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Abstract

Certain bacteria, such asEscherichia coli (E. coli) andSalmonella typhimurium (S. typhimurium),
use multiple flagella often concentrated at oneend of their bodies to induce locomotion. Each
flagellum is formed in a left-handed helix and hasa motor at the base that rotates the flagellum in a
corkscrew motion. We present a computational model of the flagellar motion and their hydrodynamic
interaction. The model is basedon the equations of Stokes flow to describe the fluid motion. The
elasticity of the flagella is modeled with a network of elastic springs while the motor is represented
by a torque at the base of each flagellum. The fluid velocity due to the forces is described by
regularized Stokeslets and the velocity due to the torques by the associated regularized rotlets. Their
expressions are derived. The model is used to analyze the swimming motion of a single flagellum
and of a group of three flagella in close proximity to one another. When all flagellar motors rotate
counterclockwise, the hydrodynamic interaction can lead to bundling. We present an analysis of the
flow surrounding the flagella. When at least one of the motors changes its direction of rotation, the
same initial conditions lead to a tumbling behavior characterized by the separation of the flagella,
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changes in their orientation, and no net swimming motion. The analysis of the flow provides some
intuition for these processes.

© 2004 Society for Mathematical Biology. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Single-celled bacteria, such asEscherichia coli (E. coli) induce locomotion through the
use of multiple flagella often concentrated at one end of the organism. Each flagellum is
flexible and maintains roughly a left-handed helical shape. At the base of each flagellum
is a small rotary motor that can turn clockwise or counterclockwise. It is known that
when the motors all turn counterclockwise (when viewed from behind the flagella), the
flagella tend to gather together to form a single helix [see for exampleTurner et al.
(2000)]. This movement, known as bundling, results in forward motion of the cell. When
some or all of the motors turn clockwise, the flagella go through a sequence of shape
transformations changing amplitude, pitch, and sometimes handedness. The consequence
is that the bundle unravels and the flagella separate. This motion is known as tumbling and
changes the movement of the organism intoone without a preferred direction, resulting
in no appreciable net motion (Berg, 2003). Bundling andtumbling together enable the
organism to move in one direction and reorient itself to move in another direction
where there may be more favorableconditions for survival. This process may be in
response to chemical stimuli (chemotaxis) or other factors such as temperature and light
intensity.

Previous work on the modeling of helical swimming motions has combined analytical
and numerical methods and has focused mainly on organisms with a single flagellum.
Lighthill (1976, 1996)provided mathematical analysisof the motion of a thin tube with
helical shape using slender-body theory. In this theory, the flagellum is replaced with a
distribution of Stokeslets and dipoles along its centerline. The analysis provided refined
resistance coefficients for this motion and modifications to account approximately for
the drag force on the cell body.Higdon (1979a,b) combined mathematical and numerical
analyses applied to the motion of an organism with a spherical body and a single flagellum.
The flagellum was also modeled using slender-body approximations. The body was
assumed to be spherical which allowed the use of images to impose approximate boundary
conditions on its surface. A rotlet at the center of the cell body was included in order to
balance the rotation induced by the flagellum.Ramia et al. (1993)used a computational
approach based on the boundary element method to model the motion of an organism with
spherical body and a single helical flagellum. Their study included motions near walls and
near another organism of the same shape. The description of the organism is similar to
that inHigdon (1979b); however, the Green’s function approach is traded for a boundary
element method in order to address cases with multiple walls (of finite extent) and multiple
organisms.Goto et al. (2001)also use the boundary element method to compute the
swimming speed and cell body rotation of a singly-flagellated bacterium. Given the angular
velocity of the motor, the geometry of the cell body and flagellum, and assuming both move
as rigid bodies, they are able to compute the six unknowns that represent the swimming
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velocity and angular velocity of the cell body. These computations are not dynamic.
Goto et al. (1999)performed computations using a cell body and three flagella using
the same boundary element method as inGoto et al. (2001); however, the dynamics
of the motion, particularly bundling, were not addressed since only the linear and
angular velocities of the cell body were determined from a static balance of forces and
torques.

The works mentioned above assumed from the outset the shape of the flagellum for all
time. For helical waves, the centerline was assumed to be given by a helix of the form

(x, y, z) = (x, E(x) cos(kx − ωt), E(x) sin(kx − ωt))

which implies that throughout the motion, the flagellum rotates and translates as a solid
body without deformation. This assumption simplifies the mathematical analysis but is
not realistic for bacteria likeE. coli and S. typhimurium, whose flagella should not be
considered rigid screws since they assume a variety of distinct helices depending on their
environment [see for exampleKamiya and Asakura (1976)].

Powers (2002)considered a single straight but flexible filament which is rotated
at one end in a circular fashion around an axis parallel but not coincident with the
filament. The rotation simulates the cell body rotation and the filament represents a single
flagellum. Based on steady states of the filament driven by various rotation frequencies,
conclusions were drawn regarding the possibility of bundling. However, only a single
filament was considered and the hydrodynamic interactions among neighboring flagella
were not taken into account. The Stokes flow was included only through the use of a
transverse friction coefficient following local resistive-force theory (for a rod) and slender-
body approximations, and the conclusions were based on the helical shape of the rotating
isolated filament.

While some of the works cited above applyonly to eukaryotic flagella and some may
apply also to prokaryotic ones, the goal of the present study is to determine conditions that
tend to produce bundling of various prokaryotic flagella in close proximity to one another.
The emphasis here is on the role of the hydrodynamic interaction of the flagella in the
processes of bundling and tumbling. No restrictions on the wave amplitudes or flagellum
dimensions are imposed. In this way, the methodology used here can also be applied to
other organisms that may not be slender or that display large-amplitude waves in their
motion. It is important not to assume a priori the helical shape of the flagella for all time but
allow for deformations during the interactions. Therefore, our model includes a mechanism
designed to provide a certain amount of elasticity to the flagellum so that a helical shape
is preferred but deviations from it are allowed. The simulations are based on solutions of
Stokes equations in the presence of external forces given by shape functions that smoothly
approximate delta distributions. This is the basis of the method of regularized Stokeslet
(Cortez, 2001; Cortezet al., in press) used here. In addition, the rotation induced by the
motors at the base of each flagellum is modeled with aregularized rotlet which is derived as
the antisymmetric part of the derivative of the regularized Stokeslet. The rotlet represents
a localized torque.
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Table 1
Factors for the conversion from dimensionless units to dimensional variables

Dimensionless variable Multiply by

Length L = 10−5 m
Velocity U = 10−1 m s−1

Time T = 10−4 s
Angular velocity T −1 = 104 s−1

Force density F = µU/L2 = 106 N m−3

Torque density Tq = µU/L = 10 N m−2

Wenote that the force (torque) density is the force (torque) per unit volume.

2. Equations

The fluid dynamics in problems of microorganism motion, where length and velocity
scales are very small, is well-modeled by theStokes equations for incompressible flows

0=−∇ P̃ + µ�ũ + f̃

0=∇ · ũ

where P̃ is the fluid pressure,̃u is the fluid velocity,µ is the viscosity of the fluid and
f̃ is the external force density. If we defineL andU to be a characteristic length and a
characteristic speed in the problem, wecan define the dimensionless variables

x = 1

L x̃, u = 1

U
ũ, P = L

µU
P̃, f = L2

µU
f̃.

Then, after some simplification, the Stokes equations in dimensionless form become

0=−∇ P + �u + f (1)

0=∇ · u. (2)

These are the equations we use in our model. We mention that a typical length of anE. coli
flagellum is10–20µm (Turner et al., 2000; Kim et al., 2003). A typical forward swimming
speed of the cells is 10–40µm s−1 (Turner et al., 2000; McClaine and Ford, 2002) and
the motor rotation is on the order of 100 Hz (revolutions per second) (Turner et al., 2000;
Berry, 2001; Berg, 2003; Kim et al., 2003). All computations will be performed using
dimensionless variables. In all cases, the dimensional values will be computed using the
viscosity of water,µ = 10−3 kg m−1 s−1 and the following parameters:L = 10−5 m
andU = 10−1 m s−1. The lasttwo values provide a time scale ofT = L/U = 10−4 s.
Table 1shows explicitly the conversion factors used throughout thisarticle.

2.1. Solutions of the Stokes equations

When a forcef is exerted on the fluid, the resulting velocity fieldu and pressureP are
the solution of Eqs. (1) and (2). The particular case of a single point forcef0 exerted atx0
results in a velocity field called aStokeslet and is given by

Us(x; x0, f0) = f0

8πr
+ [f0 ·(x − x0)](x − x0)

8πr3
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wherer = ‖x − x0‖. Note that this flow is undefined atx = x0 although a distribution of
forces on a surface yields a flow that is defined everywhere.

Our computations show the motion of a flagellum or a group of flagella without a body
(or head). The motion is generated by forces along the surfaces of the flagella and by a
torque at the base of each. The torque represents the one transferred to the flagellum by
the motor at the junction with the body of the bacterium, which is currently not part of
the model. The forces, basedon points and springs, are designed to keep the flagellum
in approximately the same helical shape while providing some flexibility to it. These are
described in the next section.

The velocity field that satisfies Stokes equations when a torqueL0 is applied at a single
pointx0 is called arotlet and is given by

Ur (x; x0, L0) = L0 × (x − x0)

8πr3 . (3)

This flow is more singular than the Stokeslet and is no longer integrable even if it were
distributed over a surface. This implies that the fluid velocity becomes arbitrarily large as
the evaluation point approaches the point where the torque is applied. In our computations,
the rotlets will be placed at specific points in the fluid domain, and therefore, we will have
to compute the fluid velocity at points arbitrarily close to the rotlet location.

The singularities in the velocity expression are due to the assumption of having
point-forces and point-torques. However, the singularities can be eliminated through the
systematic regularization of the flows described above by considering forces and torques
that are applied not atsingle points but within small spheres centered at those points.
In this way, the forces and torques are highly concentrated but are spread over a small
neighborhood of the application points. The precise form of the force is given by a cutoff
functionφδ(x) which we will take to be radially symmetric and to satisfy∫ ∫ ∫

R3
φδ(x) dx = 1,

whereδ is a numerical parameter that controls the spread of the function (seeFig. 1).
Throughout this article, we will use the cutoff function

φδ(x) = 15δ4

8π(r2 + δ2)7/2
(4)

wherer = ‖x‖.
When the force in Eq. (1) is given bya cutoff centered atx0, f(x) = f0φδ(x − x0), one

can derive the exact solution of the Stokes equation to get theregularized Stokeslet (see
Appendix A).

Uδ,s(x; x0, f0) = f0(r2 + 2δ2)

8π(r2 + δ2)3/2 + [f0 ·(x − x0)](x − x0)

8π(r2 + δ2)3/2 . (5)

Notice that asδ approaches zero, we recover the Stokeslet expression. However, the
regularized Stokeslet represents a flow that is bounded for allx as long asδ > 0. Regardless
of the value ofδ, the regularized Stokeslet in Eq. (5) is an exact solution of the Stokes
equation for the given form of the force.
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Fig. 1. The cutoff function in Eq. (4) for three values ofδ.

The associated regularized rotlet is derivedfrom the antisymmetric partof a directional
derivative of the regularized Stokeslet (seeAppendix A). The result for a torqueL0
centered atx0 is

Uδ,r (x; x0, L0) = (2r2 + 5δ2)

16π(r2 + δ2)5/2
[L0 × (x − x0)]. (6)

Here too, asδ → 0 we recover theoriginal rotlet expression. It is important to emphasize
that the regularized rotlet yields finite velocities everywhere simply because of the assumed
form of the torque. At points far from the torque, the regularized expression is nearly
indistinguishable from the singular counterpart. Near the torque, the regularized expression
provides a model for the fluid motion that can be used in computations.

3. The numerical method

In order to build the model, we start by creating the structure of the flagellum. Each
flagellum is a tubular structure made of discrete particles connectedby springs. Some of the
springs connect particles around the cross-sections and others connect particles between
neighboring cross-sections. The forces between two connected particles,x j andxk , are
computed using Hooke’s Law:

f j k = k0

L jk
0

(L jk − L jk
0 )

xk − x j

L jk
, fkj = −f j k, L jk = ‖xk − x j‖ (7)

wherek0 is the stiffness constant,L jk is defined to be the distance betweenxk andx j at

time t , and the spring resting length,L jk
0 , is defined to be the initial distance betweenxk

andx j , so attime t = 0 the force between the particles is zero. Since the torque models the
effect of the motor, it is applied only at one point at the base of each flagellum. When the
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torque is applied and the particles that describe the flagellum move, the distance between
them changes, activating spring forces applied to both particles at the spring endpoints, in
equal and opposite pairs. In this way, the total force is always zero. The forces are designed
to maintain approximately the initial resting length between the particles by preventing
them from moving too far apart or getting too close. The helical shape is achieved by
having springs of varying resting lengths along the flagellum. The stiffness constants may
also be different for each spring, and their values control the flexibility (elasticity) of the
flagellum. Higher stiffness results in more rigid structures.

In our model, a particle may be connected by springs to several other particles.
Therefore, the force at a particle may have several contributions from several springs. We
use the sum of the forces at each point in the computation of the velocity as described
below. A torque of constant magnitude and perpendicular to the base of the flagellum (see
Section 4) is applied only at one point at the base ofeach flagellum to generate the rotation
due to the motors. As the flagellum moves, the torque direction is adjusted so that it remains
perpendicular to the base of the flagellum.

The motion of the flagella is computed as follows. Given the positions of all particles at
time t , all forcesf j are computed based on the geometry of each flagellum. A torqueLi of
a fixed magnitude is applied at the base of each flagellum in the direction perpendicular to
the cross-section of the base. Once the forces and torques are known, the velocity at any
locationxk is computedusing the regularized Stokeslet and rotlet formula:

dxk

dt
= u(xk) =

Nr∑
i=1

Uδ,r (xk; yi , Li ) +
Ns∑
j=1

Uδ,s(xk; z j , f j ) (8)

where Nr is the number of rotlets of strengthsLi located atyi and Ns is the number
of Stokeslets of strengthsf j located atz j . The expressions in this formula are given by
Eqs. (5) and (6).

The position of each particle changes according to the fluid velocity so that each particle
position can be updated after a small time interval. At that time, the new particle positions
define new forces and new torques which are used for the next time step. In this way,
the forces impose a time scale in the problem where the velocity of the particles is the
superposition of the regularized Stokeslets and the rotlet. The time evolution of the particle
positions is computed using a fourth-order Runge–Kutta method.

3.1. Comments on the numerical method

While the use of rotlets is new, the method of regularized Stokeslets, given by

dxk

dt
= u(xk) =

Ns∑
j=1

Uδ,s(xk; z j , f j ),

has been used in two and three dimensions. The method can be used in two ways. The
forward method consists of computing the velocity field due to given forces that are
calculated from the geometry of the body, for example. The inverse problem consists of
computing the forces (or the Stokeslets strengths) for the body to move with a prescribed
velocity. The latter is necessary when the body’s velocity is known in advance, and it
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requires the inversion of the Stokeslet operator. More details are found inCortez (2001)
andCortezet al. (in press). This is the approach used inLighthill (1976), Goto et al. (1999,
2001)andRamia et al. (1993)because the geometry was known. In our case, changes in
the geometry are part of the solution and so the motion is not known in advance.

In the current problem, the forces along the flagella are computed at every time step
from Hooke’s law based on their geometry. Then, the velocity field due to those forces (and
the rotlets) is computed directly from Eq. (8). No operator needs to be inverted since the
flagellar velocities are part of the computedsolution, not a prescribed boundary condition.
The method does not distinguish between a point on the body surface or a fluid marker
at the same location. Since the body’s velocity is computed using the same formula as
the fluid velocity, the no-slip boundary condition is automatically satisfied. The fluid is
dragged by the body as it moves. This is the same type of approach used by other methods
(Dillon and Fauci, 2000; Peskin, 2002).

The analysis of the convergence of the method of regularized Stokeslets as the
discretization is refined and the regularization parameter is reduced is found inCortezet al.
(in press). The main result is that the error in the velocity field near the body, as compared
to aboundary integral formulation, isO(δ)+ O(�s2/δ3), where�s2 is a discrete element
of area on the body. The error decreases toO(δ2) + O(�s2/δ3) away from the body. This
allows one to choose the regularization parameterδ relative to the surface discretization in
such a way that the method converges (for example,�s ∼ δ2).

4. A single flagellum

We present the model of a single flagellum without a body. InE. coli, each flagellum
is shaped into a left-handed helix that extends from the cell body. Our goal is to create a
solid, yet flexible, representation of the flagellum. We define the flagellum to be a helical
tube of total length� with cross-sectionsperpendicular to the tangent vector (seeFig. 2).
Each cross-section is ann-sided polygon. The helix has a varying radius,R(s), which is
implemented using an arctangent envelopethat allows the radius to start from zero and
increase to some fixed value. This is similar to the envelope used inHigdon (1979b)and
Ramia et al. (1993). The initial conditions for the particles are as follows:

x(s)=α(s)

y(s)=−R(s) cos
(
2πn p

( s

�

))

z(s) = R(s) sin
(
2πn p

( s

�

))

where theamplitudeR(s) satisfies 0≤ R(s) ≤ Rh and is given by

R(s) = Rh

[
1

π
arctan

(
β

( s

�
− γ

))
+ 1

2

]
,

n p represents the number of turns in a helix, andα(s) is found so the tangent vector
[x ′(s), y ′(s), z′(s)] hasunit length. We emphasize that the shape of the flagellum fort > 0
is not specified but found as part of the computation. The benefit of the arctangent envelope
is that it defines an axis of rotation at the base of the flagellum while creating a helix of
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Fig. 2. Side view of one helical flagellum.

Fig. 3. Spring connections: (a) cross-sectional springs; (b) consecutivesprings; (c) diagonal springs.

constant radius in the rear as can be seen inFig. 2. For economy of computation, we
choosen = 3 for the cross-sections, the smallest number possible, so that each flagellum
is a structure made of 3 helices defining triangular cross-sections. This choice, however, is
not a restriction.

In Fig. 3, we show the spring connections that are defined between different particles.
First, each particle on a helix is connected to the corresponding particles on the other two
helices [Fig. 3(a)]. This defines the cross-sectionsof the flagellum and will be referred
to ascross-sectional forces with stiffness constants ofka. Next, each point on a helix
is connected to adjacent points on the same helix using spring forces; this is shown in
Fig. 3(b). These will be referred to asconsecutive forces with stiffness constantskb. We also
define diagonal forces around the surface of the flagellum. The bold lines are thediagonal
forces with stiffness constantskc [Fig. 3(c)]. We note that these stiffness constants actually
have units of force density as defined in Eq. (7). However, since the resting lengths of the
springs(L jk

0 ) will remain constant throughout the simulations, the parameters (ka, kb, kc)
are appropriate.

A biological flagellum is a helical tube composed of flagellin monomers arranged
in a pseudohexagonal lattice (Jones and Aizawa, 1991). Some monomer strands
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Fig. 4. Initial configuration of a single flagellum.

(protofilaments) are nearly parallel to the filament axis while others (socalled 5-start and
6-start) form helices along the surface of the flagellum. The latter are represented by the
diagonal springs in our model and the protofilaments are represented by the consecutive
springs. The number of particles used in the construction of our model has been reduced
for computational purposes only, but this is notessential. Our structure has the benefit of
being composed entirely of triangles. Triangles, unlike other polygons, have the property
that they preserve angles when preserving the length of the sides. A slight modification of
our model can be made to represent the flagellin monomers as depicted in Fig. 6 ofJones
and Aizawa (1991). This has been done recently inLim and Peskin (2004)to address
whirling instabilities of some elastic filaments.

The external torque is positioned at the center of the first cross-section of the flagellum
(see alsoFig. 9). Because of the varying helix amplitude, the first cross-section is
perpendicular to the central axis of the helical flagellum. This makes it appropriate to define
the torque orthogonal to the first cross-section. We note that since the torque is imposed
externally to simulate the motor, the net torque will not be zero.

Fig. 4 shows the initial conditions for this problem. Since the flow due to the rotlet
decays asr−2 for large values ofr , nearby cross-sections experience more rotation than
ones far from the rotlet. The distances between contiguous cross-sections deviate from
their resting-lengths due to the rotation. This is particularly pronounced near the front
of the flagellum. In response to the stretching, the springs exert forces that pull the rest
of the flagellum, making the entire structure rotate. The diagonal forces are essential in
this process since they have a significant effect on propagating rotation along the entire
flagellum. They also affect the amount of twist developed along the flagellum.

4.1. Parameter dependence of a single flagellum

The motion of a single flagellum is induced by a torque applied at its base. The
parameters were chosen so that the flagellum held together in its helical form while still
allowing it to rotate with some elasticity. The rotation of the entire structure in a viscous
fluid necessarily results in forward swimming motion of the flagellum. In this section,
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Table 2
Comparison of forward swimming speed as a function of the spring stiffness

ka , kb, kc Dimensionless speed,v (×10−4) Speed= Uv, (µm s−1)

4, 4, 4 1.2272 12.272
8, 8, 8 1.2245 12.245
12, 12, 12 1.2219 12.219
16, 16, 16 1.2204 12.204

The dimensionless parameters used wereδs = δr = 0.052,L = 0.001,n p = 3, p = 0.2399,� = 1.3.

wediscuss the effect of some parameters in the model on the swimming speed and angular
speed of the flagellum. In most of the numerical experiments, the flagellum length was
fixed at � = 1.3 (equivalent to 13µm). In all numerical experiments, the maximum
helix radius was fixed toRh = 0.06, which is about 5% of the flagellum length. The
radius of the flagellum was fixed to a value of 0.012, which is about 1% of the flagellum
length. This corresponds to a somewhat thick flagellum of 120 nm in radius, which is
thicker than a typicalE. coli flagellum (Turner et al., 2000). Alternatively, one may assume
that the computational flagellum is short for its thickness. Experimental studies also have
been conducted on flagellar models which have a small length-to-radius ratio (Kim et al.,
2003). We present other computational experiments which use longer flagella as indicated
in Table 5. Based on numerical experiments, most of the reported results useN = 51
cross-sections to discretize the flagellum since larger numbers of cross-sections had no
significant effect on forward motion or stretching.

In a computational flagellum, there are manydifferent parameters that affect its motion.
To analyze the effect of one parameter, we monitored the angular velocity, forward
displacement, and structural stability. Here we discuss the changes caused by varying the
stiffness constant values(ka, kb, kc), the regularization parameters for both the Stokeslet
(δs) and the rotlet(δr ), the magnitude of torque applied(L), number of periods in a
flagellum (n p), pitch (p), and arclength(�). All computations inthis section were run
up to a final dimensionless time of 400, corresponding tot = 0.04 s. The linear speed of
the flagellum was computed from its final and initial positions.

Thespring constants must be set to large enough values in order to maintain the helical
shape of the flagellum. Once the spring constants are sufficiently large, they have little
effect on the structure of the flagellum and forward motion. As can be seen inTable 2,
for the range of spring constant values chosenfor the parameter analysis, variations have
little effect on forward motion. Although at smaller constant values, there is slightly more
stretching of the flagellum. For these reasons, the stiffness constants were set equal to 12
for all computations in this section.

The regularization parameters for the Stokeslet and the rotlet are independent of one
another. These were set to a multiple of the distance between the cross-sections in the
flagellum. ForN cross-sections along the helix of length�, this distance is�/(N − 1).
For the tests inTables 2, 3 and5, this cross-sectional distance was 0.026. Changing the
Stokeslet’s parameter δs has contrasting effects on forward motion and the stretching
of the flagellum. The value ofδs should be comparable to the separation between cross-
sections along the flagellum so that the cutoff functions of nearby forces can overlap.
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Table 3
Effect of the Stokeslet regularization parameterδs on the swimming speed and filament stretching

δs Speed(µm s−1) Stretching (% of�)

0.026 7.692 0.23
0.052 12.219 0.77
0.078 14.522 2.31

The dimensionless parameters used were� = 1.3, δr = 0.0526,L = 0.001,n p = 3, p = 0.2399.

This is needed for accuracy purposes (Cortez et al., in press). Our results, shown in
Table 3, show that larger values ofδs yielded faster forward motion but also produced
more stretching. This is to be expected since larger values ofδs produce forces that are
spread over larger regions and reduce the maximum value of the cutoff function being
used. This produces smaller reaction forces by the springs and allows more stretching.

The torque magnitudeL and therotlet regularization parameter δr have a large
effect on forward motion and the structure of the flagellum. We varied the amount of
torque applied and studied its effect on forward motion and angular velocity. Physical
experiments performed byPurcell (1997)assumed linear relationships between the torque
magnitude and the axial angular speed, and between the swimming speed and angular
speed, consistent with Stokesflow. He expressed these relationships with the scalar
equations

F = Av + Bω, (9)

L = Cv + Dω, (10)

whereF is the net applied external force magnitude,v is swimming speed,ω is the angular
speed,L is the net torquemagnitude, andA, B, C, and D are constants that depend on
the geometry of the flagellum. These equations reflect the relationships in the direction
of the axis of the flagellum under the assumption that the other components average to
zero as the flagellum corkscrews its way through the fluid. There is no net external force
in our system, soF = 0 in Eq. (9) and the correspondence betweenv andω is a line
through the origin. This, together with Eq. (10), resultsin a linear relation betweenω and
the net torque, and also betweenv and the net torque. We computed the flagellar motion
for a wide range of torque magnitudesL and verified that our model produces a linear
relation between the swimming speedv andω, between the torque magnitudeL andω,
and therefore, between the torque magnitude and the swimming speed (seeFig. 5). The
linear relationships hold for different values ofδr . Eq. (6) indicates that the rotlet velocity
can be written asUδ,r (x; x0, L0) = δ−2

r Uδ,r (x/δ; x0/δ, L0) so that asδr is reduced, the
torque is concentrated in a smaller region and its maximum value increases, resulting in
faster rotation.

Thenumber of periods, n p, in the helix comprising each flagellum also has an effect
on both its swimming motion and its ability to hold its shape. We report results using
four, three and two helical periods while keeping the pitchp constant. Since flagella with
more periods of a given pitch are longer than those with fewer periods, one expects that
for a given driving torque, the viscous drag would have a larger effect on a flagellum with
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Fig. 5. Magnitude of torque densityL vs. angular speedω (left); magnitude of torque densityL vs. linear
swimming speedv (middle); angular speedω vs. swimming speedv (right).

Table 4
Comparison of the forward swimming speed and angularspeed of a flagellum with constant pitch as a function
of the number of helical periods along its length

n p � (µm) N Speed(µm s−1) ω (rev s−1)

2 8.7 34 17.0 20
3 13.0 51 12.2 15
4 17.3 68 9.6 10

The driving torque was fixed with magnitudeL = 0.001. The dimensionless parameters used wereδs = δr =
0.052, and pitchp = 0.24.

more periods causing a smaller angular velocity and, therefore, slower swimming motion.
Our results, shown inTable 4, show that having fewer periods causes less stretching and
resulted in faster swimming, as expected. For this experiment, the number of cross-sections
along the flagellum was increased as the number of periods increased in order to maintain
a constant cross-sectional spacing.

The pitch of the flagellum has almost no effect onω for a rotlet of fixed magnitude.
The pitch was varied by fixing the flagellum length and changing the number of turns in
the helix. Having more or fewer turns per arclength did not have an effect on the angular
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Table 5
Comparison of speed as a function of pitch for flagella of different lengths and different number of helical periods

� (µm) N n p Pitch (µm) ω (rev s−1) Speed(µm s−1)

17 51 2 7.61 100 37.0
17 51 3 4.36 100 40.6
17 51 3.5 3.20 100 34.7
17 51 4 2.28 100 24.6
25 75 2 11.68 70 19.5
25 75 3 7.47 70 27.9
25 75 4 5.12 70 30.7
25 75 4.5 4.22 70 29.4

The dimensionless parameters used wereδs = δr = 0.052, andL = 0.005.

velocity ω. However, themodel shows that the maximumswimming speedis achieved
for a given pitch which is not particularly sensitive to arclength. Intuitively, if the pitch
is very large, the flagellum is nearly a straight tube and does not swim efficiently. On
the other hand, if the pitch is very small, the helix is tightly wound and the flagellum
does not swim efficiently either. Thus, one expects a selected pitch to yield a maximum
swimming speed [see alsoCortezet al. (in press)]. Table 5shows the results for flagella
of fixed length and variable number of turns (different pitch). This was done with two
different arclengths while maintaining the same cross-sectional distance. We define the
optimal pitch to be the one that yields the largest swimming speed. Based on the results we
estimate the optimal pitch to be about 4.5–5µm. For comparison, we mention that pitch
measurements of stationary normal flagellar filaments found inTurner et al. (2000)and
Kim et al. (2003)are in the range 1–3µm.

4.2. Flow generated by a flagellum

The motion of the flagellum generates fluid flow around it. Two-dimensional projections
of the fluid flow on planes perpendicular to the axis of the flagellum are shown inFig. 6.
The triangle in each plot is the projection of a flagellum cross-section. The top-left
plot shows the first cross-section, where the torque is applied. The flow here is largely
dominated by the torque. Further back along the flagellum, as the effect of the torque
decays, the flow is influenced more substantially by the spring forces that cause the
flagellum cross-sections to rotate in circles.Fig. 7 shows the flow projected onto a plane
that includes the flagellum axis. The top plot is the initial position of the flagellum and
the bottom plot shows the flagellum and the flow around it att = 0.02 s. The forward
motion of the flagellum is apparent and is also indicated by the fluid motion since there is
flow coincident with the helix tangent. The figure also shows regions of fluid rotation in
alternating directions that approximately coincide with the helix shape.

5. Three flagellum model

In this section, we discuss the interactions among three flagella through the fluid flow
they generate. In particular, we are interested in the role of the fluid motion in the processes
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Fig. 6. Flow fields at the 1st, 3rd, 10th, and51st (last) cross-sections of a flagellum.

of bundling and tumbling. Our model includes three flagella constructed in the same
way as described in the previous sections. Each one has a motor modeled by a torque
in the center of the first cross-section. While we do not construct explicitly the body of
the organism, the model includes features related to the effects of the bacterial body on
the motion. The three flagella were placed equally-spaced around a circle whose radius
represents the radius of the bacterial body. To simulate the front of these flagella being
connected to a rigid body and not being able to freely change their distances and orientation
relative to one another, the front sections of the flagella were connected by springs. These
springs connect the center points of the firstthree cross-sections of each flagellum with
the corresponding cross-sections of the other two flagella.Fig. 8shows these connections.
Under this construction the center points of the first cross-sections of the three flagella
form an equilateral triangle and remain atapproximately the same distance throughout the
simulation.
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Fig. 7. Initial position and flow field through a middle plane in the flagellum at dimensionless timet = 0.02 s.

Fig. 8. View of initial conditions for the three-flagellum case.

Since the representation of the flagella in our model is by discrete points, there is a
possibility that in the computation they may get closer than physically possible. We prevent
two flagella from crossing each other by defining repulsive forces which are turned off
when the flagella are apart. We define the minimum distance between the centerlines of
different flagella before they come into physical contact with one another, and set this
distance as the threshold for activation of the repulsive forces. Physically, the distance
between two flagellar centerlines must be no smaller than the diameter of the flagellum. In
the remaining computations, we use the slightly larger activation threshold of 2.3 times the
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Fig. 9. Torque setup for the three-flagellum case.

flagellar radius. This choice was made purely for computational purposes since the fluid
flow between the flagella is not well-resolved at those distances for the discretization used.

The torques located at the base of each flagellum generate rotation throughout the fluid.
Since we are interested in the flagellar interaction due to the fluid motion and not due
to the flagella revolving around one another, we introduce acounter-torque to represent
the counter rotation effect of the bacterial body. This counter-torque is in the opposite
direction of the three motor torques and is designed to keep the bases of the flagella from
revolving around each other. In this way, the bundling observed would be a direct result
of the hydrodynamic interactions. The counter-torque is placed at the center of the triangle
defined by the center points of the first cross sections of the three flagella, so that it is
equidistant from the other three torques located at the vertices of the triangle. Its direction
is perpendicular to the plane of the triangle and pointing in the opposite direction of the
other three torques; seeFig. 9.

We compute the magnitude of the counter-torque dynamically at every time step to
cancel the rotation of the front flagellar cross-sections (where the motors are located)
around each other. This was accomplished by computing first the velocities of these cross-
sections due to all the forces and motor torques and projecting these velocities onto the
circle defined by the location of the motors. The magnitude of the counter-torque was
computed to cancel the average projected velocity.

This definition of the counter-torque leads to simulations in a reference frame in which
the bacterial body does not rotate. This case is similar to a laboratory setup in which each
flagellum is connected at the base to an stationary motor which does not allow it to spin
around the other flagella (Kim et al., 2003). This is not unrealistic on a time scale of a few
flagellar rotations since the bacterial body ofE. coli rotates with a frequency of 10 rev s−1

(seePowers, 2002) whereas the flagella rotate with a frequency of 100 rev s−1 (seeBerg,
2003). Powers (2002)discusses the possibility of bundling by spinning one end of a flexible
filament (similar to body rotation) and determining possible steady-state configurations. In
the present study, the goal is to uncover the role of the hydrodynamic interactions that
lead to bundling and not the mechanical turning of one flagellum around another. For this
reason we work in this reference frame. We expect to learn the flow interactions among the
flagella from the analysis of this experiment. In this frame, the angular momentum will be
conserved only approximately and the net torque will not be exactly zero. It is possible to
adjust the location of the counter-torque in order to minimize the net torque, however this
wasnot done here.
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Fig. 10. Plot of average distance between flagella (left) and forward displacement of the front and last cross-
sections (right). The difference between the latter represents stretching of the flagellum.

Table 6
Table of parameter values used for the results shown inFig. 11

Parameter Dimensionless value Dimensional value

Number of cross-sections 51 51
Flagellum radius 0.01 0.1µm
Helix radius(Rh ) 0.06 0.6µm
Arclength of flagellum 1.3 13µm
Number of periods 2 2
Initial flagellar separation 0.05 0.5µm
ka , kb , kc 10 107 N m−3

δs 0.039 0.39µm
δr 0.052 0.52µm
Magnitude of torque (density) 0.002 0.02 N m−2

5.1. Bundling of three flagella

One important feature of bundling is how close the flagella get to one another. In order
to characterize the distance between the flagella, we computed and monitored the distances
between the centers ofthe cross-sections. We first defined the distance between one cross-
section of a flagellum to another flagellum to be the minimum distance between the center
of the cross-section and the center of all the cross-sections of the other flagellum. By
computing the minimum, maximum and average of these distances, one can monitor the
average separation between flagella.Fig. 10 shows the average distance between flagella
for the case analyzed inthe next section (seeTable 6). This average distance decreases
substantially in time as the flagella start to bundle.

Another property that we examined was the forward displacement of the flagella. This
was measured by comparing the position of the center of the first cross-section of the three
flagella and their corresponding initial positions. Similarly, we computed the corresponding
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Fig. 11. Side view of the flagella att = 0.06 s using zero angle of incline andka = kb = kc = 10.

Fig. 12. Side view of the flagella att = 0.06 s with angle of incline 1.2◦ andka = kb = kc = 10.

quantity at the last cross-section. The two curves are shown inFig. 10. Thegap between
these curves represents stretching which is caused by the elasticity of the flagella. Notice
that most of the stretching occurs early in the motion. The slope of the curve gives the
swimming speed of the flagella. As the flagellaget closer together, the computation of
the motion becomes more demanding in order to prevent the numerical crossing of any
two flagella. Consequently, the time step in the computation must be reduced, making a
long-time simulation challenging.

Fig. 11 shows the finalsnapshot at t = 0.06 s of the simulation using the parameters
given inTable 6. The figure shows that the front half of the flagella form a tighter bundle
than the back of them. This was typical of our simulations. We found, however, that the
stiffness parameters and the initial conditions are factors that can affect the tightness of the
bundle. The free ends of the flagella come closer together at the end of the simulation if
the initial conditions are modified slightly in such a way that the helix axes are not parallel
but tilted by just 1◦–2◦ so that they are barely closer at the tails than at the front. This
modification appears to be enough for all the cross-sections of the flagella to spiral toward
a bundle.Fig.12shows a simulation using the parameters ofTable 6and an angle of incline
of 1.2◦. Note the tighter bundle along the entire flagella.

The stiffnesses of the springs also have an effect on the bundle.Fig.11shows a snapshot
of the simulation in which the stiffness constants were set toka = kb = kc = 10
(dimensionless units). Recall thatka corresponds to springs connecting the points on a
single cross-section; thus, these springs are responsible for maintaining the integrity of the
tubular flagellum. The stiffness constantskb correspond to springs connecting contiguous
cross-sections along the axis of the flagellum and the diagonal springs correspond tokc.
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Fig. 13. Side view of the flagellaat three different times withka = 10,kb = kc = 4.

These two types of springs give flexibility to the flagellum in terms of its ability to bend
and twist. Reducing the values of these stiffnesses makes the flagella more malleable and
can affect their ability to form a bundle. InFig. 13, we used the valueska = 10 and
kb = kc = 4. The tail end of the flagella are closer and the flow around it resembles the
flow around a single flagellum (compare toFig. 16). This may indicate a better propulsion
configuration. It is also apparent that the flagella are tangled more. Further reducing the
stiffnesses toka = 10, kb = kc = 2 (not shown) allows the flagella to bundle even more
but the helical shape begins to straighten out because the springs are too weak to maintain
that shape.

The amount of twist in the flagella at the end of the simulation is also larger with the
reduced stiffnesses. We calculated the twist from front to back of the flagella shown in
Fig. 11 to be 1.49 rad while the twist in the bottom plot ofFig. 13 was 4.14 rad. The twist
in the flagella that useskb = kc = 2 was 7.53 rad, indicating that the spring construction
allows for changes in the elastic properties of the flagella. In fact, each spring can be made
to have its own stiffness constant.

5.2. Flow generated by three flagella

Our numerical experiments indicate that the process of bundling can be accelerated by
placing at least the tail ends of the flagella slightly closer, as explained in the previous
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Fig. 14. Cross-sectional view of fluid flow near the three flagella (t = 0.04 s). The plots show the flow on planes
at the front, back and two intermediate locations along the flagella.

section. In the experiments of this section, we present results using the parameters given
in Table 6and an angle of incline of 1.2◦. The only purpose of this is to reach a bundled
state earlier in the simulation.The parameter values fall within the range computed for the
single flagellum for favorable swimming speed.

We focus on the fluid flow around the flagella. The flow generated by the three flagella
has a different character depending on the distance from the torques. The flow near the first
cross-sections of the flagella is mainly dominated by the effect of the torques; see the top-
left plot in Fig. 14. At this location, which is the plane where the torques are located, the
forces act to keep the cross-sections from deforming and to maintain their relative distances
approximately constant. One can see the effect of the counter-torque at the center of the
graph.

Further away, the torques generate a more uniform single rotation. The effect of the
torques also decreases as the distance from the torques increases, and the effect of the
forces along nearby cross-sections becomes more significant. For the particular results



158 H. Flores et al. / Bulletin of Mathematical Biology 67 (2005) 137–168

Fig. 15. Position of the center of fluid rotation on a plane perpendicular to the flagellar axis at the 15th cross-
section as a function of time. The center of fluid rotation starts on the right side and spirals inward in time
promoting bundling.

displayed inFig. 14, the flow beyond a quarter length of the flagella is dominated by the
forces (Stokeslets) while the torques (rotlets) have little effect. The top-right plot shows
the flow near the front but far enough away from the torques that there is a single center of
rotation (where the flow is zero in the plot) between the three cross-sections. The bottom-
left plot in Fig. 14 shows how the rotation is altered by the effect of the forces in the
regions close to the flagella. The center of rotation is no longer on the center axis of the
three flagella and the resulting flow pulls the flagella located furthest away from the center
of rotation toward the other flagella. We point out that the flagella can be seen to be very
close to one another in the bottom-left plot ofFig. 14. Thebottom-right plot shows the
flow at the tail. For all the observed time, the cross-section located furthest away from the
center of rotation was always pulled in its direction. This type of flow, in turn, promotes
bundling.

Fig. 15shows the location of the center of rotation of the fluid about a quarter length of
the flagella from the front. The points shown are not part of any flagella but are points in
the fluid where the flow is zero. As time increases, the center of fluid rotation moves in a
spiral pattern causing the flagella to come together during bundling.

By analyzing the flow on thexy-plane (seeFig. 16) we observe the appearance of
regions of circulation. This flow is an expected result from the motion of the flagella (Gray,
1968; Lighthill, 1976). The direction of the flow rotation changes when the concavity of
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Fig. 16. Side view of the flagella and the fluid flow around them at three different times of the simulation
ka = kb = kc = 10.

the helix changes as viewed from the side. These side views of the flow also make evident
the end-effect of the flagella. The force balance at the end of the flagella is different from
the balance in the middle and this affects the flow. One can also compare this plot with
Fig.13to notice that the small angle of incline used in the latter does speed up the bundling
process. With the small tilt of the helix axes, the flagella wrap around one another for
about half the total length after the same final simulation time. We point out that the same
phenomenon where parts of the flagella come close to one another while other sections
remain apart has also been observed experimentally (Kim et al., 2003).

For comparison with the numerical simulations of the next section, we show inFig. 17
four snapshots of the flagella entering into the bundle. The parameters used here are those
in Table 7with all motors rotating counterclockwise when viewed from behind the flagella.
Note that the torque magnitude is larger than in the previous simulations, and therefore the
final simulation time is shorter. In the simulation time shown in this figure, the average
distance between the flagella decreases from 0.867 to 0.653µm and continues to decrease
in time. It is also clear from the figure that theorientation of the flagella remains the same
throughout the simulation. The total time of this simulation ist = 0.0135 s, which is
sufficient to show the onset of the bundling process. The forward displacement of the
flagella, however, is very small in this time scale.
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Fig. 17. Snapshots of the flagella entering into a bundle.

Table 7
Table of parameter values used for three-flagellum case inFigs. 17and18

Parameter Dimensionless value Dimensional value

Number of cross-sections 51 51
Flagellum radius 0.008 0.08µm
Helix radius(Rh ) 0.05 0.5µm
Arclength of flagellum 1.3 13µm
Number of periods 3 3
Initial flagellar separation 0.05 0.5µm
ka , kb 10 1.0 × 107 N m−3

kc 12 1.2 × 107 N m−3

δs 0.039 0.39µm
δr 0.052 0.52µm
Magnitude of torque 0.008 0.08 N m−2

Angle of incline 0.0 0.0

5.3. Results on tumbling

In this section we test whether the same construction that produced bundling can
produce tumbling. Tumbling occurs when one or more of the motors of a left-handed
helix change their direction to a clockwise rotation (viewed from behind the flagella).
When this occurs in laboratory experiments, the flagella are observed to behave erratically
and the organism changes its orientation in apparently random fashion (Turner et al.,
2000). We look at the case in which all the parameters and initial conditions are as in the
previous section except that we change the direction of rotation of only one of the motors.
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Fig. 18. Snapshots of the flagella entering into a tumble.

Fig. 19. The 1st cross section during the beginning of the tumble.

We use the parameters shown inTable 7throughout this section. The same parameters were
used for the results on bundling shown inFig.17(compare the top-left plot of each figure).
The only difference is that the sign of one of the rotlets was reversed to model the change
in a motor rotation. We also ran the experiment reversing the rotation of two motors and
the results are qualitatively similar to the ones shown here.

The resulting motion is depicted inFig. 18 and should be compared withFig. 17.
Notice that although only the direction of rotation of one motor was changed, the motion
is dramatically different from that inFig. 17. Instead of getting closer and wrapping
around one another, the flagella move away fromone another and they change orientation.
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In the span of 0.01 s, the maximum distance between the flagella increases from 0.867 to
3.305µm, and the average distance between flagella increases from 0.867 to 1.285µm.
This also gives an indication that the tumbling occurs faster than bundling. InE. coli the
bundling time is about ten times longer than the tumbling time (Turner et al., 2000).

The changes in orientation are also clear fromFig. 18 and it becomes more and more
drastic as time progresses. The axial position of the tail does not change. This indicates
that there is no net forward motion, but only a rotation of the flagella that changes their
orientation.

Whenanalyzing the fluid flow generated bythe flagella, one canget an idea of how
the change in the direction of rotation of some motors may cause tumbling. InFig. 19,
the flagellum in the lower right rotates counterclockwise while the other flagella rotate
clockwise. This creates regions of counter-rotation in the fluid, which force the base of the
flagella to change its orientation significantly since the cross-sections near the front of the
flagella are at a fixed distance from one another and cannot separate. Except for the front
few sections of the flagella, which are tied together, the rest of the flagella are free to move
independently as they are carried by the flow. The counter-rotating flow regions created
by the rotation of the motors in different directions generate fluid motion that separates
the flagella along their lengths.Fig. 20 shows snapshots of a cross-section about halfway
along the flagellar length and clearlyshows theprocess of separation.

While the results inFigs. 17and18show the effect of reversing the rotation of one motor
starting from the same initial conditions, we arealso interested in a longer simulation in
which the motors reverse rotation in themiddle of the motion. We set up an experiment
consisting of three time intervals. First, all three motors rotate in the same direction for
0 ≤ t < 0.0135 s. This produces the bundling behavior shown inFig. 17. At the final time,
the sign of one of the rotlets is reversed during 0.0135 ≤ t < 0.0270 s. This produces
a tumble shown inFig. 21. Notice that the orientation of the flagella changes drastically
and they separate. Finally, the motors again are set to rotate in the same direction as in
the beginning of the simulation for the interval 0.0270 ≤ t ≤ 0.0405 s as shown in
Fig. 22. Notice that the flagella come together again into a tight bundle and now the
orientation remains constant. We believe that the time intervals in the simulation are
sufficient to initiate the bundling process or to move erratically during a tumble. However,
the time intervals are not long enough to appreciate significant forward displacement
during bundling.

6. Conclusions

A computational model of the interaction of multiple bacterial flagella was presented.
The method of regularized Stokeslets is based on the superposition of exact solutions of
the Stokes equations with external force given by a linear combination of cutoff functions.
These functions concentrate a given force in a small sphere rather than at a point, as is
the case with delta distributions. The resulting velocity expression is called a regularized
Stokeslet and the associated regularized rotlet was derived. These two types of elements
were used to introduce the torque generated by the motors that rotate the flagella and
the forces that provide elasticity to the flagella. The forces in the model presented here
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Fig. 20. The 20th cross section during the tumble.

are based on a network of springs of a given resting length and stiffness; however, other
elasticity models can easily be used.

The tests performed for a single flagellum document the effect of different parameters
on its motion. In general, the applied torque at a single location at the front of the
flagellum introduces the rotation and the elastic forces maintain the structural integrity of
the flagellum. The helical shape and the rotation necessarily generate forward swimming
motion in a Stokes flow. The values for some of the parameters that lead to a faster
swimming speed wereestimated. In particular, the results show that the maximum
swimming speed is achieved when the pitch of the helix has a given value regardless
of the length of the flagellum. In addition,the linear dependence of the swimming and
angular speeds on the torque was verified. Theproportionality constants in these relations
depend on numerical parameters suchas the regularization parametersδs and δr . Since
these represent the spreading distance of the forces and torques, they should be comparable
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Fig. 21. Motion of the flagella during tumbling.This motion follows the bundling period oft = 0–0.0135 s shown
in Fig. 17.

in size to the flagellar radius. More specific details of the dependence of errors on the
numerical parameters can be found inCortezet al. (in press).

The far-field velocity is not significantly affected by the regularization. Therefore, away
from the front of the flagellum where the torques are located, the effect of the forces is
more substantial than the effect of the torque since the rotlet expression decays faster than
the Stokeslet expression as a function of distance. Of course, the forces depend implicitly
on the torque since the entire system is coupled. The fluid flow surrounding the flagellum
shows the rotation of the cross-sections and also shows circulation regions of alternating
sign coincident with the helix wavelength (seeFig. 7).

The model was then applied to three interacting flagella. The front sections of the
flagella were kept approximately at a fixed distance in order to simulate their connection
to the bacterial body. In order to analyze the hydrodynamic interaction of the flagella
without artificially revolving them around one another, a counter-torque was added to
cancel the rotation of each flagellum around the others that the motors generate. The
counter-torque can also be thought of as the effect of the counter-rotating bacterial body,
which is currently not part of the model. One direction of future research is to include the
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Fig. 22. Motion of the flagella during a second bundling period. This motion follows the tumbling period of
t = 0.0135–0.0270 s shown inFig. 21.

body and its appropriate counter-rotation. The main goal of the current work was to show
thehydrodynamic interactions of flagella over short time scales.

When the three flagellar motors rotate counterclockwise, the hydrodynamic interaction
of the flagella can lead to bundling. Our results show that the flow near the front of the
flagella is mainly a combination of all the torques, which have comparable magnitude.
Further awayfrom the front, the flow on planes perpendicular to the axes of the flagella
appears to become a single rotation whose center is outside the triangle defined by the
three flagellar cross-sections (seeFig. 14). This flow causes the flagella to rotate in circles
as a unit but also draws them closer together, resulting in bundling. In this case the
structure maintains its orientation. These results clearly show that the fluid flow generated
by the flagella draws them together and point to the importance of accounting for the fluid
dynamics when modeling the bundling process.

When one or two of the motors turns in the opposite direction, the flow patterns change
dramatically. The generated flow near the cross-sections has a counter-rotating character,
which causes the flagella to separate and forces the front sections to change their orientation
erratically consistent with tumbling. There is no significant net forward motion in this case
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and the tumbling occurs in a faster time scale than bundling. When the motors are returned
to their counterclockwise motion, the flagella bundle again tightly.

In the future, we expect to improve the model for long-term motions of the bacteria,
including their heads and flagella. We expect to incorporate information about the internal
structure of the flagella into the spring model more accurately and use flagella with more
realistic proportions (longer). To accomplish this, some aspects of the efficiency of the
numerical method will also need to be addressed. Finally, a thorough comparison between
the numerical method presented here and other methods, such as local resistive-force
theory and slender-body theories, would be very instructive to assess any differences,
limitations and strengths of each method.
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Appendix A

A.1. Derivation of the regularized Stokeslet

The Stokes equations are

0=−∇ P + �u + f (A.1)

0=∇ ·u. (A.2)

We assume that the force is given byf(x) = f0φδ(x − x0). For simplicity we assume
x0 = 0 and wewrite r = ‖x‖.

We takethe divergence of Eq. (A.1) anduse Eq. (A.2) to eliminate the velocity and get
an equation for the pressure

�P = ∇ · f = f0 ·∇φδ

whose solution is

P(x) = f0 ·∇Gδ(x), where�Gδ = φδ.

Substituting this expression forp(x) into Eq. (A.1) results in the following equation for
the fluid velocity

�u = (f0 ·∇)∇Gδ − f0φδ

whose solution is

u(x) = (f0 ·∇)∇Bδ(x) − f0Gδ(x), where�Bδ = Gδ.

For the particular cutoff function used throughout this article

φδ(x) = 15δ4

8π(r2 + δ2)7/2
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we have that

P(x) = (f0 ·x)
2r2 + 5δ2

8π(r2 + δ2)5/2 (A.3)

and

u(x) = f0
r2 + 2δ2

8π(r2 + δ2)3/2 + (f0 ·x)x
8π(r2 + δ2)3/2 . (A.4)

Eq. (A.4) is also displayed as Eq. (5).

A.2. Derivation of the regularized rotlet

We begin with the regularized Stokeslet found in the previous section, Eq. (A.3) and
(A.4).

P0 = (5δ2 + 2r2)(f0 ·x)

8π(r2 + δ2)5/2 , U0 = f0(r2 + 2δ2)

8π(r2 + δ2)3/2 + (f0 ·x)x
8π(r2 + δ2)3/2

wheref0 is an arbitrary vector constant. Now,(P0, U0) satisfy∇ P0 = �U0 + f0φδ. Other
solutions can be found by differentiation. For example, letg be an arbitrary constant vector,
and define

P1 = g ·∇ P0 and U1 = (g ·∇)U0.

One can check that(P1, U1) are solutions of the Stokes equations with forcing term
(g ·∇)f0φδ. If we expandU1 using Eq. (A.4), we obtain

U1 = −(r2 + 4δ2)

8π(r2 + δ2)5/2 (g ·x)f0 + 1

8π(r2 + δ2)3/2(f0 ·x)g

+ (g ·f0)x
8π(r2 + δ2)3/2

− 3(f0 ·x)(g ·x)x
8π(r2 + δ2)5/2

. (A.5)

We look for the antisymmetric part ofthis expression with respect tof0 andg. Notice that
the third and fourth terms on the right side of Eq. (A.5) are symmetric with respect tof0
andg (switchingf0 andg makes no difference). To determine the symmetry in terms one
and two, we may write them as

(a + b)

2
[(g ·x)f0 + (f0 ·x)g] + (a − b)

2
[(g ·x)f0 − (f0 ·x)g]

where

a = −(r2 + 4δ2)

8π(r2 + δ2)5/2 and b = 1

8π(r2 + δ2)3/2 .

Therefore, the antisymmetric part of Eq. (A.5) is

Uδ,r (x)= (a − b)

2
[(g ·x)f0 − (f0 ·x)g]

= −(2r2 + 5δ2)

8π(r2 + δ2)5/2
[(g ·x)f0 − (f0 ·x)g].
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DefiningL = f0 × g, our equation forUδ,r becomes

Uδ,r (x) = (2r2 + 5δ2)

16π(r2 + δ2)5/2
(L × x)

which is the equation given in Eq. (6). Uδ,r represents the flow due to a regularized rotlet
of strengthL. We mention that asδ approaches zero, we recover the singular form of the
rotlet, Eq. (3). However, the regularized rotlet is a bounded function that can be evaluated
everywhere.
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