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Abstract

Certain bacteria, such &scherichia coli (E. coli) andSalmonella typhimurium (S typhimurium),
use multiple flagella often concentrated at ama of their bodies to induce locomotion. Each
flagellum is formed in a left-handed helix and lemobr at the base that rotates the flagellum in a
corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic
interaction. The model is basexh the equations of Stokes flow to describe the fluid motion. The
elastidty of the flagella is modeled with a network of elastic springs while the motor is represented
by a torque at the base of each flagellum. The fluid velocity due to the forces is described by
regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their
expressions are derived. The model is used to analyze the swimming motion of a single flagellum
and of a group of three flagella in close proximity to one another. When all flagellar motors rotate
counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the
flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the
same initial conditions lead to a tutitiy behavior characterized by the separation of the flagella,
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changes in their orientation, and no net swimming motion. The analysis of the flow provides some
intuition for these processes.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Single-celled bacteria, such Bscherichia cali (E. coli) induce locomotion through the
use o multiple flagella often concentrated at one end of the organism. Each flagellum is
flexible and maintains roughly aftehanded helical shape. At the base of each flagellum
is a gnall rotary motor that can turn clockwise or counterclockwise. It is known that
when the motors all turn counterclockwise (when viewed from behind the flagella), the
flagella tend to gather together to form a single helix [see for exarmplaer et al.
(2000). This movement, known as bundling stdts in forward motion of the cell. When
same or all of the motors turn clockwise, the flagella go through a sequence of shape
transformatbns changing amplitude, pitch, and setiimes handedness. The consequence
is that the bundle unravels and the flagella separate. This motion is known as tumbling and
changes the movement of the organism iate without a preferred direction, resulting
in no appreciale net motion Berg, 2003. Bundling andtumbling together enable the
organism to move in one direction and reorient itself to move in another direction
where there may é& more favorableconditions for survival. This process may be in
response to chemical stimuli (chemotaxis) or other factors such as temperature and light
intensity.

Previbus work on the modeling of helical swimming motions has combined analytical
and numerical methods and has focused mainly on organisms with a single flagellum.
Lighthill (1976, 1996) provided mathematical analysi$é the mdion of a thin tube with
helical shape using slender-body theory. histtheory, the flagellum is replaced with a
distribution of Stokeslets and dipoles along its centerline. The analysis provided refined
resistance coefficients for this motion and modifications to account approximately for
the drag force on the cell bodyigdon (19794&) combined mathenteal and numerical
analyses applied to the motion of an organism with a spherical body and a single flagellum.
The flagellum was also modeled using slender-body approximations. The body was
assumed to be spherical which allowed the use of images to impose approximate boundary
conditions on its surface. A rotlet at the center of the cell body was included in order to
balance the ration induced by the flagelluniRamia et al. (1993used a computational
approach based on the boundary element method to model the motion of an organism with
spherical body and a single helical flagellum. Their study included motions near walls and
near another organism of the same shape. The description of the organism is similar to
that inHigdon (1979b)however, the Green’s function approach is traded for a boundary
element method in order to address cases with multiple walls (of finite extent) and multiple
organisms.Gato et al. (2001)also use the boundary element method to compute the
swimming speed and cell body rotation of a singly-flagellated bacterium. Given the angular
velocity of the motor, the geometry of the cell body and flagellum, and assuming both move
as rigid bodies, they are able to compute the six unknowns that represent the swimming
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velocity and angular velocity of the cell body. These computations are not dynamic.
Goato et al. (1999)performed computations using a cell body and three flagella using
the same boundary element method asGumto et al. (2001) howewer, the dynamics
of the motion, particularly bundling, were not addressed since only the linear and
angular velocities of the cell body were determined from a static balance of forces and
torques.

The works mentioned above assumed from the outset the shape of the flagellum for all
time. For helical waves, the centerline was assumed to be given by a helix of the form

(X, Y,2) = (X, E(x) cogkx — wt), E(X) sin(kx — wt))

which implies that throughout the motion, the flagellum rotates and translates as a solid
body without deformation. This assumption simplifies the mathematical analysis but is
not realigic for bacteria likeE. coli and S. typhimurium, whose flagella should not be
considered rigid screws since they assume a variety of distinct helices depending on their
environment [see for exampkamiya and Asakura (1978)

Pawvers (2002)considered a single straight but flexible filament which is rotated
at one end in a circular fashion around an axis parallel but not coincident with the
filament. The rotation simulates the cell body rotation and the filament represents a single
flagellum. Based on steady states of the filament driven by various rotation frequencies,
conclusions were drawn regarding thespbility of bundling. However, only a single
filament was considered and the hydrodynamic interactions among neighboring flagella
were not taken into account. The Stokes flow was included only through the use of a
transverse friction coefficienbflowing local resistive-force theory (for a rod) and slender-
body approximations, and the conclusions were based on the helical shape of the rotating
isolated filament.

While some of the works citkalove applyonly to eukaryotic flagella and some may
apply also to prokaryotic ones, the goal of the present study is to determine conditions that
tend to produce bundling of various prokaryotic flagella in close proximity to one another.
The emphasis here is on the role of the hydrodynamic interaction of the flagella in the
processes of bundling and tumbling. No restrictions on the wave amplitudes or flagellum
dimensions are imposed. In this way, the methodology used here can also be applied to
other organisms that may not be slender or that display large-amplitude waves in their
motion. Itis important not to assume a priori the helical shape of the flagella for all time but
allow for deformations during the interactiofi$erdore, our model includes a mechanism
designed to provide a certain amount of elasticity to the flagellum so that a helical shape
is preferred bt deviations from it are allowed. The simulations are based on solutions of
Stokes quations in the presence of external forces given by shape functions that smoothly
approximate delta distributions. This is the basis of the method of regularized Stokeslet
(Cortez, 2001 Cortezet al., in prespused hee. In addition, the rotation induced by the
motors at the base of each flagellum is modeled wrtgal arized rotlet which is derived as
the antisymmetric part of the derivative of the regularized Stokeslet. The rotlet represents
a locdized torque.
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Table 1
Factors for the conversion from dimensionless units to dimensional variables
Dimensionless variable Multiply by
Length L£L=10"°m
Velocity U=101ms1
Time T=10"%s
Angular velocity T-1l=10¢s1
Force ansity F=puU/L2=10Nm3
Torque density Tq=nU/L=10Nm?

We note that the force (torque) density is the force (torque) per unit volume.

2. Equations

The fluid dynamics in problems of microorganism motion, where length and velocity
scales are very small, is well-modeled by Btekes guations for incompressible flows
0=—VP + uAl+f
0=vVv.a
where P is the fluid pressurdj is the fluid velocity,u is the viscosity of the fluid and

f is the externkforce density. If we defineC andU to be a characteristic length and a
characteristic speed in the problem, ean define the dimensionless variables

x:li, u=i0, P=£F~>, f:ﬁ—zf
L U e, ulU
Then, after some simplification, the Stokes equations in dimensionless form become
0=—-VP+ Au+f 1)
0=V .-.u. (2)

These are the equations we use in our model. We mention that a typical lengtB.afchin
flagellum 510-20um (Turner et al., 2000Kim et a., 2003. A typical forward swimming
speed of the cells is 10-40m s~ (Turner et al., 2000McClaine and Ford, 2002and

the motor rotation is on the order of 100 Hz (revolutions per secomdjr(er et al., 2000

Berry, 2001 Berg, 2003 Kim ¢ al., 2003. All computations will be performed using
dimensionless variables. In all cases, the dimensional values will be computed using the
viscosity of wateru = 103 kg m™1 s~ and the following parameter& = 10° m

andU = 107! m s, The lasttwo values povide a tine scale ofT = £/U = 10~*s.

Table 1shows explicitly the conversion factarused throughout thisarticle.

2.1. Solutions of the Stokes equations

When a brcef is exerted on the fluid, the resulting velocity fielcand pressur® are
the solution of Egs.1) and @). The particular case of a single point forfgeexerted akg
resuts in a velocity field called &okeslet and is given by

fo  [fo-(X—X0)I(X — Xo)

Us(X; Xo, fo) = =—
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wherer = ||x — Xg||. Note that this flow is undefined at= xg although a distribution of
forces on a surface yields a flow that is defined everywhere.

Our computations show the motion of a flagellum or a group of flagella without a body
(or head). The motion is generated bydes along the surfaces of the flagella and by a
torque at the base of each. The torque regmesthe one transferred to the flagellum by
the motor at the junction with the body of the bacterium, which is currently not part of
the model. The forces, baset points and springs, are designed to keep the flagellum
in approximately the same helical shape while providing some flexibility to it. These are
described in the next section.

The velocity field that satisfies Stokes equations when a tdrgugapplied at a single
pointXxg is called arotlet and is given by

Lo x (X — Xp)
8mr3 3

This flow is more singular than the Stokeslet and is no longer integrable even if it were
distributed over a surface. This implies thiaetfluid velocity becom&abitrarily large as

the evaluation pointgproaches the point where the torque is applied. In our computations,
the rotlets will be placed at specific points hetfluid domain, and therefore, we will have

to compute the fluid velocity at points arbitrarily close to the rotlet location.

The singularities in the velocity expson are due to the assumption of having
point-forces and pointorques. However, the singularisiean be eliminated through the
systematic regalrization of the flows described above by considering forces and torques
that are applied not aingle points but within small spheres centered at those points.
In this way, the forces and torques are highbrcentrated but are spread over a small
neighborhood of the application points. The precise form of the force is given by a cutoff
functiongs (x) which we will take to be radially symmetric and to satisfy

[/ ds(x) dx = 1,
Rs

where§ is a numerical paramatg¢hat cntrols the spread of the function (sé&. 1).
Throughout this article, we will use the cutoff function

1554
8r(rz+ §2)7/2
wherer = ||x]|.

When the foce in Eq. Q) is given bya cubff centered ako, f(x) = fods(X — Xo), one

can derive the exact solution of the Stokes equation to getetjutarized Stokeslet (see
Appendix A.

Ur (X; Xo, Lo) =

Ps(X) = 4)

for?+28%)  I[fo- (X —X0)](X — Xo) )
8r(r2 + §2)3/2 8 (r2 + §2)3/2
Notice that ass approaches zero, we recover the Stokeslet expression. However, the
regularized Stokeslet represents a flow that is bounded feaallong ag > 0. Regardless

of the value ofs, the regularized Stokeslet in Eq5) is an exct solution of the Stokes
equation for the given form of the force.

Us,s(X; Xo, fo) =
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Fig. 1. The cutoff function in Eq4) for three alues ofs.

The associated regularized rotlet is derifemn the antisyjnmetic partof a directional
derivative of the regularized Stokeslet (sappendix A. The result for a torque. g
centered axg is

(2r2 4 552)
167 (r2 + §2)5/2
Here bo, as§ — 0 we reover theoriginal rotlet expression. It is important to emphasize
that the regularized rotlet yields finite velocities everywhere simply because of the assumed
form of the torque. At points far from the torque, the regularized expression is nearly

indistinguishable from the singular counterpart. Near the torque, the regularized expression
provides a model for the fluid motion that can be used in computations.

Us,r (X; X0, Lo) = [Lo x (X —X0)]. (6)

3. Thenumerical method

In order to build the model, we start by creating the structure of the flagellum. Each
flagellum is a tubular structure made of digerparticles connectda springs. Some of the
springs connect particles around the cross-sections and others connect particles between
neighboring cross-sections. The forces between two connected particlasd xx, are
computed using Hooke’s Law:

Xk — Xj
Lik ~

fic= (L= 109 fig = —fi L= le—xl Y]

0
whereky is the stiffness constant, /X is defined to be the distance betwegnandx; at

time t, and the pring resting Iengthl_cj,k, is defined to be the initial distance betwegn
andxj, so attimet = 0 the face between the particles is peSince the torque models the
effect of the motor, it is applied only at one point at the base of each flagellum. When the
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torque is applied and the particles that describe the flagellum move, the distance between
them changes, activating spring forces applied to both particles at the spring endpoints, in
equal and opposite pairs. In this way, the total force is always zero. The forces are designed
to maintain approximately the initial resting length between the particles by preventing
them from moving too far apart or getting too close. The helical shape is achieved by
having springs of varying resting lengths along the flagellum. The stiffness constants may
also be different for each spring, and their values control the flexibility (elasticity) of the
flagellum. Higher stiffness results in more rigid structures.

In our model, a particle may be connected by springs to several other particles.
Therefore, the force at a particle may have several contributions from several springs. We
use the sum of the forces at each point in the computation of the velocity as described
below. A torque of constant magnitude and perpendicular to the base of the flagellum (see
Section 4 is gplied only at one point at the baseezch flagellum to generate the rotation
due to the motors. As the flagellum moves, the torque direction is adjusted so that it remains
perpendicular to the base of the flagellum.

The motion of the flagella is computed as follows. Given the positions of all particles at
timet, all forcesf; are computed based on the geometry of each flagellum. A targae
a fixed magnitude is applied at the base of each fllage in the direction perpendicular to
the cross-section of the bagence he forces and torques are known, the velocity at any
locationxy is computedising the regularized Stokeslet and rotlet formula:

dxk Ne Ns

o = U0 =;U8,r(xk§ yi,Li)+Zlu,s,s<xk; zj, 1)) (®)
1= =

where N; is the nunier of rotlets of strengthk; located aty; and Ns is the number

of Stokeslets of strengttfs located atz;. The epressions in this formula are given by

Egs. 6) and ©).

The position of each particle changes according to the fluid velocity so that each particle
position can be updated after a small time im#krAt that time, the new particle positions
define new forces and new torques whick aised for the ext time step. In this way,
the forces impose a time scale in the problem where the velocity of the particles is the
superposition of the regularized Stokeslets and the rotlet. The time evolution of the particle
positions is computed using a fourth-order Runge—Kutta method.

3.1. Comments on the numerical method
While the use of rotlets is new, the method of regularized Stokeslets, given by

dxk L
T = u(Xk) = jXZ;U(s,s(Xk; zj. fj),

has been used in two and three dimensions. The method can be used in two ways. The
forward method consists of computing the velocity field due to given forces that are
calculated from the geometry of the body, for example. The inverse problem consists of
computing the forces (or the Stokeslets strengths) for the body to move with a prescribed
velocity. The latter is necessary when the body’s velocity is known in advance, and it
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requires the inversion of the Stokeslet operator. More details are fouBdriaz (2001)
andCortezet al. (in press)This is he approach used lrighthill (1976), Goto et al. (1999
2001)andRamia et al. (1993pecause the geometry was known. In our case, changes in
the geometry are part of the solutiomdaso the motion is not known in advance.

In the current problem, the forces along the flagella are computed at every time step
from Hooke's law based on their geometry. Then, the velocity field due to those forces (and
the rotlets) is computed directly from E@®)( No operator needs tcehinverted sice the
flagellar velocities are part of the computsaition, not a preschied boundary condition.

The method does not distinguish between a point on the body surface or a fluid marker
at the same location. Since the body’s velocity is computed using the same formula as
the fluid velocity, the no-slip boundary conditias automatically satisfied. The fluid is
dragged by the body as it moves. This is the same type of approach used by other methods
(Dillon and Fauci, 2000Peskin, 2002).

The analysis of the convergence of the method of regularized Stokeslets as the
discretization is refined and the regularization parameter is reduced is foGodtaret al.

(in press) The main result is that the error in the velocity field near the body, as compared
to aboundary integral formulation, i©(8) + O(As?/5%), whereAs? is a discrete element

of area on the body. The error decrease®6?) + O(As?/8%) away from the body. This
allows one to choose the regularization paramgtetative to the surface discretization in
such a vay that the method converges (for exampis,~ §2).

4. A singleflagellum

We present the model of a single flagellum without a bodyElroli, each flagellum
is shaped into a left-handed helix that extends from the cell body. Our goal is to create a
solid, yet flexble, representation of the flagellum. We define the flagellum to be a helical
tube of total length with cross-sectionperpendicular to the tangent vector ($ég. 2).
Each cross-section is ansided polygon. The helix has a varying radi&&s), which is
implemented using an arctangent enveltipeg allows the radius to start from zero and
increase to some fixed value. Thssdimilar to the enveope used irHigdon (1979bjand
Ramia et al. (1993)The initial conditions for the particles are as follows:

X(S) =a(s)
y(s)=—R(S) cos(Znnp (;))

i S
z(s) = R(s) sin (Znnp <Z)>
where theamplitudeR(s) satisfies O< R(s) < R, and is given by

R(s) = Ry [% arctan(ﬁ (% - y)) + %} ,

np represents the number of turns in a helix, an@) is found so the tangent vector
[X'(s), Y'(s), Z(s)] hasunit length. We emphasize that the shape of the flagellurn fo

is not specified but found as part of the computation. The benefit of the arctangent envelope
is that it defines an axis of rotation at the base of the flagellum while creating a helix of
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Fig. 3. Spring connections: (a) @®-ctional springs; (b) consecutiggrings; (c) diagonal springs.

constant radius in the rear as can be seehkiin 2 For economy of computation, we
choosen = 3 for the cross-sections, the smallest number possible, so that each flagellum
is a gructure made of 3 helices defining triangular cross-sections. This choice, however, is
not a restiction.

In Fig. 3, we show he spring connections that are aefil between different particles.
First, each particle on a helix is connected to the corresponding particles on the other two
helices Fig. 3(a)]. This defines the cross-sectiooisthe flaglum and will be referred
to ascross-sectional forces with stiffness constants df;. Next, each point on a helix
is connected to adjacent points on the same helix using spring forces; this is shown in
Fig. 3(b). These will be referred to @snsecutive forceswith stiffness constants,. We also
define diagonal forces around the surface of the flagellum. The bold lines aliegoaal
forces with stiffness constantg [Fig. 3(c)]. We note that these stiffness constants actually
have units of force density as defined in Ef). However, since the resting lengths of the
springs(L(J)k) will remain constant throughout the sifations, the parameterk,( kp, kc)
are appropriate.

A biological flagellum is a helical tube ogposed of flagellin monomers arranged
in a pseudohexagonal latticelofes and Aizawa, 1991 Some monomer strands
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Fig. 4. Initial configuration of a single flagellum.

(protofilaments) are nearly pallel to the filament @is while others (saalled 5-start and
6-start) form helices along the surface of theggg#llum. The latter are represented by the
diagonal springs in our model and the protofilaments are represented by the consecutive
springs. The number of particles used in the construction of our model has been reduced
for computational purposes only, but this is essential. Our structure has the benefit of
being composed entirely of triangles. Triangles, unlike other polygons, have the property
that they preserve angles when preservirglénhgth of the sides. A slight modification of

our model can be made to represent the flagellin monomers as depicted in Figpresf

and Aizawa (1991)This has been done recently iim and Peskin (2004)o address
whirling instabilities of some elastic filaments.

The external torque is positioned at the center of the first cross-section of the flagellum
(see alsoFig. 9). Because of the varying helix atitpde, the first cross-section is
perpendicular to the central axis of the lealiflagellum. This makes it appropriate to define
the torque orthogonal to the first cross-section. We note that since the torque is imposed
externdly to simulate the motor e net torque will not be zero.

Fig. 4 shows the initial conditions for this problenSince the flow due to the rotlet
decays as 2 for large values of , nearby cross-sections experience more rotation than
ones far from the rotlet. The distances between contiguous cross-sections deviate from
their resting-lengths due to the rotation. This is particularly pronounced near the front
of the flagellum. In response to the stretching, the springs exert forces that pull the rest
of the flagellum, making the entire structure rotate. The diagonal forces are essential in
this process since they have a significaneefffon propagating rotation along the entire
flagellum. They also affect the amount of twist developed along the flagellum.

4.1. Parameter dependence of a single flagellum

The motion of a single flagellum is induced by a torque applied at its base. The
paameters were chosen so that the flagellum held together in its helical form while still
allowing it to rotate with some elasticity. The rotation of the entire structure in a viscous
fluid necessarily results in forward swimming motion of the flagellum. In this section,
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Table 2
Comparison of forward swimming speed as a function of the spring stiffness
Ka, Ko, ke Dimensionless speed,(x10~%) Speed= Uv, (um s™1)
4,4,4 1.2272 12.272
8,8,8 1.2245 12.245
12,12, 12 1.2219 12.219
16, 16, 16 1.2204 12.204

The dimenginless parameters used wége= 6y = 0.052,L = 0.001,np = 3, p =0.2399,¢ = 1.3.

we discuss the effect of some parameters in the model on the swimming speed and angular
speed of the flagellum. In most of the num@ai experiments, the flagellum length was
fixed at¢ = 1.3 (eguivalent to 13um). In all nhumerical experiments, the maximum
helix radius was fixed tdR, = 0.06, which is about 5% of the flagellum length. The
radius of the flagellum was fixed to a value of 0.012, which is about 1% of the flagellum
length. This corresponds to a somewhat thick flagellum of 120 nm in radius, which is
thicker than a typicak. coli flagellum (Turner et al., 200 Alternatively, one may assume

that the computadinal flagellum is short for its thickness. Experimental studies also have
been conducted on flagellar models which have a small length-to-radiusKaticet al.,

2003. We present other computational experiments which use longer flagella as indicated
in Table 5 Bagd on numerical experiments, most of the reported resultd\use 51
cross-sections to discretize the flagellum since larger numbers of cross-sections had no
significant effect on forward motion or stretching.

In a computational flagellum, there are matifferent parameters that affect its motion.

To analyze the effect of one parameter, we monitored the angular velocity, forward
displacement, and structural stability. Here discuss the changes caused by varying the
stiffness constant valugga, kp, kc), the reularization parameters for both the Stokeslet
(6s) and the rotlet(s;), the manitude of torque appliedL), number of periods in a
flagellum (np), pitch (p), and aclength(¢). All computations inthis section were run

up to a final dimensionless time of 400, corresponding 0 0.04 s. The linear speed of
the flagellum was computed from its final and initial positions.

Thespring constants must be set to large enough values in order to maintain the helical
shape of the flagellum. Once the spring constants are sufficiently large, they have little
effect on the structure of the flagettuand foward motion. As can be seen irable 2
for the range of spring constant values chok®rthe parameter analysis, variations have
little effect on forward notion. Although at smaller constant values, there is slightly more
stretching of the flagellum. Fdhese easons, the stiffness constants were set equal to 12
for all compugtions in this section.

The regularization parameters for the Stokeslet and the rotlet are independent of one
another. These were set to a multiple of the distance between the cross-sections in the
flagellum. ForN cross-sections along the helix of lengththis digance is¢/(N — 1).

For the tests infables 2 3 and5, this cross-sectional distance was 0.026. Changing the
Stokeslet’s parameter §s has contrasting effects on forveamation and the stretching

of the flagellum. The value ofs should be comparable to the separation between cross-
sections along the flagellum so that the cutoff functions of nearby forces can overlap.
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Table 3
Effect of the Stokeslet regularization parametgon the swimming speed and filament stretching
Ss Speed(um s1) Stretching (% of)
0.026 7.692 0.23
0.052 12.219 0.77
0.078 14.522 2.31

The dimensinless parameters used wére: 1.3, § = 0.0526,L = 0.001,np = 3, p = 0.2399.

This is needed for accuracy purposé&oftezet al., in press Our resits, shown in
Table 3 show hat larger values 085 yielded faster forward motion but also produced
more stretching. This is to be expected since larger valuég pfoduce forces that are
spread over larger regions and reduce the maximum value of the cutoff function being
used. This produces smaller reaction forces by the springs and allows more stretching.

The torque magnitudé and therotlet regularization parameter §; have a large
effect on forward motion and the structure of the flagellum. We varied the amount of
torque applied and studied its effect on forward motion and angular velocity. Physical
experiments performed burcell (1997)assumed linear relationships between the torque
magnitude and the axial angular speed, and between the swimming speed and angular
speed, consistent with Stokdélew. He expressed these relationships with the scalar
equations

F = Av + Bo, 9)
L = Cv + Do, (10)

whereF is the net applied extaal force magnitude; is swimming speedy is the angular
speed,L is the net torquenagnitude, andh, B, C, andD are constants that depend on
the geometry of the flagellum. These equations reflect the relationships in the direction
of the axis of the flagellum under the assuimp that the other components average to
zero as the flagellum corkscrews its way through the fluid. There is no net external force
in our system, sd&= = 0 in Eq. @) and the correspondence betweemnd w is a line
through the origin. This, together with EdL@), resultsin a linear relation betweesn and

the net torque, r@d also betweem and the net torque. We computed the flagellar motion
for a wide range of torque magnitudésand verified that our model produces a linear
relation between the swimming speedndw, between the torque magnitude and w,

and therefore, between the torque magnitude and the swimming spedddség The

linear relationstps hold for different values of.. Eq. (6) indicates that theotlet velocity

can be written a&Js r (X; Xo, Lo) = 8(2U5,r(x/6; Xo/8, Lo) so that ass, is rediced, the
torque is concentrated in a smaller region and its maximum value increases, resulting in
faster rdation.

Thenumber of periods, np, in the helix comprising each flagellum also has an effect
on both its swimming motion and its ability to hold its shape. We report results using
four, three and two helical periods while keeping the pipctonstant. Since flagella with
more periods of a given pitch are longer than those with fewer periods, one expects that
for a given driving torque, the viscous drag would have a larger effect on a flagellum with
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Table 4
Comparison of the forward swimming speed and angsieed of a flagellum with constant pitch as a function
of the number of helical periods along its length

Np £ (um) N Speed(um s~1) o (revs1
2 8.7 34 17.0 20
3 13.0 51 12.2 15
4 17.3 68 9.6 10

The driving torque was fixed with magnitude = 0.001. The dimensionless parameters used Were §; =
0.052, and pitchp = 0.24.

more periods causing a smaller angular velocity and, therefore, slower swimming motion.
Our results, shown iffable 4 show hat having fewer periods causes less stretching and
resulted in faster swimming, as expected. For this experiment, the number of cross-sections
along the flagellum was increased as the nunolb@eriods increased in order to maintain
a mnstant cross-sectional spacing.

The pitch of the flagellum has almost no effect anfor a rotlet of fixed magitude.
The pitch was varied by fixing the flagellum length and changing the number of turns in
the helix. Having more or fewer turns per arclength did not have an effect on the angular
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Table 5

Comparison of speed as a function of pitch for flagella ofedéht lengths and diffené number of helical periods
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£ (um) N np Pitch (um) o (revsl Speed(um s~1)
17 51 2 7.61 100 37.0
17 51 3 4.36 100 40.6
17 51 3.5 3.20 100 34.7
17 51 4 2.28 100 24.6
25 75 2 11.68 70 19.5
25 75 3 7.47 70 27.9
25 75 4 5.12 70 30.7
25 75 4.5 4.22 70 29.4

The dimensinless parameters used wége= § = 0.052, andL = 0.005.

velocity w. However, themodel shows that the maximuswimming speeds achieved

for a given pitch which is not particularly sdtige to arclength. Intuitively, if the pitch

is very large, the flagellum is nearly a straight tube and does not swim efficiently. On
the aher hand, if the pitch is very small, the helix is tightly wound and the flagellum
does not swim efficiently either. Thus, onepects a selected pitch to yield a maximum
swimming sged [see als€ortezet al. (in presd) Table 5shows the results for flagella

of fixed length and variable number of turns (different pitch). This was done with two
different arclengths while mataining the same cross-sectional distance. We define the
optimal pitch to be the one that yields the largest swimming speed. Based on the results we
estimate the optimal pitch to be about 4.5#+8. For comparison, we mention that pitch
measurements of stationary normal flagellar filaments fouritbiner et al. (2000xand

Kim & al. (2003)are in the range 1-3m.

4.2. Flow generated by a flagellum

The motion of the flagellum generates fluid flow around it. Two-dimensional projections
of the fluid flow on planes perpendicular to the axis of the flagellum are shoWwiyiré.
The triangle in each plot is the projeaticof a flagellum cross-section. The top-left
plot shows the first cross-section, where the torque is applied. The flow here is largely
dominated by the torque. Further back along the flagellum, as the effect of the torque
decays, the flow is inflenced more substantially byehgring forces that cause the
flagellum cross-sections to rotate in circlésy. 7 shows the flow pr@cted onto a plane
that includes the flagellum axis. The top plot is the initial position of the flagellum and
the bottom plot shows the flagellum and the flow around it at 0.02 s. The forward
motion of the flagellum is apparent and is also indicated by the fluid motion since there is
flow coincident with the helix tangent. Theytire also shows regions of fluid rotation in
alternating directions that approximately coincide with the helix shape.

5. Three flagellum model

In this section, we discuss the interactions among three flagella through the fluid flow
they generate. In particular, we are interested in the role of the fluid motion in the processes
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Fig. 6. Flow fields at the 1st, 3rd, 10th, abiist (last) cross-sections of a flagellum.

of bundling and tumbling. Our model includes three flagella constructed in the same
way as desribed in the previous sections. Each one has a motor modeled by a torque
in the center of the first cross-section. While we do not construct explicitly the body of
the arganism, the model includes features related to the effects of the bacterial body on
the motion. The three flagella were placeglally-spaced around a circle whose radius
represents the radius of the bacterial body. To simulate the front of these flagella being
connected to a rigid body and not being able to freely change their distances and orientation
relative to one another, the front sections of the flagella were connected by springs. These
springs connect the center points of the fitlstee cross-sections of each flagellum with

the corresponding cross-sections of the other two flag€iig. 8 shows theseannections.

Under this construction the center points of the first cross-sections of the three flagella
form an equilateral triangle and remainegiproximately the same distance throughout the

simulation.
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Fig. 8. View of initial conditions for the three-flagellum case.

Since he representation of the flagella in our model is by discrete points, there is a
possibility that in the computation they may g&iser than physically possible. We prevent
two flagella from crossing each other by defigirepulsive forces which are turned off
when the flagella are apart. We define the imimm distance between the centerlines of
different flagella before they come into physical contact with one another, and set this
distance as the threshold for activation of the repulsive forces. Physically, the distance
between two flagellar céarlines must be no smaller than the diameter of the flagellum. In
the remaining computations, we use the slightly larger activation threshold of 2.3 times the
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Fig. 9. Torque setup for the three-flagellum case.

flagellar radius. This choice was made pyrir computational purposes since the fluid
flow between the flagella is not well-resolved at those distances for the discretization used.

The torques located at the base of each flagegenerate rotation throughout the fluid.
Since we are interested in the flagellar interaction due to the fluid motion and not due
to the flagella revolving around one another, we introduamanter-torque to represent
the counter rotation effect of the bacterial body. This counter-torque is in the opposite
direction of the three motor torques and is designed to keep the bases of the flagella from
revolving around each other. In this wayethundling observed would be a direct result
of the hydrodynamic interaction§he counter-torque is placed at the center of the triangle
defined by the center points of the first cross sections of the three flagella, so that it is
equidistant from the other three torques located at the vertices of the triangle. Its direction
is perpendicular to the plane of the triangle and pointing in the opposite direction of the
other three torques; séég. 9.

We compute the magnitude of the counter-torque dynamically at every time step to
cancel the rotation of the front flagellar cross-sections (where the motors are located)
around each other. This was accomplished by mating first the velocities of these cross-
sections due to all the forces and motor torques and projecting these velocities onto the
circle defined by the location of the motors. The magnitude of the counter-torque was
computed to cancel the average projected velocity.

This definition of the counter-torque leads tmalations in a reference frame in which
the bacterial body does not rotate. This case is similar to a laboratory setup in which each
flagellum is connected at the base to an statry motor which does not allow it to spin
around the other flagell&{m &t al., 2003. This is not unealistic on a time scale of a few
flagellar rotations since the bacterial bodyEbfcoli rotaes with a frequency of 10 rev'$
(seePawers, 2003 whereas the flagella rotate with a frequency of 100 re¥ GeeBerg,

2003. Pawers (2002discusses the possibility of bundijiy spinning one end of a flexible
filament (similar to body rotation) and determining possible steady-state configurations. In
the present study, the goal is to uncover the role of the hydrodynamic interactions that
lead to bundling and not the mechanical turning of one flagellum around another. For this
reason we work in this reference frame. We expect to learn the flow interactions among the
flagella from the analysis of this experiment.this frame, the angular momentum will be
conserved only approximately and the net torque will not be exactly zero. It is possible to
adjust the location of the counter-torque in order to minimize the net torque, however this
wasnot done here.
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Table 6

Table of paameter values used for the results showhRim 11
Parameter Dnensionless value Dimensional value
Number of cross-sections 51 51
Flagellum radius 0.01 0.im
Helix radius(Rn) 0.06 0.6um
Arclength of flagellum 1.3 18m
Number of periods 2 2
Initial flagellar separation 0.05 On
Ka, ko, ke 10 10 Nm=3
3s 0.039 0.3um
S 0.052 0.52um
Magnitude of torque (density) 0.002 02 N2

5.1. Bundling of three flagella

One inportant feature of bundling is how close the flagella get to one another. In order
to characterize the distance between thedllagwe computed and monitored the distances
between the centers tife cross-sections. &\first definedhe distance between one cross-
section of a flagellum to another flagellum to be the minimum distance between the center
of the cras-section and the center of all the cross-sections of the other flagellum. By
computing the minimum, maximum and average of these distances, one can monitor the
avelge separation between flagelag. 10 shows the averge distance between flagella
for the case analyzed ithhe next section (se€able §. This average distance decreases
substantially in time as the flagella start to bundle.

Another property that we ergined was the forward displacement of the flagella. This
was measured by comparing the position of the center of the first cross-section of the three
flagella and their corresponding initial positioSanilarly, we computed the corresponding
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t=600

Fig. 12. Side view of the flagella &t= 0.06 s with angle of incline 2° andky = k = k¢ = 10.

guartity at the last cross-section. The two curves are showkrign10. Thegap between

these curves represents stretching which is caused by the elasticity of the flagella. Notice
that most of the stretching occurs early in the motion. The slope of the curve gives the
swimming speed of the flagella. As the flagedjat closer together, the computation of

the motion becomes more dentting in order to prevent the numerical crossing of any
two flagella. Consequently, the time step lre tcomputation must be reduced, making a
long-time simulation challenging.

Fig. 11 shows the finabnapsot att = 0.06 s of the simulation using the parameters
given inTable 6 The figure shows that the front half of the flagella form a tighter bundle
than the back of them. This was typical of our simulations. We found, however, that the
gtiffness parameters and the initial conditions factors that can affect the tightness of the
bundle. The free ends of the flagella come closer together at the end of the simulation if
the initial conditions are modified slightly in such a way that the helix axes are not parallel
but tilted by just —2° so that they are barely closer at the tails than at the front. This
modification appears to be enough for all the cross-sections of the flagella to spiral toward
a hundle.Fig. 12shows a simulation usg the parameters dable 6and an angle of incline
of 1.2°. Note the tighter bundle along the entire flagella.

The stiffnesses of the springs also have an effect on the bufigld.1 shows a snapshot
of the smulation in which the stiffness constants were sekio= kp, = k; = 10
(dimensionless units). Recall thef corresponds to springs connecting the points on a
single cross-section; thus, these springs are responsible for maintaining the integrity of the
tubular flagellum. The stiffness constaRkgscorrespond to springs connecting contiguous
cross-sections along the axis of the flagellum and the diagonal springs correspgnd to
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Fig. 13. Side view of the flagellat three different times witkg = 10,k = ke = 4.

These two types of springs give flexibility to the flagellum in terms of its ability to bend
and twist. Reducing the values of these séfres makes the flagella more malleable and
can affect their ability to form a bundle. IRig. 13, we used the valuek; = 10 and

kn = ke = 4. The tail end of the flagella are closer and the flow around it resembles the
flow around a single flagellum (comparefg. 16). This may indicate a better propulsion
configuration. It is also apparent that the ##g are tangled more. Further reducing the
stiffnesses tky = 10,ky = ke = 2 (not shown) allows the flagella to bundle even more
but the helical shape begins to straighten oetduse the springs are too weak to maintain
that shape.

The amount of twist in the flagella at the end of the simulation is also larger with the
reduced stiffnesses. We calated the twist from front to back of the flagella shown in
Fig. 11to be 1.49 rad while the twist in the bottom plotkify. 13was 4.14 radThe twist
in the flagella that usdg, = k; = 2 was 753 rad, indicating that the spring construction
allows for changes in the elastic properties of the flagella. In fact, each spring can be made
to have its own stiffness constant.

5.2. Flow generated by three flagella

Our numerical experimesindicate that the process of bundling can be accelerated by
placing at least the tail ends of the flagella slightly closer, as explained in the previous
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Fig. 14. Cross-sectional view of fluid flow near the three flagélla 0.04 s). The plots show the flow on planes
at the front, back and two intermediate locations along the flagella.

section. In the ¥periments of this section, we present results using the parameters given
in Table 6and an angle of incline of.2°. The only purpose of this is to reach a bundled
state earlier in the simulatioithe parameter values fall withthe range cmputed for the
single flagellum for favorable swimming speed.

We focus on the fluid flow around the flagella. The flow generated by the three flagella
has a different character depending on the distance from the torques. The flow near the first
cross-sections of the flagella is mainly dominated by the effect of the torques; see the top-
left plot in Fig. 14. At this location, which is the plane where the torques are located, the
forces act to keep the cross-sections from dafog and to maintain their relative distances
approximately constant. One can see the effect of the counter-torque at the center of the
graph.

Further away, th torques generate a more uniform single rotation. The effect of the
torques also decreases as the distance flmrtdrques increases, and the effect of the
forces along nearby cross-sections becomes more significant. For the particular results
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Fig. 15. Position of the center of fluid rotation on a @aerpendicular to the flagellar axis at the 15th cross-
section as a function of time. The center of fluid rotation starts on the right side and spirals inward in time
promoting bundling.

displayed inFig. 14, the flow beyond a quarter length of the flagella is dominated by the
forces (Stokeslets) while the torques (rotlets) have little effect. The top-right plot shows
the flow near the front but far enough away from the torques that there is a single center of
rotation (where the flow is zero in the plot) between the three cross-sections. The bottom-
left plot in Fig. 14 shows how the rotation is altered by the effect of the forces in the
regions close to the flagella. The center of rotation is no longer on the center axis of the
three flagella and the resulting flow pulls the flagella located furthest away from the center
of rotation toward the other flagella. We point out that the flagella can be seen to be very
close to one another in the bottom-left plotkify. 14. The bottom-right plot shows the

flow at the tail. For all the observed time, the cross-section located furthest away from the
center of rotation was always pulled in its direction. This type of flow, in turn, promotes
bundling.

Fig. 15 shows the location of the center of rotation of the fluid about a quarter length of
the flagella from the fsnt. The points shown are not part of any flagella but are points in
the fluid where the flow is zero. As time irgases, the center of fluid rotation moves in a
spiral pattern causing the flagella to come together during bundling.

By aralyzing the flow on thexy-plane (seeFig. 16) we observe the appearance of
regions of circulation. This flow is an expected result from the motion of the flag&tkay(

1968 Lighthill, 1976). The direction of the flow rotation changes when the concavity of
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Fig. 16. Side view of the flagella and the fluid flowoand them at three different times of the simulation
ka = kp = k¢ = 10.

the helix changes as viewed from the sidae$e side views of the flow also make evident
the end-effect of the flagella. The force batarat the end of the flagella is different from
the balance in the middle and this affedie flow. One can also compare this plot with
Fig. 13to notice thathe small angle of incline used in the latter does speed up the bundling
process. With the small tilt of the helix axes, the flagella wrap around one another for
about half the total length after the same final simulation time. We point out that the same
phenomenon where parts of the flagella come close to one another while other sections
remain apart has also been observed experimentsiliy & al., 2003.

For conparison vith the numerical simulations of the next section, we showig 17
four snapshots of the flagella entering into the bundle. The parameters used here are those
in Table 7with all motors rotating counterclockwise when viewed from behind the flagella.
Note that the torque magnitude is larger than in the previous simulations, and therefore the
final simulation time is shorter. In the simulation time shown in this figure, the average
distance between the flagella decreases from 0.867 to Qré%$d ontinues to decrease
in time. It is also clear from the figure that tbeentation of the flgdla remains the same
throughout the simulation. The total time of this simulatiort is= 0.0135 s, which is
suficient to show the onset of the bundling process. The forward displacement of the
flagella, however, is very small in this time scale.
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Fig. 17. Snapshots of the flagella entering into a bundle.

Table 7

Table of paameter values used for three-flagellum casEigs. 17and18
Parameter Dnensionless value Dimensional value
Number of cross-sections 51 51
Flagellum radius 0.008 0.08n
Helix radius(Ry) 0.05 0.5um
Arclength of flagellum 1.3 18m
Number of periods 3 3
Initial flagellar separation 0.05 On
Ka, ko 10 10 x 10' Nm~3
ke 12 12 x 10' Nm~3
s 0.039 0.3um
S 0.052 0.52um
Magnitude of torque 0.008 08 N2
Angle of incline 0.0 0.0

5.3. Results on tumbling

In this section we test whether the same construction that produced bundling can
produce tumbling. Tumbling occurs when one or more of the motors of a left-handed
helix change theidiredion to a clockwise rotation (viewed from behind the flagella).
When this occurs in laboratorxperiments, the flagella are observed to behave erratically
and the organism changes its oriidn in apparently random fashiofurneret al.,
2000. We look at the case in which all the parameters and initial conditions are as in the
previous section except that we change the direction of rotation of only one of the motors.
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Fig. 19. The 1st cross section during the beginning of the tumble.

We use he parameters shownTiable 7throughout this section. The same parameters were
used for the results on bundling showrHig. 17 (compare the top-left plot of each figure).
The only difference is that the sign of one of the rotlets was reversed to model the change
in a mobr rotation. We also ran the experiment reversing the rotation of two motors and
the results are qualitatively similar to the ones shown here.

The resulting motion is depicted iRig. 18 and should be compared wiffg. 17.
Notice that although only the direction of rotation of one motor was changed, the motion
is dramatically different from that irFig. 17. Ingdead of getting closer and wrapping
around one another, the flagella move away fame another and they change orientation.
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In the span of 0.01 s, the maximum distanetveen the flagella increases from 0.867 to
3.305um, and the average distance between flagella increases from 0.8628&uin.
This also gives an indication that the tumbling occurs faster than bundlirig).doli the
bundling time is about ten times longer than the tumbling tif@er et al., 200D

The changes in orientation are also clear fréig. 18 and it becomes more and more
drastic as time progresses. The axial position of the tail does not change. This indicates
that there is no net forward motion, but only a rotation of the flagella that changes their
orientation.

Whenanalyzing the fluid flow generated lilge flagella, one caget an idea of how
the change in the direction of rotation of some motors may cause tumblirkggli9,
the flagellum in the lower right rotates counterclockwise while the other flagella rotate
clockwise. This creates regions of counter-rotation in the fluid, which force the base of the
flagella to change its orientation significantlpee the cross-sections near the front of the
flagella are at a fixed distance from one another and cannot separate. Except for the front
few sections of the fladla, which are tied together, the rest of the flagella are free to move
independently as they are carried by the flow. The counter-rotating flow regions created
by the rotation of the miors in different directions generate fluid motion that separates
the flagella along their lengthBig. 20 shows shapshots of a cross-section about halfway
along the flagellar length and cleadhiows therocess of separation.

While the results ifrigs. 17and18show the effect of reversing the rotation of one motor
starting from the same initial conditions, we atso interested in a longer simulation in
which the motors reverse rotation in th@ddle of the motion. We set up an experiment
consisting of three time intervals. First, all three motors rotate in the same direction for
0 <t < 0.0135 s. This produces the bundling behavior showrign 17. At the final time,
the sign of one of the rotlets is reversed durin@135 < t < 0.0270 s. This produces
a tunble shown inFig. 21. Notice that the orientation of the flagella changes drastically
and they separate. Finally, the motors agai set to rotate in the same direction as in
the beginnig of the simulation for the interval.0270 < t < 0.0405 s as shown in
Fig. 22. Notice that the flagella come together again into a tight bundle and now the
orientation remains constariVe bdieve that the time intervals in the simulation are
suficient to initiate the bundlingnocess or to move erratically during a tumble. However,
the time intervals are not long enough to agpate significant favard displacement
during bundling.

6. Conclusions

A computational model of the interaction of multiple bacterial flagella was presented.
The method of regularized Stokeslets is based on the superposition of exact solutions of
the Stokes equations with external force given by a linear combination of cutoff functions.
These functions concentrate a given force in a small sphere rather than at a point, as is
the case with delta distributions. The resulting velocity expression is called a regularized
Stokeslet and the associated regularized rotkes derivel. These two types of elements
were used to introduce the torque generated by the motors that rotate the flagella and
the forces that provide elasticity to the flagella. The forces in the model presented here
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Fig. 20. The 20th cross section during the tumble.

are based on a network of springs of a given resting length and stiffness; however, other
elasticity models can easily be used.

The tests performed for a single flagellum downt the effect of different parameters
on its motion. In general, the applied torque at a single location at the front of the
flagellum introduces the rotation and the elastic forces maintain the structural integrity of
the flagellum. The helical shape and the rotation necessarily generate forward swimming
motion in a Stokes flow. The values for some of the parameters that lead to a faster
swimming speed werestimated. In particular, the results show that the maximum
swimming speed is achieved when the pitdhtlee helix has a given value regardless
of the length of the flagellum. In additiothe linear depedence of the swimming and
angular speeds on the torque was verified. fitoportionality constants in these relations
depend on numerical parameters sashthe regularization paramet&gsand §;. Since
these represent the spreading distance of the forces and torques, they should be comparable
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Fig. 21. Motion of the flagella during tumblinghis maion follows the bundling period df = 0—-00135 s shown
in Fig. 17.

in size to the flagellar radius. More specific details of the dependence of errors on the
numerical parameters can be foundiartezet al. (in press)

The far-field velocity is not significantly affeed by the regularization. Therefore, away
from the front of the flagellum where the torques are located, the effect of the forces is
more substantial than the effect of the torque since the rotlet expression decays faster than
the Stokeslet expression as a function of distance. Of course, the forces depend implicitly
on the torque since the entire system is coupled. The fluid flow surrounding the flagellum
shows the rotation of the cross-sections and also shows circulation regions of alternating
sign coincident with the helix wavelength (deig. 7).

The model was then applied to three interacting flagella. The front sections of the
flagella were kept approximately at a fixed distance in order to simulate their connection
to the bacterial body. In order to analyze the hydrodynamic interaction of the flagella
without artificially revolving them around one another, a counter-torque was added to
cancel the rotation of each flagellum aroune ttihers that the motors generate. The
counter-torque can also be thought of as the effect of the counter-rotating bacterial body,
which is currently not part of the model. One direction of future research is to include the
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Fig. 22. Motion of the flagella during a second bundlirgripd. This motion follows the tumbling period of
t = 0.0135-00270 s shown irFig. 21

body and its appropriate counter-rotation. The main goal of the current work was to show
thehydrodynamic interactions of flagella over short time scales.

When the three flagellar motors rotate counterclockwise, the hydrodynamic interaction
of the flagella can lead to bundling. Our réswshow that the flow near the front of the
flagella is mainly a combination of all the tques, which have comparable magnitude.
Further awayfrom the front, the flow on planes perpendicular to the axes of the flagella
appears to become a single rotation whose center is outside the triangle defined by the
three flagellar cross-sections (d9€g. 14). This flow cause the flaydla to rotate in circles
as a unit but also draws them closer together, resulting in bundling. In this case the
structure naintains its orientation. These results clearly show that the fluid flow generated
by the flagella draws them together and point to the importance of accounting for the fluid
dynamics when modeling the bundling process.

When one or two of the motors turns in the opposite direction, the flow patterns change
dramatically. The generated flow near the cross-sections has a counter-rotating character,
which causes the flagella to separate and forces the front sections to change their orientation
erratically consistent with tumbling. There is no significant net forward motion in this case
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and the tumbling occurs in a faster time scale than bundling. When the motors are returned
to their counterclockwise motion, the flagella bundle again tightly.

In the future, we expect to improve the model for long-term motions of the bacteria,
including their heads and flagella. We expect to incorporate information about the internal
structure of the flagella into the spring mdaeore accurately and use flagella with more
realistic proportions (longer). To accomplish this, some aspects of the efficiency of the
numerical method will also need to be addressed. Finally, a thorough comparison between
the numerical method presented here and other methods, such as local resistive-force
theory and slender-body theories, would be very instructive to assess any differences,
limitations and strengths of each method.
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Appendix A
A.1. Derivation of the regularized Stokeslet

The Stokes equations are
0=—-VP+ Au+f (A1)
0=V-u. (A.2)

We assume that the force is given Ibgx) = fogs (X — Xp). For simpicity we assume
Xo = 0 and wewriter = ||x||.

We takethe divergace of Eq. A.1) anduse Eq. A.2) to diminate the velocity and get
an equation for the pressure

AP =V.f=1fp-V¢s
whose solution is
P(x) =fo-VGs(x),  whereAGs = ¢;.

Substituting this expression fa@(x) into Eq. (A.1) resuts in the following equation for
the fluid velocity

Au = (fo - V)VGs — fods
whose solution is
ux) = (fo - V)VBs(x) — foGs(X), whereAB;s = Gs.
For the particular cutoff function used throughout this article

1554

ds(X) = T
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we have that

2r2 4 582
P(x) = (fo 'X)m (A.3)
and
2 2 .
) = f r<+4+25 (fo - x)x (A4)

087(r2+ 6232 " 8r(r2 1 52)3/2°
Eq. (A.4) is also dsplayed as Eq.5).

A.2. Derivation of the regularized rotlet

We begin with the regularized Stokeslet found in the previous section,A&8) and
(A.4).
_ (682 4+ 2r¥)(fo-x) _ for?+25% L (fo-xx
= T8r(r2+ 6252 07 Br(r 2+ 8232 " Br(r2+ 62)3/2
wherefg is an arbitrary vector constant. NogFp, Ug) satisfyV Py = AUg + fo¢s. Other

sdutions can be found by differentiation. For exampleglbe an arbitrary constant vector,
and define

P1=9g-VP and U1 = (g-V)Uo.

One can check thatP;, U1) are solutions of the Stokes equations with forcing term
(g- V)fogs. If we expandU1 using Eq. A.4), we obtain

(P4 459 ; 1 ¢
(9-fo)x 3(fo - x)(g-X)x

— . A.5

8w (r2+462)3/2  8r(r2 + §2)%/2 (A-5)

We look for the antisymmetric part ahis expression with respecttgpandg. Notice that

the third and fourth tersion the rght side of Eqg. A.5) are synmetic with respect tdg
andg (switchingfo andg makes no difference). To determine the symmetry in terms one
and two, we may write them as

b -b
@t )[(g-x)fo+(fo-X)g]+(a )

[(g-x)fo — (fo-x)0]

2 2
where
—(r2 + 48?) 1
a=———--- and =——.
87 (r2 4 5§2)5/2 87 (r2 +§2)3/2
Therefore, the antisymmetric part of E4..D) is
a—b)
Usr (X)= ( 5 [(g-x)fo — (fo-x)d]

(2?4587

B m[(g -X)fo — (fo-x)gl.
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DefiningL = fo x g, our equation folJs ; becomes

(2r2 + 582)
——————(L xX
167121 6252 = ¥
which is the equation given in EE). Us r represents thediv due to a regularized rotlet
of strengthL. We mertion that ass approaches zero, we recover the singular form of the

rotlet, Eq. @). However, the regularized rotlet is a bounded function that can be evaluated
everywhere.

Usr(X) =
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