this study, we have considered the flow due to peri-

stalsis where the kinematics of the tube surface were

FIG. 7. Average flow rate per unit

length of the tube as a function of time

over one period, �qLðtÞ. The curve with

dots in panel (a) shows the result when

the tube is 2 wavelengths long. The

curve with dots in panel (b) shows the

result when the tube is 3 wavelengths

long. The time discretization is

Dt¼ 0.05 dimensionless units. In both

panels, the curves with triangles show

the same average flow rate per unit

length of the tube when only a single

wavelength in the middle of the tube is

considered in order to reduce end-tube

effects. The parameters used were Ds �
0.49, v¼ 0.3, and d¼Ds.

FIG. 8. (Color online) Panel (a) shows

the relative error in the mean flow com-

putations, jj �Qtheory � �QStjj=jj �Qtheoryjj, for

three different surface discretizations as

a function of the constant of proportion-

ality between the blob size and the sur-

face discretization d=Ds. Panel (b)

shows the dimensionless mean flow as a

function of the occlusion ratio v arrived

at by the theory in Shapiro et al. (see

Ref. 3) (continuous curve), and regular-

ized Stokeslet computations (discrete

points).

081901-7 Stokesian peristaltic pumping Phys. Fluids 23, 081901 (2011)

Downloaded 23 Aug 2011 to 129.81.170.224. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



prescribed. Using these specified velocities at discrete points

of the tube surface, we solved for the forces at these discrete

points that were required to produce these velocities. Once

these forces were known, the fluid velocity within the tube

was calculated, and the flow features of peristalsis were

measured. The results presented indicate the effectiveness of

this approach, and also provide insight into the flow dynam-

ics in a tube with a phase-shifted asymmetry.

Conversely, the linear relationship between forces and

velocities in Stokes flow may also be exploited to compute

velocities at discrete points on a surface due to specified

forces applied at these points. Therefore, this framework is

ideally suited to solve the full fluid-structure interaction

problem where forces due to passive elasticity of the tube

and active bending moments induce the flow, and the geome-

try of the tube emerges from the resulting velocity. The input

to such an integrative model of uterine peristalsis would be

the elastic moduli of the fibers that build the uterine surface,

and a model of smooth muscle contraction in the cells along

these fibers. For instance, in future work, we hope to

FIG. 9. (Color online) Waveframe

streamlines in the axisymmetric tube.

The level curves of the stream function

arrived at using long wavelength theory

(see Ref. 3) for v¼ 0.3 are shown in

panel (a), and for v¼ 0.6 in panel (c).

The streamlines computed using the

method of regularized Stokeslets (Ref.

16) for v¼ 0.3 are shown in panel (b),

and for v¼ 0.6 in panel (d). We have

expanded the scale in the y-direction for

clarity.

FIG. 10. Normalized mean flow rate versus b for occlusion ratio v¼ 0.3 and

v¼ 0.6.

FIG. 11. (Color online) Axisymmetric

tube showing wave frame streamlines

traced out by some particle trajectories.

These computed three-dimensional

streamline patterns are depicted from

different perspectives. Panel (b) shows a

perspective at a small angle from the

tube axis while panel (c) shows the parti-

cle paths when looking down through

the tube axis. Note that the particles

show periodic motion on planes contain-

ing the tube axis. Here, v¼ 0.6 and

b¼ 0.
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incorporate the model of excitation-contraction in a single

uterine myocyte, based upon intra-cellular calcium dynam-

ics, that was presented in Ref. 26. The regularized Stokeslet

formulation and the closely related immersed boundary for-

mulation of an actuated elastic object interacting with an

incompressible fluid in a non-zero Reynolds number flow

(e.g., Ref. 27) have been used successfully in other integra-

tive models in biofluiddynamics, such as the dynein-induced

beating of cilia,28 bacterial flagellar bundling,29 and a neuro-

mechanical model of lamprey swimming.30

Here, we chose to study a three-dimensional peristaltic

tube with open ends. Of course, the uterine cavity is closed

at the fundal end. In numerical computations in a two-dimen-

sional model of a uterine channel closed at one end, Yaniv

et al.31 have shown that the resulting flow field and particle

trajectories are tremendously different from the correspond-

ing dynamics in a periodic or open-ended channel. Cellular

flow structures that confined individual fluid particles were

observed. We plan to extend our model of peristalsis to exam-

ine the effect of a closed end in a three-dimensional tube.

V. CONCLUSION

We have presented an investigation of peristaltic pump-

ing of a viscous fluid in a non-axisymmetric three-dimen-

sional tube. Although there are many ways to introduce

asymmetry in tube, we focus on a particular case of a phase-

shifted tube, whose asymmetry depends upon a single phase-

shift parameter. We view this to be a three-dimensional

analog of the phase-shifted two-dimensional channel. As in

the two-dimensional case, we find that a tube that is symmet-

ric about its centerline maximizes the fluid pumped in the

wave direction. Moreover, we offer validation of our numeri-

cal approach, the method of regularized Stokeslets, by com-

paring the numerical results with the analytical results of

flow in a periodic axisymmetric tube that were based upon

long wavelength theory. Having an analytic solution to this

closely related problem also enabled us to calibrate our

choice of numerical parameters.

FIG. 12. (Color online) Non-axisym-

metric tube showing wave frame stream-

lines traced out by some particle

trajectories. Panel (b) shows a perspec-

tive at a small angle from the tube axis

while panel (c) shows the particle paths

when looking down through the tube

axis. Note that the particles display rota-

tions inside a bolus and a drift in the

angular direction. Here, v¼ 0.6 and

b¼p=2.

FIG. 13. (Color online) Streamlines for the non-axisymmetric tube pro-

jected onto the plane containing the x-axis and the line y cos(h)þ z sin(h) for

(a) h¼ 0, (b) h¼p=6, (c) h¼p=4, (d) h¼p=3, and (e) h¼p=2. The values

b¼p=2 and v¼ 0.6 were fixed.
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