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The Brinkman equations of fluid motion are a model of flows in a porous medium. We
develop the exact solution of the Brinkman equations for three-dimensional incompress-
ible flow driven by regularized forces. Two different approaches to the regularization are
discussed and compared on test problems. The regularized Brinkman model is also applied
to the unsteady Stokes equation for oscillatory flows since the latter leads to the Brinkman
equations with complex permeability parameter. We provide validation studies of the
method based on the flow and drag of a solid sphere translating in a Brinkman medium
and the flow inside a cylindrical channel of circular cross-section. We present a numerical
example of a swimming organism in a Brinkman flow which shows that the maximum
swimming speed is obtained with a small but non-zero value of the porosity. We also dem-
onstrate that unsteady Stokes flows with oscillatory forcing fall within the same frame-
work and are computed with the same method by applying it to the motion of the
oscillating feeding appendage of a copepod.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

A Brinkman medium is a homogeneous porous medium characterized by a permeability parameter, a�2. The Brinkman
equations represent a viscous fluid flow through a cloud of spherical particles whose size is smaller than the characteristic
length scale of the flow, and therefore occupy a negligible volume [6]. Viscous flow in a porous medium is accurately de-
scribed by the Brinkman equations for incompressible flow
l
K

u� ¼ �rp� þ lDu� þ F�; r � u� ¼ 0;
where u* = (u,v,w) is the average fluid velocity, p* is the average fluid pressure, l is the dynamic viscosity, K is the Darcy
permeability of the medium and F* is the body force density. The superscript indicates dimensional quantities. The averages
are assumed to occur over many realizations of particle arrangements that satisfy the permeability, particle size, and volume
fraction constraints of the porous medium [6,13]. The equation indicates that, in the absence of forces, the Darcy term l/Ku*
and the diffusion balance the pressure gradient. We write the equations in dimensionless form by defining a particle length
scale L, velocity scale U, pressure scale lU/L and a force scale lU/L2 to write
a2u ¼ �rpþ Duþ F; r � u ¼ 0;
. All rights reserved.
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where the dimensionless parameter a ¼ L=
ffiffiffiffi
K
p

represents the ratio of the particle dimension to the permeability length scale
of the medium.

The assumption is that a is small enough that the diffusion term is significant and Darcy’s law alone does not apply. No-
tice that as a ? 0, the Brinkman equations reduce to the Stokes equations. For bodies moving in a Brinkman medium, the
permeability parameter provides a relative weight of the Darcy drag and Newtonian viscous drag. For instance, the drag force
experienced by a stationary rigid sphere of radius a in a uniform Brinkman flow U was given by Brinkman [2] as
FdragðaÞ ¼ 6plajUj 1þ aþ a2=3
� �

;

so that the terms containing a can be seen as corrections to the Stokes drag for small a. Although the drag on the sphere
increases as a increases, this is not necessarily the case for oscillating filaments swimming in a Brinkman fluid, as is dis-
cussed in Section 3.4.

The Brinkman equations have been used to model the diffusion of small molecules through the loose fibrous glycocalyx
that surrounds the endothelial cells lining capillary walls [7,21], as well as the flow through an array of fixed fibers [9] and
Stokes flow over permeable aggregates [23]. An inflexible porous medium, such as one composed of rigid, fixed cylinders, is
associated with values of a < O(1). More flexible media like the glycocalyx of cells may have a � O(10) or greater [7]. In [18],
the authors consider resistivities R of biological materials in the range 2 � 105 � 108 dyn s/cm4, with glycocalyx in the
middle of the range. The resistivity is defined as R = l/K which gives values of K 2 [10�12, 5 � 10�8] cm2 based on plasma
viscosity of l = 0.01 dyn s/cm2. For particle size of L = 1 lm, the corresponding range for a is [0.4,100]. Here we consider
a 2 [0,100] to include the Stokes limit.

We present a numerical method for calculating flows within a Brinkman medium subject to external forcing. The forces
may be distributed throughout the fluid in any manner, but the motivation for the technique lies in its application to moving
interfaces or slender bodies within a three-dimensional fluid domain. When the object of interest in the Brinkman medium is
a curve or collection of points, then the integral expression based on Green’s functions is singular. This scenario occurs when
studying the motion of a slender body, such as bacterial flagella or helical swimmers [13]. Our method of regularized fun-
damental solutions is similar to that developed for the Stokes equations [4].

A numerical method for the solution of Brinkman equations based on the boundary integral formulation of the problem
can be found in [7]. That work is restricted to axisymmetric problems where the boundaries are generated by rotating con-
tours about a common axis. This symmetry allows part of the surface integrals to be done exactly and compute only one-
dimensional weakly singular integrals. The latter are done via a change of variables that concentrates Gaussian quadrature
points near the singularities. The result is a highly accurate method for that class of problems. Other approaches to the
numerical solution of the Brinkman equations with acceleration terms (Navier–Stokes–Brinkman) use a finite-volume dis-
cretization of the differential equations [24,10].

1.1. Model equations

From now on, we set the viscosity to l = 1 since it can be scaled out of the equations. We consider first a force F given by a
single regularized force centered at the origin:
FðxÞ ¼ f/dðxÞ;
where f is a constant vector coefficient. Here we assume that the blob /d is a radial function (i.e. /d = /d(r)) and that it sat-
isfies 4p

R1
0 r2/dðrÞdr ¼ 1. The blob (or cutoff function) can be thought of as a narrow Gaussian whose width is controlled by

a small positive parameter d such that /d(x) approaches a delta distribution as d ? 0. Assuming there are no boundaries, we
take the divergence of the general equation to find
Dp ¼ f � r/d ) p ¼ f � rGd )rp ¼ ðf � rÞrGd;
where DGd = /d with Gd ? 0 as r ?1. This is exactly the same expression as for Stokes flow. Now the velocity satisfies
ða2 � DÞu ¼ f/d � ðf � rÞrGd½ �:
We define Bd implicitly as the solution of
ðD� a2ÞBd ¼ Gd; ð1Þ
also with a zero boundary condition at infinity, so that the fluid flow has the representation formula
u ¼ ðf � rÞrBd � fDBd: ð2Þ
If the blob /d(r) is a radial function, then both Gd(r) and Bd(r) are also radial. This allows us to write Eq. (1) as
½rBdðrÞ�00 � a2½rBdðrÞ� ¼ rGdðrÞ; ð3Þ
which reduces Eq. (2) to
uðxÞ ¼ fH1ðrÞ þ ðf � xÞxH2ðrÞ; ð4Þ
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where the functions
H1ðrÞ ¼ �
rB00d þ B0d

r
; H2ðrÞ ¼

rB00d � B0d
r3 ;
contain the regularization.

1.2. The singular expressions (d ? 0)

The singular case is equivalent to the case when the blob is replaced by a delta function. In that case, the resulting expres-
sions are
GðrÞ ¼ 1
4pr

; BðrÞ ¼ 1� e�ar

4pa2r
:

These lead to the known expressions
H1ðrÞ ¼
e�ar

4pr
1

a2r2 þ
1
ar
þ 1

� �
� 1

4pa2r3 ;

H2ðrÞ ¼ �
e�ar

4pr3

3
a2r2 þ

3
ar
þ 1

� �
þ 3

4pa2r5 :
Throughout this paper, we will refer to Eq. (4) as a regularized Brinkmanlet when d > 0 and as a Brinkmanlet in the singular case.

1.3. The fluid velocity

Eq. (4), which may be written succintly as uðxÞ ¼ Kd
Bðx� x0Þf gives the velocity field at a point x due to a force f located at

x0. In the case of a flow generated by N forces at different locations, the linearity of the equations leads to the superposition
uðxÞ ¼
XN

k¼1

Kd
Bðx� xkÞfk: ð5Þ
There are cases of interest where a body or a filament moves in a Brinkman fluid. In those cases, the forces are located either
on the surface R of the body or along the filament C so that the velocity field is given by the integrals
uðxÞ ¼
Z

R
Kd

Bðx� yÞfðyÞdSy or uðxÞ ¼
Z

C
Kd

Bðx� xð‘ÞÞfð‘Þd‘;
respectively. For the presentation of a unified numerical method, we will use Eq. (5) for all cases under the assumption that
each force fk represents the force on the corresponding patch of surface area (e.g. f(yk)h2) or on a segment of the filament (e.g.
f(‘k)h), as necessary. This makes the method identical regardless of whether the formulation is a discretization of an integral
or a superposition of individual forces at scattered points. Obviously, for specific cases of surface integrals one could modify
the formulation to use more accurate quadrature rules and possibly fewer collocation points along the surfaces to increase
the efficiency for that particular case, but we leave these details for another time.

Eq. (5) determines the velocity field at any location x given the surface forces f. In cases when the velocity of a particle is
known, the same equation can be used to compute the necessary forces. This is done by enforcing Eq. (5) at every point of the
surface and solving the resulting linear system of equations. It is known that in some geometries, the integral operator that
determines the matrix can give multiple solutions for the force. For example, a normal force of constant magnitude applied
to the surface of a sphere will not cause any fluid motion due to the incompressibility (it will only increase the pressure in-
side), regardless of the magnitude of the force. This implies that in some cases, the matrix in Eq. (5) may be nearly singular.
One can impose conditions such as zero average normal force to regain uniqueness. In the computations presented here, we
have found that using the iterative procedure GMRES with zero initial guess works well without modifying the matrix.

2. The expressions for Gd and Bd

We consider here two ways of finding suitable functions Gd and Bd. The first attempt is based on removing the singularity
of the known expressions from the previous section (for example, replacing 1/r with 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
). The expressions are readily

found this way and, if desired, one can derive the formula for the corresponding blob /d by differentiating Gd. A different
approach is to select a blob first and solve the corresponding ordinary differential equations for Gd and Bd. This is typically
more challenging but it allows the use of blobs that satisfy specific moment conditions that might be required.

2.1. Selecting Gd and Bd by regularizing G and B

The simplest way to regularize the fluid velocity is to start with the expression for B(r) from the singular case and modify
it by setting



7612 R. Cortez et al. / Journal of Computational Physics 229 (2010) 7609–7624
BdðrÞ ¼
1� e�aR

4pa2R
; with R2 ¼ r2 þ d2:
This results in the corresponding functions
H2ðrÞ ¼ �
e�aR

4pR3

3
a2R2 þ

3
aR
þ 1

� �
þ 3

4pa2R5
and
H1ðrÞ ¼
e�aR

4pR
1

a2R2 þ
1
aR
þ 1

� �
� 1

4pa2R3 þ d2H2ðrÞ:
The corresponding regularized Green’s function becomes
GdðrÞ ¼ �
1

4pR
� d2H2ðrÞ:
We mention that this regularized Green’s function corresponds to (i.e. DGd equals) the blob
/dðr; aÞ ¼ 3d2

4pR5 � d2DH2ðrÞ;
which depends on a due to the presence of H2(r). It is not difficult to show that this blob has the property that
4p
Z 1

0
r2 /dðr;aÞdr ¼ 1 independent of a

lim
a!0

/dðr;aÞ ¼ 15d4

8pðr2 þ d2Þ7=2 ; lim
a!1

/dðr;aÞ ¼ 3d2

4pðr2 þ d2Þ5=2 :
Since there exists a blob (for each a) that produces the regularization, it is guaranteed that the regularized flow will retain
the incompressibility property. This way of regularizing has the advantage that the velocity expression is trivially deter-
mined; on the other hand, the blob that corresponds to this regularization depends on a, which may not be desired. In addi-
tion, the blob results from the process instead of being chosen. This may be an issue if a blob is required to satisfy moment
conditions or other constraints demanded by the method’s accuracy.

2.2. Finding Gd by first selecting the blob

The expression for Gd given above has a feature that due to the d2 term, it depends on the physical parameter a even
though this dependence is not there in the singular version. It would be difficult to guess a regularized version of B(r) in such
a way that once the corresponding Gd is computed, it does not depend on a. Similarly, if a blob is required to satisfy certain
conditions, one must first design the blob and then determine the regularized velocity formula that it produces. In Stokes
flows, blobs are made to satisfy moment (or similar) conditions to improve the accuracy of the method [1,4]. This would
necessitate starting with the blob and deriving the final expressions This can be accomplished if we begin with a blob
and perform the necessary integration to derive Bd.

Given any blob /d(r), the regularized Green’s function satisfies
½rGdðrÞ�00 ¼ r/dðrÞ:
Integrating twice and using integration by parts, we get
rGdðrÞ ¼ rGdð0Þ þ r
Z r

0
x/dðxÞdx�

Z r

0
x2/dðxÞdx:
Now, we use the assumption that the total integral of the blob is 4p
R1

0 x2/dðxÞdx ¼ 1. We enforce the condition that r
Gd(r) ? �1/4p as r ?1 to get that
lim
r!1

r Gdð0Þ þ
Z r

0
x/dðxÞdx

� �
¼ 0;
to arrive at
GdðrÞ ¼ �
Z 1

0
x/dðxÞdxþ 1

r

Z r

0
ðr � xÞx/dðxÞdx: ð6Þ
Note that as r ?1, this function approaches �1/4pr.
In the next section, we will need the Laplace Transform of r Gd(r) so we derive it here. If we denote M1 ¼

R1
0 x/dðxÞdx, we

get
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rGdðrÞ ¼ �rM1 þ
Z r

0
ðr � xÞx/dðxÞdx;
so that
L½rGd�ðsÞ ¼ �
M1

s2 þ
L½r/d�ðsÞ

s2 :
We note that the singular G(r) satisfies
GðrÞ ¼ � 1
4pr

;L½rG�ðsÞ ¼ � 1
4ps

:

2.2.1. Solving for Bd

We first look at Eq. (3). if we define Y(r) = rBd, we can write the equation as
Y 00ðrÞ � a2YðrÞ ¼ rGdðrÞ: ð7Þ
Note that Y(0) = 0 and Y0(0) = Bd(0) since Bd(r) is smooth. We take Laplace Transforms of the differential equation to get
ðs2 � a2ÞbY ðsÞ � Bdð0Þ ¼ L½rGd�ðsÞ ¼ �
M1

s2 þ
L½r/d�ðsÞ

s2 :
Solving for bY ðsÞ and finding the inverse Laplace transform we get
YðrÞ ¼ Bdð0Þ
a

sinhðarÞ þM1

a2 r �M1

a3 sinhðarÞ þ 1
a3

Z r

0
sinhðaðr � xÞÞ � aðr � xÞ½ �x/dðxÞdx:
Now we divide by r to find
BdðrÞ ¼ Bdð0Þ �
M1

a2

� �
sinhðarÞ

ar
þM1

a2 þ
1

a3r

Z r

0
sinhðaðr � xÞÞ � aðr � xÞ½ �x/dðxÞdx:
The constant Bd(0) can be computed by isolating the coefficient of the growing exponential ear and setting it to zero. This
gives
Bdð0Þ ¼
M1

a2 �
1
a2

Z 1

0
e�axx/dðxÞdx:
We finally get that for Brinkman flows
BdðrÞ ¼
1
a2

Z 1

0
1� e�ax sinhðarÞ

ar

� �
x/dðxÞdxþ 1

a3r

Z r

0
sinhðaðr � xÞÞ � aðr � xÞ½ �x/dðxÞdx: ð8Þ
2.2.2. The limit of Bd(r) as d ? 0
The expression for B(r) without regularization is known to be
BðrÞ ¼ 1� e�ar

4pa2r
and one can verify that the series expansion of Eq. (8) for small d gives
BdðrÞ ¼
1� e�ar

4pa2r
þ OðdÞ:
2.2.3. The full formulas for a specific blob
In order to develop the regularized expressions based on a blob that does not depend on the physical parameters of the

problem, we begin by choosing a blob and using Eq. (8) to find the corresponding Bd. The only limitation in this process is our
ability to find the associated integrals in Eq. (8). Here we consider a blob with exponential decay and /0dð0Þ ¼ 0 (for
symmetry)
/dðrÞ ¼
ðr þ 2dÞ2

224pd5 e�r=d
whose exponential form allows the analytical computation of the integrals related to Bd. The required properties of /d(r) are
that its total volume integral be 1, that it be smooth and decay sufficiently fast as r ?1. Notice that we can write the blob as
a function of z = r/d
/dðzÞ ¼
ðzþ 2Þ2

224pd3 e�z:
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We will use this form to simplify the notation. To find the regularized Green’s function, we solve
rG00d þ 2G0d ¼ r/dðrÞ;
which gives
GdðzÞ ¼
ðzþ 4Þðz2 þ 6zþ 14Þe�z � 56

224pdz
:

Note that Gd is regular at the origin since a series expansion about z = 0 yields
GdðzÞ ¼ �
9

112pd
þ Oðz2Þ:
The next step is to find Bd by substituting the Green’s function into Eq. (1), or equivalently, plug /d(r) into Eq. (8). This gives
BdðzÞ ¼
1

4pra
ð1� e�zÞ

z
þ ðr2 � 7Þ

28praðr2 � 1Þ4
e�rz � e�zð Þ

z
� re�z

224paðr2 � 1Þ z2 þ 2ð5r2 � 8Þ
ðr2 � 1Þ zþ 2ð19r4 � 55r2 þ 48Þ

ðr2 � 1Þ2

" #
;

where r = ad.
Returning to the coordinate r = dz and noting that rz = ar, we can write
BdðrÞ ¼
1

4pa2

ð1� e�r=dÞ
r

þ ða2d2 � 7Þ
28pa2ða2d2 � 1Þ4

e�ar � e�r=d
� �

r

� de�r=d

224pða2d2 � 1Þ
r2=d2 þ 2ð5a2d2 � 8Þ

ða2d2 � 1Þ
r=dþ 2ð19a4d4 � 55a2d2 þ 48Þ

ða2d2 � 1Þ2

" #
;

where one can see that for fixed a and r,
lim
d!0

BdðrÞ ¼
1� e�ar

4pa2r
:

From the above expression for Bd(r) one can easily derive the corresponding H1(r) and H2(r).

3. Numerical examples

We present first two validation studies to provide insight into the effect of the numerical parameters on the results. The
first problem is to compute the drag on a solid sphere translating in a Brinkman flow. The second validation study is for flow
in a channel of circular cross-section. Two applications to biological flows complete the section, including the connection
between Brinkman flows and oscillatory unsteady Stokes flows.

3.1. Sphere in a uniform Brinkman flow

A first test case is a stationary sphere in a uniform Brinkman flow. We aim to compare the disturbance flow around the
sphere using the numerical method presented here and the two regularizations described in the previous section. We con-
sider a sphere of radius a and discretize its surface using Spherical Centroid Voronoi Tessellation (SCVT) and the package
STRIPACK [5,17]. Using SCVT, a specified number of points are positioned on a unit sphere so that the points are well sep-
arated. Then, the Delaunay triangulation of these same points on the unit sphere is obtained using STRIPACK. We then use
the centroid of each triangle as the location of the N point forces, fi/d, where i = 1,2 . . .N. The velocity of all points on the
surface of the sphere is set to a constant vector U and we use Eq. (4) to solve for the forces. For a, we use the five values
a = 0.1, 1, 5, 10, 20 and choose d based on the discretization.

As in the case of a sphere in Stokes flow, the velocity field outside the sphere in a Brinkman flow can be found exactly by
combining a Brinkmanlet and a dipole with the appropriate strength located at the center of the sphere. The strength of the
Brinkmanlet is f = 6pla eaaU and the corresponding dipole strength is the one that produces a uniform velocity on the
sphere. The traction at a point x on the surface of the sphere is [14]
fðxÞ ¼ �3l
2a

ð1þ aaÞUþ a2a2

3
ðU � n̂Þn̂

� �
;

where n̂ is the unit vector normal to the sphere. This expression becomes uniform only for the case a = 0, as it is known for
Stokes flows. For a > 0, the traction varies along the surface of the sphere. The drag on the sphere is given by the well-known
formula [2],
FdragðaÞ ¼ 6plajUj 1þ aþ a2=3
� �

:

We note here that a stationary sphere in a non-zero uniform Brinkman flow differs from a translating sphere in an otherwise
zero flow due to the fact that, at infinity, the lower-order resistance term in the Brinkman equation is non-zero when the
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sphere is stationary and zero when the sphere is translating, thus the pressure induces a greater overall force on the sphere
in the former case.

Fig. 1 shows the streamlines around the sphere for a uniform upward flow in the cases a = 0.1 (small departure from
Stokes flow) and a = 100. Notice that the disturbance due to the sphere decays faster for larger a, which is also shown in
[19]. For various fixed values of a, we computed the drag force on the stationary sphere using our regularization method.
Given a discretization of the sphere with N points, the formula in Eq. (5) evaluated at the same surface points was solved
as a linear system for the forces fk provided the velocities at all points were equal. The forces were then summed to compute
the drag and the results listed in Table 1.

The results have been optimized in the sense that for each value of a we have chosen the value of d that minimizes the
error in the drag of the sphere. This results in the empirical relation d2 = 0.212d1 (where d1 corresponds to Reg 1 and d2 cor-
responds to Reg 2). This can be explained by realizing that the two blobs have very different decay rates. The blob of Section
2.1 (Reg 1) depends on a so its shape changes with the permeability; however, we showed that this blob has algebraic decay
ranging from r�7 to r�5. On the other hand, the blob from Section 2.2 (Reg 2) has exponential decay e�r/d independently of a. A
fair way to compare the performance of the two regularizations is to scale them differently so that the two blobs agree at
r = 0 (see Fig. 2). This results in d2 = 0.212d1.

We also consider the speed of the flow along a horizontal line through the center of the stationary sphere. In Fig. 3, we
plot the vertical velocity component from the edge of the sphere out to one unit away from the edge of the sphere. The figure
shows three curves for five different values of a: the exact solution (see [15,8]), the numerical solution with the regulariza-
tion in Section 2.1, and the numerical solution with the regularization in Section 2.2. The comparison shows that both blobs
perform very well for a large range of a values although the results are better when the fluid velocity near the surface of the
sphere does not surpass the uniform flow at infinity.

3.2. A rotating sphere in a quiescent Brinkman flow

We now consider the fluid motion generated when we rotate the sphere with a constant angular velocity X without any
additional background flow. Its surface develops tangential forces so that the flow outside the sphere along a line segment
emanating from the surface of the sphere and perpendicular to the direction of the angular velocity is given by [20]
Fig. 1. Streamlines around the sphere for a = 0.1 (left) and a = 100 (right). The sphere has radius a = 1.

Table 1
Computed values of the drag on a sphere translating in a Brinkman flow. The number of triangles acquired with SCVT and
STRIPACK in all computations was N = 7996.

a d-Reg 1 d-Reg 2 Fdrag-Reg 1 Fdrag-Reg 2 Fdrag Exact

0.1 0.016 0.0034 20.8019 20.7957 20.7973
1 0.018 0.0038 44.0059 43.9757 43.9823
5 0.029 0.0062 270.0281 269.7660 270.1770

10 0.0373 0.00815 835.7700 835.5633 835.6636
20 0.0454 0.0102 2909.2852 2910.1664 2909.1147



Fig. 2. Plots of /d(r) for the two different regularizations and a = 0. The comparison is made using different values of d so that the functions agree at r = 0. If
d1 is the regularization parameter used in the blob of Section 2.1 and d2 the regularization parameter used in the blob of Section 2.2, the result is
d2 = 0.212d1. Note that the shapes are not significantly different.

Fig. 3. Vertical velocity component along a sphere centerline perpendicular to the flow direction. The sphere radius is a = 1. The graph shows three curves
for each of the values of a = 0.1, 1, 5, 10, 20. The three curves correspond to the exact solution (solid), the numerical solution with the regularization in
Section 2.1 (dotted), and the numerical solution with the regularization in Section 2.2 (dashed).
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uðxÞ ¼ X� xf ðrÞ with f ðrÞ ¼ eað1�r=aÞ a3ð1þ ar=aÞ
r3ð1þ aÞ :
The factor f(r) in this velocity field for several values of a is shown in Fig. 4. The regularization parameters were fixed at
d = 0.014 and d = 0.003 for the regularizations from Sections 2.1 and 2.2, respectively. The numerical results show excellent
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agreement with the theory. The net torque can be computed by applying the angular velocity to the points on the sphere and
solving for the forces as before. The torques are then computed simply as

P
kxk � fk and compared with the formula [20]
TðaÞ ¼ 8pa3jXj1þ aþ a2=3
1þ a

:

Our computations show that the computed net torque is sensitive to the regularization parameter d. For the fixed values used
in Fig. 4, d = 0.014 for regularization 1 and d = 0.003 for regularization 2, the net torque is overestimated by the method using
either regularizing function. On the other hand, by decreasing the values of d as a increases, the net torque approximation
can be made to match the exact value, as summarized in Table 2.

3.3. Brinkman flow in a cylindrical channel

As a second validation test we consider a cylindrical channel with circular cross-section of radius a and length L, and we
impose an internal flow, U, and hold the cylinder fixed. The channel is long enough such that the inlet flow has fully devel-
oped by the time it reaches the center of the cylinder and is not affected by the outlet. The axial velocity component in the
channel as a function of r can be compared with the explicit formula [21]
Uðr;aÞ ¼ U0
I0ðaaÞ
I2ðaaÞ

1� I0ðraÞ
I0ðaaÞ

� �
;

where U0 is the average velocity of the fluid in the channel and Ik is the Bessel function of the second kind of order k.
Fig. 5 shows the axial velocity component inside the cylinder along the center line of a cross-section. The computations

were done using a channel of length L = 4 and radius a = 1 whose surface is discretized using a cylindrical grid of 92 equally-
distributed cross-sections with 144 equally-spaced points around the circumference of each cross-section.

The regularization parameter used to create the plots in this Figure was d = 0.014 for the blob in Section 2.1 and d = 0.003
for the blob in Section 2.2. To achieve the approximate axial velocity for this problem, there was a range of values of d that
Table 2
Computed values of the net torque on a sphere rotating in a Brinkman flow. The number of triangles acquired with SCVT
and STRIPACK in all computations was N = 7996.

a d-Reg 1 d-Reg 2 Torque-Reg 1 Torque-Reg 2 Torque exact

0.1 0.01400 0.003000 25.25 25.24 25.20
1 0.00550 0.001200 29.43 29.47 29.32
5 0.00240 0.000510 60.11 59.92 60.039

10 0.00300 0.000640 101.66 101.42 101.29
20 0.00425 0.000915 184.15 184.61 184.70



Fig. 5. Axial velocity inside the cyliner of radius a = 1. The graph shows three curves for each of the values of a = 0.1, 1, 2, 5, 100. The three curves
correspond to the exact solution (solid), the numerical solution with the regularization in Section 2.1 (dotted), and the numerical solution with the
regularization in Section 2.2 (dashed).
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seemed to work. The computed velocities began to diverge from the exact ones for values above d = 0.02 for the blob in Sec-
tion 2.1 and d = 0.004 for the blob in Section 2.2. Notice that the values of d that achieved good results are at the low end of
what was used in the example using a stationary sphere in a Brinkman flow, and do not change with a.
3.4. Undulating organism swimming in a Brinkman fluid

As an application, we consider an organism defined by a curve in three-dimensional space. Forces along the organism de-
velop in such a way to make it undulate by passing a wave from front to back, propelling the organism. The goal here is to
determine the effect of the permeability parameter a on the swimming speed of the organism.

The organism is defined initially by the parametric equations x(s) = s, y(s) = A(s) sin(m s), and z(s) = 0 for 0 6 s 6 L and
m = 2p/L where all quantities are dimensionless. We choose the amplitude A(s) to be a linearly increasing function. In order
to generate forces along the curve, we imagine an ideal ‘‘target” shape given by Y(s, t) = A(s) sin(m(s � t)) and so that the
forces will develop in order to maintain approximately the total length of the curve and the curvature corresponding to
Y(s, t). Let there be N equally-distributed points along the organism separated by a distance h = L/(N � 1). We first define
an energy by
E ¼
XN�1

k¼1

rs
jxkþ1 � xkj

h
� 1

� �2

þ
XN�1

k¼2

rb
ðxkþ1 � xkÞ � ðxk � xk�1Þ

h3 � jk

� �2

;

where the first sum represents the spring energy due to stretching and the second sum is the bending energy due to a mis-
match of the computed curvature and the target curvature jk of Y(s, t) at s = kh. The force at (xk,yk,zk) is defined as
fkðtÞ ¼ �@E=@xk;
which ensures that the total force on the organism is zero so that the forward motion is not due to a net external force. We
emphasize that this formulation does not enforce the position of the organism, only its shape. Its location and orientation are
free to change.

In this example, the dimensionless parameters rs = 100 and rb = 0.05 are fixed for all time and the velocity of the points
defining the organism is computed using Eq. (4). A typical motion of the organism over a single period of time is shown in
Fig. 6. The parameters used in Y(s, t) = A(s) sin(m(s � t)) were L = 0.75, m = 2p/L, A(s) = 5 s/m2. The point separation along the
organism was approximately h = L/(N � 1) and the regularization parameter was set to d = 0.25 h. Fig. 6 shows the organism
at equal intervals of dimensionless time over one period 0 6 s 6 0.75. In our simulations, the virtual organism propels itself
at a constant speed and requires approximately 80 periods to swim one body length.

Based on the initial and final location of the front point, we compute an average swimming speed for every value of a. The
results are shown in Fig. 7.



Fig. 6. Organism shape during one period of swimming with a = 10. The figures are plotted on a 1:1 scale. The leftmost figure is the initial shape; the other
figures are the shapes at equally distributed time intervals displaced to the right for viewing. The swimming motion is upward although difficult to perceive
over a single period.

Fig. 7. Organism swimming speed as a function of a scaled by the swimming speed in Stokes flow (a = 0).
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As a increases, the swimming speed is initially enhanced compared to the Stokes case until a point of maximum propul-
sion around a = 10. For even larger values of a the swimming speed begins to decrease, indicating that the permeability of
the medium is too low for the organism to make its way through it. This phenomenon of higher swimming speed in a Brink-
man flow compared to Stokes flows has been observed before. In the context of a swimming sheet, asymptotic analysis in
[13] for small wave amplitude shows that, to leading order, the propulsion speed (relative to Stokes flow) is UðaÞ ¼
Uð0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ a2=ðm2L2Þ

q
.

3.5. Application to oscillatory unsteady Stokes

The unsteady Stokes equations for incompressible flow are
q
@u
@t
¼ �rpþ lDuþ F;r � u ¼ 0 ð9Þ
where q is the fluid density. As before, we assume that F is given by a single regularized force centered at the origin
F(t,x) = f(t)/d(x) and that the flow is oscillatory. Then we can write
uðt;xÞ ¼ eixtuðxÞ;pðt;xÞ ¼ eixtpðxÞ; fðtÞ ¼ eixtf:
After plugging this into the equations, we get
ðlD� ixqIÞuðxÞ ¼ rpðxÞ � f /dðxÞ;r � u ¼ 0: ð10Þ
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Writing these equations in dimensionless form and setting a2 = iL2xq/l, we find that the unsteady Stokes equations for
oscillatory flows reduces exactly to the Brinkman equation so that the velocity field is given by Eq. (4). The only difference
is that the parameter a2 is now imaginary. However, the computational simulations are done in exactly the same way as
before.

We apply this method to the feeding appendage oscillations of the planktonic crustacean Eucalanus pileatus (Fig. 8(a)).
Copepods such as E. pileatus are only a few millimeters long and have appendages ending in arrays of long, thin bristles called
setae. Many of these appendages are used in the feeding process, including the first and second maxillae (M1 and M2 in
Fig. 8(a)). There was a long-standing debate over whether these organisms used their bristled appendages as ‘‘rakes” to sieve
food out of the water, or whether the bristles acted more like ‘‘paddles” that direct food particles toward the mouth using
currents. Cheer and Koehl [3] used a steady Stokes flow model to demonstrate that the bristles can undergo a functional shift
between paddle and rake by changing the speed or separation of the setae. Using the Brinkman regularization method on a
linear array of setae, we may assess the functional shift in the case of oscillatory flow.

In particular, we will look at the activity of the feeding appendages called the second maxillae (Fig. 8(a)). When E. pileatus
feeds on small food cells (�6 lm), the second maxillae exhibit low amplitude oscillatory motion at about 20 Hz interrupted
by occasional ‘‘combing” actions [16]. No absolute velocities for the second maxillae are available for this feeding regime, so
we take the peak velocity to be 7 mm/s, the maximum velocity observed for the second maxillae during no capture motions
in the presence of large food cells (�30 � 40 lm) [12]. For the purposes of this example, we assume that the diameter of the
setae, d, on the second maxillae is 10 lm [3] and that the setae have a length of L = 250 lm based on images in Koehl [11]
and Koehl and Strickler [12]. Koehl and Strickler report maximum separations between setae from 30 � 50 lm, so we as-
sume basal separations of 20 lm and tip separations varying from 20 � 50 lm as in the schematic in Fig. 8(b). For this exam-
ple, we do not consider the flow field caused by the body of the copepod; instead, we consider only the flow between four
setae of equal length. One could account for the effect of the body by using a method of images, but that is not needed to
compare to Cheer and Koehl [3].

We discretize the four setae into L/d points and take the blob parameter d to be d/5. The velocity at each of these points is
fixed at 7 mm/s, and the force distributions f(x) along the setae required to maintain this velocity are calculated from the
inverse of Eq. (4), where H1 and H2 are computed from the unsteady Stokes equations and the regularization in Section
2.2. The forces f(x) are used in Eq. (4) to calculate the fluid velocity field between the setae.

Fig. 9 shows the peak velocity and phase shift profiles for the fluid parcels midway between the two innermost of four
setae with various amounts of setae tip separation. The ordinate is distance along a seta in microns, and the abscissa is either
peak velocity in mm/s (Fig. 9(a)) or phase shift in degrees (Fig. 9(b)). The legend denotes tip separation in microns. As tip
separation increases, the fluid between the setae moves more slowly and lags farther behind the setae. Near the mid-point
Fig. 8. (a) A diagram of Eucalanus pileatus in a typical feeding posture viewed from the left side. The feeding appendages are: A2 – second antenna, M1 – first
maxilla, M2 – second maxilla, MP – mandibular palp, and MXP – maxilliped. Other structures are: m – mouth, A1 – first antenna, and S – swimming legs.
This figure was reproduced with permission from [12]– copyright (1981) by the American Society of Limnology and Oceanography, Inc. (b) A schematic of
the numerical simulation: four setae of identical length moving sinusoidally through seawater. The direction of motion is perpendicular to the long axis of
the setae and to the axis connecting all four setae. The setae may be splayed near their tips.
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of the setae, peak fluid velocity ranges from about 5.75 � 6.25 mm/s, or 80 � 90% of the velocity of the setae themselves. This
suggests that a significant amount of fluid is being dragged along with the setae during their total excursion.

Cheer and Koehl [3] quantified the amount of fluid carried between two steadily moving cylindrical hairs or bristles by
constructing a ‘‘leakiness” ratio. Using a steady Stokes model of two-dimensional fluid motion between cylinders, they cal-
culated the ratio of actual fluid flow between the cylinders to the volume swept out by the pair over one unit of time. When
the leakiness is near zero, then the pair of cylinders acts more like a solid paddle than sieve or a rake due to the mass of fluid
dragged along with the setae. When the leakiness is near one, then the opposite scenario holds and the bristles are function-
ally equivalent to sieves. Cheer and Koehl showed that changing the separation between the bristles and/or the velocity of
the bristles can cause a functional shift between paddle and rake.

We can calculate the same ratio for the setae array in Fig. 8, where the volume considered is that between all four setae
and the unit of time is half of one period of an oscillation. Fig. 10 graphs the leakiness that we calculated from our simula-
tions of the motion of four setae moving at frequencies of 20–80 Hz. These frequencies are in the range reported for the
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feeding appendage motion of several species of copepod [12,16]. This figure demonstrates that setae in this configuration are
paddle-like in their function, although leakiness increases with both frequency and setae separation. This suggests that cope-
pod appendages can shift their functionality not only by changing their speed and bristle separation, but also by changing
their frequency of motion.

In order to directly compare our results for sinusoidal flow to the steady flow results from Cheer and Koehl, we repeated
their simulations using the Brinkman regularization. Imposing a bristle motion of 20 Hz at 7 mm/s, we calculated the leak-
iness for two 165 lm bristles of 1 lm diameter that are uniformly separated rather than splayed as in our previous simu-
lation. The results are given by the black dashed line in Fig. 11. This scenario is characterized by a Reynolds number of
approximately 6.7e-3. For comparison, the results from Cheer and Koehl for bristles of 1 lm diameter at Reynolds numbers
of 1.e-3–1.e-1 are shown in gray. If sinusoidal motion produces leakiness quantitatively similar to steady motion, then the
black dashed line should fall between the solid and dashed gray lines. However, the sinusoidal motion shows more leakiness
than predicted by steady flow for the given Reynolds number. This could be due to the sinusoidal motion or to fluid escaping
over the top and bottom of the bristle array, which it cannot in Cheer and Koehl’s model. The latter hypothesis is supported
by the fact that shorter bristles show even more leakiness than the black dashed line in Fig. 11 for the same parameter
choices (data not shown).

The row of four thicker, splayed bristles moving at 20 Hz in Fig. 10 (black line) shows more paddle-like behavior than the
two thin, uniformly separated bristles in Fig. 11 (black dashed line). This is most likely due to the smaller volume between
the bristles in the splayed array and the greater number of bristles in the array, since a longer array means that it is harder for
fluid to escape around the sides. The exploration of these alternative geometries is facilitated by the Brinkman regularization.
4. Conclusions

We have introduced a regularization method for the numerical solution of the Brinkman equations for flows generated by
external forces. The key feature of the method is to apply forces of the form f/d(jx � x0j) so that they are localized but
smoothly transitioning from a maximum value at x0 to zero when jx � x0j � d. For this type of forcing with N forces, the
exact solution of the Brinkman equations can be found by the representation formula
uðxÞ ¼
XN

k¼1

Kd
Bðx� xkÞfk ¼

XN

k¼1

fkH1ðjx� xkjÞ þ ½fk � ðx� x0Þ�ðx� x0ÞH2ðjx� x0jÞ:
This formula may represent the superposition of flows generated by a collection of N forces exerted at scattered points, or the
discretization of a surface or line integral with a force field along them. The validation studies of flows around a translating or
rotating sphere and the flow inside a cylinder show that the method gives results that agree well with theory. Currently,
there is no convergence theory for the method to provide guidance on how to choose the numerical parameter d as a function
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of the discretization of a surface or filament. In addition, in the case of surface discretizations, one could modify the quad-
rature rule to improve the accuracy; this will alter the relationship between the optimal d and the discretization. In the sim-
ulation of a rotating sphere, the regularization parameters had to be chosen smaller than for the translating sphere. This
implies that in order to get good agreement in both translation and rotation, the sphere surface discretization must be fine
enough to allow the small values of d required by the torque computation while making sure the surface grid is fine enough
to prevent fluid leaking through it.

The method gives particularly good results for relatively large permeability (small a), which corresponds to the scale in
which the Brinkman equations are valid. If a = 0 the equation reduces to the Stokes equation and the method reduces to the
method of regularized Stokeslets [4], which has been used widely in problems of microorganism motility. Our results show
that if an undulating microorganism moves in a Brinkman fluid, its average swimming speed depends on a and that the max-
imum speed occurs at a nonzero value of a. This enhanced propulsion due to permeability has been observed before. In [13],
the author shows this effect using a weakly nonlinear analysis on a swimming sheet and through numerical computations of
a helical filament.

We have used the same methodology to model the flow due to an oscillating filament in unsteady Stokes flow. When the
oscillation is explicitly introduced into the time-dependence of the variables, the resulting equation is the Brinkman equa-
tion with imaginary a2. The method proceeds as before with the exception that the kernel KB(r) is separated into its real and
imaginary parts. Any increase in computational cost in this application is due to the use of complex arithmetic throughout
the simulation. We have applied the method to the feeding appendage oscillations of a copepod. The leakiness ratio, first
computed in [3], is used to determine the conditions under which the appendages function as paddles or rakes. Our results
suggest that copepod appendages can shift their functionality not only by changing their speed and bristle separation, but
also by changing their frequency of motion.

Finally, the same approach can be used in two dimension flows, where the velocity expression is
uðxÞ ¼ f H1ðrÞ þ ðf � xÞx H2ðrÞ
with
H1ðrÞ ¼ �B00; H2ðrÞ ¼
rB00 � B0

r3
and the function B(r) is given in terms of a modified Bessel function of the second kind [22]
BðrÞ ¼ 1
2pa2 logðrÞ þ K0ðarÞð Þ
In this case, the velocity expression contains a logarithmic singularity that can be regularized by replacing r with

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ d2

p
as in the approach of Section 2.1.
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