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Dynamics of complex interfaces. I. Rheology, morphology, and diffusion
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In this paper, we investigate, on two levels of description, the isothermal coupgijngetween
rheology and morphology in immiscible blen@&/B) and (ii) among rheology, morphology, and
diffusion in mixtures consisting of an immiscible blet®/B) and one simple fluids. The interface
separating the phases A and B is described, on the kinetic level by an area density distribution
function and on the mesoscopic level by a scalar and a traceless symmetric second order tensor. The
nonlinear formulations are derived using the general equation for nonequilibrium reversible and
irreversible coupling formalism which ensures the consistency of dynamics with thermodynamics.
In addition to the non-Fickian character of mass transport, the coupled three-dimensional governing
equations explicitly show the effects of the external flow and diffusion on the size and shape of the
interface. New expressions for the stress tensor emerge naturally in the models including the
contributions of the diffusion fluxes and the isotrofi@aplace and anisotropic deformations of the
interface. Asymptotic solutions of the governing equations also show that the transport coefficients
(diffusivity, etc,) are explicitly dependent on the interfacial tension and on the velocity gradient of
the applied flow. The latter dependence renders the process of mass transfer highly anisotropic even
in the absence of internal stresses created by the deformation of the interface. The diffusion-free
models of Doi—Ohta and Lee—Park are recovered as particular caseZ00®American Institute

of Physics. [DOI: 10.1063/1.1571052

I. INTRODUCTION case, suitable descriptions of a nonequilibrium behavior of
immiscible blends containing other substances, such as sol-
Individual components of most multiphase mixtures,vents, possibly miscible with their components, should con-
such as polymeric blends, are immiscible, and this generallgider not only the effects of the coupling between rheology
manifests itself by the presence of a complex interface whosgnd the deformation of the interfacial morphology but also
morphology plays an important role in the properties of thetheir relationship with mass transport.
blend. The time-dependent and equilibrium sizes and shapes |n diffusion-freeimmiscible polymeric blendgéA/B), the
of the interface are determined by the competition amongnorphology—rheology coupling has been the subject of
many factors, the most important of which are identified tomany theoretical as well as experimental investigatfons.
be the applied flow, viscoelasticity, and the interfacial ten-Under an applied flow, the interface undergoes deformations/
sion. Conversely, the dynamics of the blend is also observedistortions that generally lead to complex morphologies and
to be influenced by the presence of the interface and its deyatterns(Fig. 1) resulting from simultaneous and complex
formation. processes such as coalescence and break-up. Previous
If, in addition, the immiscible blend also contains low- developments!! show that the behavior of the interface
molecular weight substances such as solvents or surface agontributes to the dynamics of the whole multiphase system
tive agents, its morphology may also undergo additionaby the addition of an excess stress attributed to the shape
changes due to the contribution of the diffusion fluxes ofanisotropy. One popular approach involves the mesoscopic
these inclusions and their physicochemical nature. In thignodef derived for dynamics of interfaces. The interface is
characterized by two structural variables, a scalar associated
dAuthor to whom correspondence should be addressed. Electronic maiWith the area density, and a second-order tensor associated
aelafif@tulane.edu and alielafif@hotmail.com with the anisotropic changes of the shape. These variables
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FIG. 1. Blend of two immiscible fluids A and B with a complex interface. FIG. 3. Mixture of a simple fluiddots and a blend of two immiscible fluids
with a complex interface.

can be defined either over the whole interfacial area of the

blend' or over the surface of a single dropfétjf coales- voted to these effects, their origin seems to be well under-
cence and break-up processes are discarded. Several istood. Most of the reported observations can be reproduced
provements of this model for incompressible fluids for bothif the deformation of the polymer internal structure is taken
constrained '° or unconstraine volumes have been sug- into account. Qualitatively, mass transfer deviates from the
gested and comparisons with experimental measurements deredictions of Fick’'s laws and these deviations are observed
termined the range of validity of its predictio®s.'® While  to be more noticeable when the diffusion characteristic time
most previous derivations for incompressible blends arrive ascale is comparable to, or smaller than, the relaxation char-
similar terms for the reversible part of the governing equa-acteristic time scale of the internal structure. The break-
tions for the area and shape densities, some discrepancigsough in modeling, for expressing explicitly and rigorously
still appear in the irreversible portio(dissipation. More-  this mutual interdependence in the governing equations, is
over, the expression for the stress tensor for compressibimainly attributed to the so-called two-fluid modélAs a
blends is still considered to be incompldeeg., the Laplace result, the expression of the diffusion mass flux is extended
term is absentand thus the time evolution equations describ-by explicitly including the internal stresses. Although there
ing the dynamics of the blend and the flow behavior areare many studies dealing with miscible solvent/polymer mix-
inaccurate. One goal of this paper is to clarify some of theséures, few investigations have considered features of rheol-
points for compressible immiscible blends. We then derive agy and morphology with mass transport in multiphase im-
thermodynamically compatible model on a kinetic level andmiscible blends containing simple substances. A more
use it as a starting point to achieve a mesoscopic descriptiofundamental understanding of such processes would be ben-
Several earlier models such as those of Doi and Ghie  eficial since they are omnipresent in many biological and
and Parl® Grmelaet al,®” Lacroix et al° are recovered as industrial systems. For instance, in lungs, surfactants reduce
particular cases. the air-liquid interfacial tension and thus minimize the risk

In interface-freemiscible polymer solutions, the cou- of a probable obstruction of pulmonary airways that occurs
pling between rheology and diffusion has led to interestingduring respiratory distress syndrortRDS).3” Another inter-
and unexpected observations such as phase separation, msting case involves the behavior of gas bubbles rising freely
gration across streamliné§;'® etc. In these studies, the in non-Newtonian polymeric solutions. Measurements show
polymeric chains and the solvent molecules are regarded a®me unexpected behavior such as the occurrence of a dis-
thermodynamically miscible in all proportions and hence in-continuity in their rise velocity at a certain critical volurffe.
terfacial quantities are irrelevaifFig. 2). Due to the large In addition to the goal of addressing the rheology—
amount of both experimental and theoretiéai® studies de- morphology coupling described earlier, we address the rela-
tionships among rheology, morphology and mass transport in
mixtures consisting of an immiscible blend/B) and a
simple fluid,s (e.g., solvent(Fig. 3). Here, we also provide
two levels of description to study the relationship amongst
these three phenomena.

In summary, the goal of this paper is twofold. First, we
investigate the effects of the coupling between rheology and
morphology in compressible immiscible blen@gB) that do
not contain other substancésg., solvent Second, we gen-
eralize this study to examine how such a coupling is affected
by mass transport in the case of mixtures of an immiscible
blend (A/B) containing a simple fluids. Our aim is to pro-
vide a family of compatible models suitable for discussing
FIG. 2. Polymer solution consisting of a solvefdots and polymeric ~ SUCh couplings on both kinetic and mesoscopic levels of de-
chains. scription. To develop these models, we use the general equa-
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tion for the nonequilibrium reversible and irreversible cou-pracket is called a Poisson bracket(if {A,B}=—{B,A}

plings (GENERIQ (Ref. 39 that guarantees the consistency (L=—L", i.e., L is antisymmetric, the superscrifitstands

of dynamics with thermodynamics. The obtained governingor the transpose operajor (i) the Jacobi identity

equations are parameterized by the internal free energy ar{ojB,c},A}Jr{{A, B},C}+{{C,A},B}=0 holds. The latter

the kinetic coefficients which express all the individual fea-identity expressing the time invariance of the reversible

tures of the system under consideration. structure may help to single out physically admissible clo-
This paper is organized as follows: A brief description of syre approximationg%

the GENERIC method is given in Sec. Il. In Sec. Ill, we  The dissipation potential satisfies the following prop-
derive new models on two levels of description for discusserties:(i) xp|equ“ibrium:o, (i) W reaches its minimum at equi-
ing the relationship between rheology and morphology inibrium, (iii) ¥ is convex. In view of the properties listed
compressible immiscible fluid@/B). We first formulate the  above, Eq(1) implies the dissipation inequalityd/dt<0.
model on a kinetic level of description, and then use it to A GENERIC derivation of a new set of coupled time
derive, directly and rigorously, the model on the mesoscopi@volution equations consists in an adequate choice of the
level. We discuss in detail two well-known models retrievedstate variables, a determination of their reversifiteisson

as particular casés’ In Sec. IV, we extend this study to operatorL) and irreversible(dissipation potentiaf?) kine-
address the coupling among rheology, morphology, and difmatics and finally a specification of the Helmholtz free en-
fusion in multiphase mixtures of an immiscible ble@d¥B)  ergy ®. These four steps are followed in the forthcoming
and a simple fluids (e.g., solvent The main outcome is that sections; first for the rheology and morphology relationship
the size and shape of the interface are modified by both thend second for the rheology—morphology—diffusion cou-
applied flow and diffusion. In turn, the diffusion process be-pling in compressible immiscible fluids.

comes influenced by the presence of the interface.

lll. RHEOLOGY AND MORPHOLOGY
Il. THE GENERIC FORMALISM IN COMPRESSIBLE IMMISCIBLE BLENDS:

. A TWO-LEVEL DESCRIPTION
The GENERIC(Ref. 39 method has been introduced to

describe the behavior of nonequilibrium systems while en-  |n this section, we investigate the relationship between
suring the consistency of their dynamics with thermodynamrheology and morphology changes on two levels of descrip-
ics. This Hamiltonian method extended to dissipative systion. The system under consideration is a blend consisting of
tems has been developed and evolved during the last twavo compressible immiscible fluids A and B. The presence of
decades due to the contributions of many groups. These efne interface makes the fluid behave as a complex fluid even
forts started with the pioneering works of Grmétdpllowed  though the latter is composed of simple Newtonian fluids. It
by the dissipation bracket method of Beris and Edwirtts s well known that, in most complex fluids, deviations from
reach a final structure known in the literature as GENERIGhe Newtonian behavior are due to the contribution of the
developed by Grmela andttinger. inherent internal structure. Here, the internal structure is re-
In these two papers, we shall assume that the systegjarded to mainly stem from the morphology of the interface.
under consideration is kept at a constant temperature denoted We consider the case where the two phases have equal
by T. If X represents the set of the independent state variableglocities. This approximation holds far from critical points,

used for a complete description of the system under consicbr in case of high interfacial friction between the components
eration, then GENERIC can be written in the following con- of the blend***° The blend is regarded as a pseudo-one-

densed fornf? component fluid embedding an interf&cé® The first step in
the GENERIC algorithm requires an adequate choice of the
aX oD o independent state variables. The usual state variables used to
i L X m (1) describe a fluid under consideration are the fields of the clas-

sical fluid mechanicghydrodynamicy i.e., a scalar mass
wheret denotes time. Equatiofl) involves two potentialsd  density p(r) and a linear momentum density vectofr),
andW. The first,®=E—TS, is the Helmholtz free energy, wherer is the position vector. However, the presence of the
whereE and S are the total energy and entropy potentials ofinterface necessitates additional state variables to account for
the system expressed in the space of the state variables. Tiig contribution. To gain a better physical insight for the dy-
secondW, is the dissipation potential expressed in the spac@amics of this immiscible blend, we provide a description on
of the conjugate variable&®/5X. L is the Poisson operator. two levels; a kinetic level and an averaged level. On the
The first term on the right-hand side of Ed) accounts for  kinetic level (to be denoted by-level), the interface is de-
the reversible kinematics, whereas the second represents theribed by an area density distribution functidn,n,t), nis
irreversible kinematics or dissipation. Since the temperaturéhe outward unit vector normal to the interface argtands
is constant in this analysis, E@L) is in fact a particular case for time (f can also be seen as a distribution function for the
of a more general and rich structure introducedRef. 39. orientation of the vecton). On the mesoscopic levfio be

A bracket can be defined from the bivector operdtas  denoted by Q,q)-level], other averaged variables can be
{A,B}=(5AI 5X,L(5B/5X)), where(,) is the inner product defined as moments of the kinetic functiéf: the zeroth
and A and B are smooth real valued functionalsXofThis  moment, a scalar
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The first bracket in Eq(5) has the following classical
szdznf(r,n,t), 2 form:®
denoting the interfacial area density, and the traceless second . s 5B SA SA 5B
moment, a second order tensor {AB}® m):f d°rp (5u )%((3—[}) —(&J )%(5—[))
0= [ @ntn-201(r.n,0), € L[ B (oA (oA (B
1\ ou,) *\ éu, ou,) “\éu,) ]|’

denoting, interfacial orientation tensor densityis the unit @)
second order tensonn is the dyadic tensor, and’n is the

differential solid angle. A combination of Eq&2) and(3)  where A and B are arbitrary regular real valued functionals.
gives The dissipation potential, on the other hand, can be writ-
o ten as

nn=f d2nf(n,r,t)nn=q+ 3Ql. (4)

. . . q,(cfm): d3rl 9
The two state variable® andq constitute the basis state B su,
variables for the mesoscopic averaged approach introduced

by Doi and Ohtd, and adopted later by many groups?® It ey @) +f N ( oo )E

has been derived originafiyfor describing the dynamics of “\ dug Bl su,) 2
incompressible immiscible fluids at thH€), q)-level. Here, 5 5O

we first provide, for compressible fluids, a “kinetic” descrip- X| ng—=7n ,;ﬁ<_), (8)
tion on thef-level and derive from it a description on t(®, 3 ou,

g)-level. This extension to compressible fluids becomes in-

eluctable when diffusion is involved in dynamical processeé"’_he_re 7 ar!d 7d 'gre, respectively, the effective shear and
since mass transport is in most cases accompanied by vdfilational viscosities of the blend. In Eqez) and (8), we

ume changes due to swelling or shrinkage of the system ur12ve used the following notations, =ad/dr,, a<{1,2,3
dergoing diffusion. and 6A/ éu to represent the Volterra functional derivative of

. . 41 . .
Summing up: in this multistage formulation, the fluid is A With respect tau (idem forp, etc).™ For repeated indices,

described either by the state variablesu, and f on the (he summation convention is understood.
kinetic f-level or alternatively by, u, Q, andq on the aver- I”(mtseﬁfée) 1A, we shall derive ttzﬁterlfzg;)sson bracket
aged(Q, g)-level. In the following, we shall derive the re- {A.B} » the dissipation potential for the in-
versible and irreversible kinematics embodied respectivelj€"face and the governing equations onftevel of descrip-
by the Poisson bracket and by the dissipative potential an#on Thlsf—leyel of deS_crlptlon vy|ll be used, in Sec. llIB as
provide the governing equations on both levels of descrip@ Starting point to derive a family of models on t@, q)-
tion. level

The reversible kinematics is expressed through the Pois-
son bracket. For notation convenience, we write the Poisson
bracket as a sum of two contributions: the first results froma, Kinetic level of description:  f-level
the fields of classical fluid mechanit® be abbreviated here
by cfm): p(r) andu(r), and the second arises from the inter-
face fields:f or Q(r) andq(r), 1. Poisson bracket

{A,B}={A,B}c™ 4 [A Bl(Interface, (5) The complex fluid on thd-level of description is char-

. ] . o _ . acterized by the set of the independent state variables,
The irreversible kinematics is generated by dissipation

which stems from two contributions. The first is due to the  xX=(p,u,f). (9)
effective shear and bulk viscosities of the whole fluid as a

response to the velocity gradient of the applied external flowThe reversible part of the time evolution equation for the
v=u/p. The second arises from the relaxation of the inter-interface variablé can be written under the following form:
face due to its surface tension which reduces the size of the

interfacial area and tends to render the shape isotropic. The Jf J a
dissipation potential can therefore be written as a sum of two ¢ o _gT(ra f)- aT(naf )+RE. (10
parts reversible a a

P = p(cfm) 4 p (Interface (6) n is the outward unit vector normal to the interface and

refers to its time derivative whose expression is givefi*by
We shall first determine the reversib{é,B}(“™ and

irreversiblew ™ kinematics of the contribution of the clas- = —kg,nz+ Kk g,NgN. N, , (12)
sical fluid mechanics variablgsandu. The task of deriving

the same quantities on the two levels of description for thevhere «,z=dv ,/dr g is the macroscopic velocity gradient.
interface is postponed to the next two subsections. The third term on the right-hand side of E40) is attributed
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to the changes of the surface by the flow, with a certain rate,  gf of J
R, having the following forn?* — = Vot aT(anKBa)
reversible @ a
d
R=Kya— KgaNgN,. (12 - R(nﬁnynafxﬁy)—xﬁanﬁnaf. (13

Using Eq.(13), we construct the Poisson bracket for the
Inserting expressionéll) and (12) into Eq. (10), we obtain interface variablef, as follows:

a5

+f d3rf d?n ngn,n,f(r,n,t)

oA\ [ 6B
Ia Sf éu, “a
aJ (dA 6B d (6B oA
| n, 13 )%l Bu,) ~ an, | 57 )%l Bu,

d (6B oA fd?’ fdz .
_E 5 a, Wﬁ — r n n.ngf(r,n,t)

{A,B}!neriace= f d’r f d’nf(r,n,t)

—J d3rf d?n ngf(r,n,t)
g [SA\ [ B
an, | 5f |7 3u,

5l e el ]

(14

While the first term in each integral, contributes to the Therefore the contribution of the relaxation to the gov-
advection of the distribution functiohby the flow, its sym-  erning equation for the state variallés
metric counterpart contributes to the total stress tensor aris-

ing in the momentum governing equaticfiorce balance of Sv
relaxation 5( 6P/ ot )
2. Dissipation potential 5P
The dissipation potential for the interface is chosen to be == A(f(r,n)=f*(r,n)) E) : (16)

a quadratic functional of the conjugate variabid/ 5f, of f,
Sb\ 2 Note that the quantity)¢(5®/5f), has a dimension of in-
(f(n,r)—f*(n,r))(E) , verse of time.

\I,(Interface:f d3rf d2n<%
(15)

where\ is a positive phenomenological parameter related to

the rate of relaxation of, and f* refers to a final state

reached after cessation of the applied flowFltdesignates 3 rree energy

the deformation gradient tensor afglis a referencede.g.,

initial) distribution function, then following Ref. 4, We first limit ourselves to a partial specification for the
(detF)? fr_ee energy. The total free energy .density always involves a

:fow_ kinetic and internal energy terms, i.e.,

We have singled out the form for this potential to express  _
that dissipation arises mainly from a simple relaxation of the %~
interface area density function. The relaxation may arise

from collisions and interaction phenomena that lead to coaghere denotes the Helmholtz free energy density, i®.,
lescence and break up processes. In case of coalescence, they3;3 and ¢ stands for the internal free energy density
parameter\; can be related to the frequency of collisions that is independent of the linear momentum pv.

between the drops and the probability of their coalescéhce.

A more general description may arise by defining a dissipa-

tion potential similar to a Boltzmann-type collision expres-

sion. Here, we limit the investigation to the simplest expres-

sion similar to the collision factor proposed by 4 Governing equations

Bhatnagar—Gross—KrodR. We will show that with this

simple choice for the dissipation potential, we are capable of  Substituting into Eq(1) the contributions of the revers-
developing a more general formulation on @, q)-level ible kinematics embodied by Eq&) and(14), the irrevers-
(mesoscopic level from which some previously derived ible kinematics given by Ed8) or (15) and the partial speci-
models are recovered as particular cdsgsrovided that ap-  fication for the free energyl7), we arrive at the governing
propriate expressions for the interfacial free energy are use@équations for the seX=(p,u,f),

f*(n,r)

u2

2p

+o(p,f), (17)
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ap involving the conjugate variable df and thus the internal
gt da(pv4), (18)  free energy densityp. The latter can be specified depending

on the physical insight we have of the problem under inves-
du, tigation. One of the simplest choices is
T: _ﬁﬁ(uavﬁ)_aap_[yﬁaﬁai (19)
; ) elp.)=T [ an(nn), 29
E:_v“aaﬂE(nﬂf"ﬁa)_ﬁa(nﬁnynamm) where the parametel, refers to the interfacial tension.

5 Therefore, the irreversible part of ER0) becomes
—naanKaB—xf(f—f*)(g—f). (20) p
— =— NI (F—1%), (26)
relaxation

The first equation(18), is the well-known continuity
equation (mass conservation The second equatior(19), and the expression for the stress tensor simplifies to
represents the momentum conservation equation. This equa-

tion involves the quantities: the hydrodynamic pressure gg'gerfacezrf dznf(n,r,t)[nanﬁ— S8.pl, (27
given by
with a deviatoric party = g{!"eracel_ 1 y( glinterface) | =g,
_ de 2 op corresponding exactly to the expression derived in previous
p——<P+P£+f d nf(n,r)(ﬁ) (22) investigations:®
and the stress tensor B. Mesoscopic approach:  (Q, g)-level

Here, we investigate the same proble(rheology—

__(cfm) (Interface
Tap=0ap T Tap ' (22 morphology coupling on the mesoscopic averagéq@, q)-
where the first term on the right-hand side has the following€Ve! by using as a starting point the setting that we have
classical fornf already provided on thelevel (previous subsectionWhile
the necessary derivation on thevel ensures a more physi-
ggfgf‘): — ﬂ'vag—(ﬂd—éﬁ)Kyﬁa/s- (23 cal understanding regarding the interface and its dynamics,

. _ the details provided may be overwhelming and sometimes
The parameters; and 74 have been defined earlier as the ot easily handled. This issue is removed on(fReq)-level,
effective shear and dilational viscosities respectively and thgyhere the predictions and consequences of the model be-
symbol 6,4 stands for the Kronecker delta. We recall thatcome directly comparable to experimental data. We then de-
Kap=00q 0T g and y,pz= Kot Kp, T€Present, respectively, rive a family of compatible models on tH&, q)-level by
the gradient of the overall velocity and the symmetrico|iowing the same GENERIC procedure.
deformation-rate tensét.The contribution of the interface to 1. Poisson bracket
the eXtTa s'gress tensqr, given by the second term on the right- The complex fluid is now characterized by the set of the
hand side in Eq(22), is expressed as . ,

independent state variables,

O_S;lgterface:f dznf(n,r) HB%(? _nanﬂny%<%> X—(P,U,QrQ)- (28)
@ Y To arrive at the Poisson bracket on tf@, q)-level, we
5S¢ S¢ start from the Poisson bracket, E@L4), derived on the
+n,Ng E) - 5a/3(§) : (24)  f-level of description, and use the following chain rule:
The last equation(20) represents the time evolution ki- i = ninj( ( 8ia0ip— 1 8ij 5,1;;)—6 + 5”—5> . (29
netic equation for the distribution functidnThe dissipation of 3 50 oQ

process is chosen, here, to be of a relaxation type but ya&y substituting Eq(29) into Eq. (14), we obtain

AB Interface_de oA 6B oA oB ( oA P oB +anQOv( oA P oB
{ ’ } - rqaﬁay 5an 5u‘y qay 5an aﬁ 5uy Qﬁy 5qaﬁ a 5U7 Q 5qaﬁ v 5U9

Q[ oA 6B 6B 1 2Q 5 oA 6B 2 5 oA 6B

3\ 3q,,/ | %8l su,) "%l Bu,) | T3\ Qe 3 %8|\ 5, o B ) 3 0t g % B,
Q(5 SA 5B S5A 5B A 20

Yapt 3 Oup 39 » S, +Qod, 5Q ou, <BJ. (30
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The notation, A~ B (used in this bracket will be used for the functionf. The first, Eq.(33), denotes the rate of relaxation
sake of simplicity in the rest of this papestands for the of the shape of the interface and the second,(B4), refers
same quantities but with A and B interchanged. To arrive ato the rate of relaxation of the siZzeoalescende The last

this final form in Eq.(30), we have also used the fact that one, Eq.(35), refers to a coupling tensorial coefficient which
nn=[d?n f(n,r,t)nn=qg+ Ql. Moreover, a fourth order relates the relaxation processes of the size and the shape
momentnnnn arises while transforming the bracket from the (break-up. These parameters, in addition to be positive semi
f-level to the Q,q)-level, forcing us to use the quadratic definite, possess the following symmetry propertie$s;
closure approximation put forward in Ref. 4 and proved to be=\{ ,5=N04i =A%y for the first and\33=\99 for the

physically admissiblé® third.
1 The irreversible parts of the time evolution equations for
NiNjNaN = ] Tn, NaNg Q andq are given as
1 1 0 dQ oV
QijUap - vy s-wry——y
- Q + 3 SijGapt 3 Saplij + 9 SijSap- (3D relaxation 8(80/5Q)

A slightly different Poisson bracket has been derived in _ _)\Q(@) _ gQ(@) (36)
Refs. 6 and 7 for incompressible fluids by noting that the 6Q U\ eq; )’
tensorQ(q+1Q/3) transforms covariantly under the flow.

Our formulation has the advantage of starting from a kinetic % _ ov

level of description and of providing an extension to com- I | axation o(oP/5q;;)

pressible fluids. The Poisson brackets given in Refs. 6 and 7

are recovered as particular cases of B3§) if incompress- N 1o @) N ( oo ) 37)
ibility is assumed ¥ -v=0). 11 8Q 1B\ 50,

We should emphasize that all the results that will be ) ) )
obtained in this paper are intimately dependent on the chosen 1€ first term on the right-hand side of H§6) accounts
closure approximatiof31). A more general Poisson bracket 07 coalescence and the second represents break-up pro-
is given in the Appendix, where the fourth-order moment has€Sses. The rt_alaxatlon Of the shape is expressed by the two
been kept in its original form. In that case any otlore f[erms on t_he nght_-hand side of E@‘7_)' The physical mean-
accurati closuré*3 can be used to close the set of governing!"9 @ssociated with these terms will become clearer when
equations. Thus the outcome, or more precisely the reverdiscussing the Doi-Ohta and Lee—Park special cases.
ible part, will be of a different structure.

2. Dissipation potential 3. Free energy

. . _ 3 ~
The dissipation potential is constructed in the same man- _ 1he free energy density defined dy=[d"r¢, can be
ner as the Poisson bracket. We insert the chain(@@ginto ~ Written as

the dissipation potentiall5) suggested on th&élevel. The 2

result is straightforward and is given by = 5ot o(p,Q,q). (39
p
(Interface 3 oo )\gﬁij % . . . - . .
v =| d’r W 2 |5q The quantitye is still left unspecified at this point, but
Y ap we shall suggest, in the next subsection, some expressions
SD\ A\Q( 5D ob - ob accounting for the contribution of the interface.
150/ 2 \5q) T\ aq, /M 5q) |
(32)
S ) 4. Governing equations
where the parameters arising in E§2) have the following
explicit form: The governing equations on th@(q)-level are
A= | d2n(f(n,r)—f*(n,r))\nn;nn P
agpij = . , fLNiNjN.Ng Ez—aa(pua), (39
—5848NINj = 56,{N N+ 56 8,451, (33 au
2 Wz_aﬁ(uavﬁ)_aap_aﬁaﬂow (40)
)\Q=f d?n(f(n,r)—f*(n,r))\¢, (34)
Q 5.0
xﬁj‘?:f d2n(f(n,r)—f*(nr)nInin— 38,1, (39 gt Valad T layfyaT Fkaa
Note that these parameters are functions of one param- _)\Q<a_(’o) _)\qQ< Ie (41)
eter,\¢, related to the rate of relaxation of the distribution dQ p dUap
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I ap U s g0 under consideration. As an illustration, we shall discuss two
o “V099%ap™ UayKyp— UgyKyat Q Koy well-known specific cases, namely the Doi—Chtand
Lee—ParR formulations.

- §7a,8+§

2Q
Ouop ™ 3 Sup| Koo
5. Special cases

2 do 140 0 i
+ §5JBQGUKBU_)\2(§(E> _)\ﬂ“‘g(ﬁ)' (42) If Xy=A\{ is assumed to be a constant independemt, of

then Eqgs(33)—(35) become
Here, the momentum balance equati@t), will depend q of . N
on the constitutive equations which are expressed now in  Magij =M | dN(F=FF)INiningng— 5 apnin;
terms of the state variable§ and g. The hydrodynamic

pressurep is given by - %5ijnanﬁ+ %5” Oap]
* %
do dp dp O(Qijqaﬁ qijqaﬁ>
- T i o =\ ———— , 45
p (P+po7p+Q[7Q+an&qaﬁs (43) f Q Q* ( )
and the contribution of the interface to the extra stress tensor, Q_)0 20(F — 00—
o = o(cfm) | (Interface) d A )\ff d*n(f—f*)=r{(Q—-Q"), (46)
ap=0ag +Tpp reads as
()_(Interface):2q ( 2% +q ((7_(P> N E( de ) Aﬂ%:)\?f d2n(f—f*)[nanﬁ— %6aﬁ]=7\?(qaﬁ—%g),
ap Naq,s  *P\aQ) " 3 \das (47)
Quplyw [ I¢ 2 de where expression&®)—(4) and (31) have been used. Notice
o Q 99, - §5aﬁ Q @ that Eq.(45) involves a fourth moment and if the quadratic

closure(31) is not used, Eq(45) will result in a different
5_90 expression. The quantitig€3* andqg* denote the values for
aq;j ) the size and shape of the interface given, respectively, by

(44)

20, )|~ 25 Las
20,0 90,5 | 39 Yapt 3 Qg

detF)?

Q*= f dznfoﬁ
The hydrodynamics partg‘®™, remains unchanged '
with respect to its expression given by Eg3). While, the  and
first four terms in Eq.44) are similar to those derived in
Refs. 6 and 10, the last four terms are new. The fifth term, qu:J d?
2Q(d¢ldQ), is the well known Laplace contribution
(0l 3Q=T" is the interfacial tension which is now ex- ) _ ) "
tended by a nonequilibrium contributiordg, o(d¢/ 90, ), a. Dol—_Ohta model: To recover the DO'_OTi model,
stemming from the anisotropy of the interface. Note that, ifve putQ _,O (complete phase sepa.rat)oandq =0and
the blend consists of a matrixnajor phasgand a dispersed choose the internal free energy density as
phgse(mirlmr) C(;mp(_)sed of spherical droplelts V\{ith radis o(p,Q,q)=TQ, (48)
Zr:o :?2\19/?2;“; (Vrve:]c;tlrzrg,:%n(be/ée;%:ri OLZE:;:S fs(i?gs;lon, wherel is the interfacial tension. Therefore, Eq86) and
We emphasize that expressio@ds) and (44) arise naturally (37) simplify as

(detF)2< 1 )

nfom nanﬁ— §5aﬁ

in the governing equations from the Poisson bracket and no dQ dep
- - - 0 =\ = |=-A'r 49
ad hoc assumptions are required. Using the transformation o Q) N Q, (49)
Eg. (29), one can verify that these expressions are consistent relaxation
with their kinetic counterparts given by E@®1) and (24). I ap NS A TN
Equations(41) and(42) are the governing equations for relaxation_ —Nap @ =Nl 0qp- (50)

the interface on the mesoscop@,g)-level. The fact that we
have started the derivation from a kinetic level of description!f the system does not possess a length scale, dimensional
allows us to derive a more general formulation on the averanalysis yield$

aged level. Indeed, we recover as particular cases most of the Q

earlier derivationd="1°Their reversible part is recovered by )\?zrl(—), (51)
putting V-v=0 (incompressibility constraint In addition, K

the irreversible terms in our approach also derived rigorouslyherer ; is a positive parameter. This choice leads to a com-
from a kinetic level, show new interesting consequences. Thplete phase separation, sinQ¢ =0. We notice that on the
relaxation is not only produced by direct processes but als¢Q,q)-level, contrary to the original Doi—Ohta model, only
by cross coupling terms. By choosing adequately the expre®ne positive parameter; is involved. This is in agreement
sion of the internal free energy, many relaxation processewith the comparison with other simulation data carried out in
become thus available depending on the physical problerRef. 9. It is also interesting to note that from E§O), the
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relaxation of the shape is produced uniquely by the relaxexpected in more complex situations, then the formulation
ation of the size through the coupling tensorial parametermrovided by Eqs(33)—(44) is well suited and offers a more
\9Q. This assumes that the relaxation of the shape, occurringeneral description.

very slowly (\9=0), is indirectly but completely controlled

by the relaxation of the size.

t Fu;thermok;e, the contribution of the interface to thelv_ RHEOLOGY, MORPHOLOGY, AND DIFFUSION
Siress tensor becomes IN MIXTURES OF AN IMMISCIBLE BLEND (A/B) AND A
U(C:?sterfacezrqaﬁ_ %%;JQ- (52) SIMPLE FLUID s: A TWO-LEVEL DESCRIPTION

The second term on the right-hand side is Laplace’s contrit™ Problem statement

bution to the stress tensor. This term is missing in the deri- In Sec. Ill, we have discussed the coupling occurring
vation of Doi and Ohta. between the flow dynamics and the deformation of the inter-
b. Lee and Park model: Here, we also puQ*=0  face in an immiscible blend=(A/B) that does not contain
(complete phase separatjeendg* =0 (isotropy and write  other substances such as solvents. In this section, we extend
the internal free energy under a form including the anisothis investigation, by adding a simple fluiglto the immis-
tropic changes of the interface, cible blendb (see Fig. 3 That is, we address the dynamic
_ 1. behavior of mixtures{b+s} consisting of an immiscible
¢(p.Q.A)=1'Q+zaq:q. 53 blendb (e.g., polymeric blendand one simple fluids (e.g.,
The second term on the right-hand side has been sugdestesl solvent miscible with the blend components A and B. As
to account for nonequilibrium contributions of the variagle  discussed earlier, the fluids A and B are assumed to retain
a is a parameter accounting for the anisotropy of the intertheir immiscibility (no interpenetration between A and B

face. Therefore, Eq$36) and (37) reduce to the presence of the simple fluid. The bldmi regarded as a
JQ pseudo-one-component fluid in which an interface is
— = - M(T'Q+ aU,pU.p), (54  embeddeti*° (see Sec. Il The only diffusion process that

relaxation occurs in this multiphase mixture is the one resulting from
g i O the transport of thg simple fluid in both phases A and B. The
ot = —)\?(an5+ =5 ij | - (550  molecules of the simple fluid are assumed to have equal ve-
relaxation locities in A and B. This reduces the number of independent

We recover rigorously the ad hoc equations put forward irState variables and thus the number of the governing equa-
Ref. 5, provided the free energy has the form of Esp).  tions. The whole mixturefb+s} can be considered as con-
Their physical intuitive choice for the relaxation processes Sisting of two ﬂUid.SB-G i.e., the pseudo-one-component im-
is justified by the possible occurrence of coalescefioe ~ Miscible blendb with an apparent mass density, and a
first term on the right-hand side of E(:4)] and break-up of ~Momentum density,= p,v, and the simple fluids with an
the dropletdsecond term on the right-hand side of Egd)]  apparent mass densitys and a momentum densitys
under the flow conditions. Via our formulation, a more =PsVs- Since, the fluids and the blendp are miscible they
physical understanding for the relaxation processes is avaif@n be regarded as two interpenetrating métiias dis-
able. The relaxation of the size is described directly as welfussed earlier, we choose to describe the interface by its area
as indirectly through the first and second terms on the rightdensity distribution functiorf(r,n,t) or by its moments: the
hand side of Eq(36), respectively. The same is true for the ScalarQ(r,t) and the second-order tensgfr,t).
relaxation of the shape. Moreover, we can now more easily ~For rheological studies, it is preferable to use global and
distinguish between the direct and indirect procespes- relative vanab_les of the whole m|xture..ConsequentIy, we
duced by the couplingthat are involved in the relaxation. ~ use the following one-to-one transformatitir) >t

The interfacial contribution to the stress tensor becomes

4. 5 P=Pst Pp,

U(a!?%terfacezrqaﬁ+ a ZQayq'y,B_ yzg = qaﬁ_ §Qqa,8

u=ug+u,,
2 (56)
- §5aB(FQ+2a’q'yvqu)- Ps

c= ,

In this nonequilibrium description, the Laplace term is modi- PsT Py

fied by the contribution of the anisotrop&aquqw. Only

the first term on the right-hand side of the above expression  ;_ Pb U Ps u

is present in the Lee and Park model. pstpp ° pstpp b

We point out that the relaxation processes on the
(Q,q)-level, which consider the relaxation of the size, shapevherep(r) is the total mass density(r) is the total momen-
and also their coupling, are obtained from a kinetic formula-tum vector,c(r) is the mass fraction of the simple fluid
tion suggested in this work. We have reproduced these twooncentration, and(r) is its relative momentum density vec-
models by assuming that=\? is constant and by applying tor. The latter coincides exactly with the mass flux density
the quadratic closuré31). If this is not the case, as may be relative to the local mass-average velocityThe whole
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mixture is now characterized by the set of the state variables!. Poisson bracket
The Poisson bracket for the whole mixture is now given

X=(p,u,c,J,f) (57) by
if fis used to describe the complex interface, or alternatively — {a B}={A B}(¢™ +{A B}(diffusion | fa gy(interfaco
by (59
X=(p,u,c,J,Q,q) (59) The first term remains unchanged with respect_to(En.
The bracket expressing the contribution of diffusion to the
if Q andq are used instead. reversible dynamics is given as*in

(diffusion) — 3 (&A)<0’)B) (5A)(5B) <5A>(5B> ( 5A)(5B)
g K R | RN o [P R | Pt RN (o P
(5A)(5B (15A) 6B (u 5A)5B
+(1-c)(cu,+3,)d, 531\ 53 +pc(l-c)d, b 5c) 53, —pc(1l-c)d, p 53,/53, —A—B].
(60)

We shall derive the last bracket in EG9) accounting  the volume fraction of phase A in the blebe=A/B, and y;
for the interface on two levels of descriptighand Q,dq)  refers to the material density of the componieti=A or B).

levels| in Secs. IVB and IV C. The specification of the dissipation potentid{erface)
accounting for the interface contribution is provided in
2. Dissipation potential Secs. IVB and IV C.

In addition to the dissipation phenomena stemming from
the relaxation of the interfac@ttributed mainly to its inter-
facial tensiof, and from the viscosity of the fluidéas a 3. Free energy

response to the velocity gradient of the external jlotvere Using the one-on-one transformatié6), and assuming
is also a contribution due to diffusion. Therefore, the dissi- '

. . , that the kinetic energy for the mixture can be written as a
pation potential can be written as sum of the kinetic energy expressions for the blend and for
P =P (cfm) s (Interface 4y (diffusion) (61)  the simple fluid, (02/2ps) + (UZ/2pp)), we arrive at the fol-
lowing expressiort

o u? J?
[0t Zmra) e 9

The first term on the right-hand side is similar to E8), and
the second term is given B!

o [ g 28] 22001 20
53 2 6J

where T is the transpose operator. The phenomenologicalvhere the first term on the right-hand side represents the
parameter] ; is the inverse of the relaxation time. In view of global kinetic energy and the second term stands for the rela-
the properties of the dissipation potenti#f, A; must be a tive kinetic energy. The quantity, still left unspecified, de-
positive parameter. In the vicinity of equilibrium, we can notes the internal free energy density that is independeunt of
express this coefficient as a function of the Bearman microandJ. That is,¢=¢(p,c,f) or ¢=¢(p,c,Q,q) if Eq. (57)

(62

scopic friction coefficient? £2,, i.e., or Eq.(58) are used, respectively, as the sets for the indepen-
dent variables. This functional can be written as a sum of two
PNA tributions: a Flory—Huggifi$ ion for mixing and
A= &5, contributions: a Flory—Huggins expression for mixing an
MMy an additional term describing the interface contribution,
whereN, is Avogadro’s number anhil; denotes the molecu-
lar weight of component. As we focus on interfaces with o=@MXNY(c) + pNterfacq 5 ¢ Q,q), (64)

infinite friction coefficient between the two phases A and B
(éxg— ), we express the solvent/blend friction coefficient if Eq. (58) is used as the set of state variables.

as So far, we have patrtially specified the Poisson brackets
1 diya (1= %) ys and the dissipation potentials for classical fluid mechanics
* * - . . . .
g_*: & + ¢ ) / (yada+ ve(l=n)), (cfm) and diffusion. What remains to be done is to determine
sb sA sB

the same quantities for the interface on bothftaad @Q,q)
as a function of the friction coefficientg;, and &5 of the  levels of description and derive the corresponding equations
systemss/A and s/B, respectively.¢x=Va/(Va+Vg) is  governing the time evolution for the whole mixtufe+ b}.
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B. Model on the f-level of description 1. Poisson bracket

Here we determine the remaining quantities:  Now, in addition to the changes brought about by the
{A B} Interface) wp(Interface) ang the corresponding governing external flow, the Poisson bracket for the interface contains
equations on thélevel. the contribution of the mass transfer. We express it as

A58l -2l el )
o 51 e 235~ a7 255
sl a1 )~ o o35 )

(3ol (el o3 ) S

{A,B}(Interface):{A,B}(l.l4)_f darf dznf(r,n,t) J

+fd3rfd2n<n,3f(r,n,t)
o
e

dzn(nﬁn n,f(r nt)

+ | d°r dzn(n ngf(r,n,t)

where the first bracket on the right-hand side in E&p) is N 3.
the Poisson bracket given by Ed.4). e —&y(JaUy)—JyKay—(1—0)53(m
a‘]ﬂ ) ¢
+9 (— pc(l—-c)d, ( )
2. Dissipation potential Plpe(1-c) p dc
We assume, as previously that dissipation is generated 2
. i ) . SN +c | d°nf(n,r,t)a,
by a simple relaxation. In this way, we ignore any intrinsic af
diffusion process between the phases A and B of the immis- (Interface _
cible blendb=A/B. Therefore, TCIyTay Asda (70
(Interface 3 2 Af(c) Jf = J f J f d
4 = | d¥ | d?n| ——|(f(n,r,t) = fedC)) T\ Ve =g %t T gn (Nef(Kpa™dga))
oD\ 2
X ?) (66) - E(nﬁnyna( Kpy~dpy)T)
where A, concentration dependent, is a positive parameter
related to the relaxation rate of the interfatg, is the area ~NaNgp(Kap—dap)f = Ag(C)(f ecﬁc))
distribution function density at equilibrium. The presence of
the simple fluid in the blend may determine the amount of (7D

the interfacial area, which leads to an equilibrium value.  \We now deal with five nonlinear coupled time evolution
Contrary to the diffusion-free problem, the system may nowequations describing the flow dynamics of the mixture
have a characteristic length scale and thus an intrinsic timgh+ s}, the diffusion process of the simple fluid, and the
scale. deformation of the interface produced by the applied flow
and diffusion. While the hydrodynamic pressuyrehas the
same expression as in E(R1), the stress tensoir, now

3. Governing equations becomes
Using Egs.(63), (65), and(66), we arrive at the govern- o= ¢!+ glinterface 1. g(diffusion) (72

ing equations for the state variablgs §,c.J,f), The first term,o{“™ is given by Eq.(23). The second
ap term, o{"e®) is given by Eq.(24) except that the free
ot da(pv4), (67) energy density must now consider the effects of mass trans-

port of the simple fluid into the blend A/B. This will gener-

U, 68 ally lead to a different expression attributed to the depen-
gt ~9p(UaVp) = 9P~ Ip0pa 68 gence of the state equations of the mofeb., interfacial
tension on the penetrant mass fraction. The last term repre-
p = v dc—d.,, 69) sentln.g the dlr.ect effect of diffusion on the dynamics has the
at following form:
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(difiusion 9P 3 from the reversible kinematidse., Poisson bracketvithout
o =J 93]~ pe(i=o) (73 any ad hoc assumption. The emergence of this gradient indi-

. . o _ cates clearly the direct and explicit influence of mass trans-
The third equation refers to the continuity equation forport on the interface dynamics.

the simple fluid, and the fourth represents the time evolution
equation for the diffusion mass flux. In addition to the effect
of the flow on diffusion through the velocity gradient, s
=dv,1dr 5, the diffusion mass flux equation explicitly con-
tains the chemical potential of the simple fluid also repre-  As discussed in Sec. lll, we have shown the usefulness
senting the osmotic pressure of the blehek A/B (the fifth  of deriving the governing equations on th@®,q)-level for
and sixth terms on the right-hand sjd&lote also that the investigating the relationship between flow and morphology
diffusion is explicitly influenced by the interfacial stresseschanges. Here we intend to similarly examine the relation-
(seventh termcreated by the deformation of the interface. ship among the flow, the morphology deformation and diffu-
The last equatioi71) provides the time evolution of the sion on the mesoscopic level. What remains is to determine
changes that occur at the interface. Both flow and diffusiorare the interfacial quantitiegA,B}(nerace) yp(interface) gng
directly affect the distribution function densifyIn addition  the corresponding governing equations on tQed)-level.
to the gradient of the applied velocity,z=dv,/drg, a
new gradient,

C. (Q,q)-level of description

1. Poisson bracket

dw:%(%), (74) The Poisson bracket on this level can be obtained either
B\P from the Poisson bracket derived on tHevel and using the
involving the diffusion mass flux enters E(/1). We point  chain rule (29) or via the Poisson brackd80) using the

out that this term arises in the governing equation naturallyone-to-one transformatiofb6). The result is given as

’ ’ BN 80, 83, N Sa,p) P\ 783, TP 80,5 T D,

0apY60 oA )(9 ( 55) 1( N 2Q5 oA 6B 25 SA 6B

Q | 3q.,/7\%53,) "3\ Ges 3 %8| 5q. 9g ©53,) 3 %%\ 5q %\ ¢33,
+Q oA oB N 6B 6A 6B N Q5 JA 6B AGB
§ —5qaﬁ (9!3 CE dy CEB y C%E qaﬁ+§ B % dy CE —Bl,

(75

where the first bracket on the right-hand side is given byQ* by Qeq€), andg* by geqc). Diffusion introduces a

Eg. (30. characteristic length scale identified here bd{ which
gives a characteristic time scale for the system as

2. Dissipation potential

On the other hand, the calculated dissipation potential r=(Ay)*= 7T Qeg. 77
has the same form as in E(B2), except that the kinetic
phenomenological parameters have now different meaningg Governing equations
due to their intimate dependence on the paramé&teintro-

duced on thd-level. Therefore, Using Egs.(63), (76), and(77), and following the same
q procedure as before, we obtain the following governing
\I,(Imerface:f dgr[(ﬁ) Aaﬁij(c)( 5P ) equations for the set of state variablgs\,c,J,Q,q):
6q;j 2 60,4p
ap

folo)] 8D - _

- qQ P o aa(pva)! (78)
¥ 6qij)A” (C)( 5Q> "

5D\ A%(c) [ 5D 26 U,
+ % 5 % . ( ) 7——ﬁﬁ(uav5)—6’ap—ﬁg05a. (79)

The phenomenological parametex8, A, andA%? satisfy-
ing the symmetry and positive semidefiniteness properties Jc

are expressed by Eq@3)—(35) but with ¢ replaced byA 1, Pot = PVl Oadas (80
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8, Jadg 4. Asymptotic solutions
at I a0 ) = dykay= (1 C)aB(PC(l—C)) In this section, we look for some particular cases where
33 1 ¢ some state variables become dependent. In this reduction, we
+aﬁ(“—ﬁ) —pc(l—c)aa(——) show that the model provided on th&,q)-level encom-
p(1-c) p dc passes the well-known Fickian diffusion and also new ex-
ag dg ntertace tended formulations where the changes of both the size and
+cQaa<£) +Cqﬁyaa<W +Cyoyy shape of the interface contribute to the mass flux.
By When the relaxation characteristic time scalg;X !, is
—Ajd,, (81)  smaller than the diffusion characteristic time scdl@quili-
brates faster and we can assume thatdt~0. Moreover,
J we assume that the quadratic terms appearing in the mass
Q N .
= _(Ua_ __) 9aQ— Uuy(Kye—d,0) flux governing Eqg.(81) are small enough to be relevant to
at p(1-c) the process of diffusion.
Q 9 In the following, we shall discuss two particular cases:
- g(Kaa—daa)—AQ(C)(E) —Af'lg(c) the first corresponding to a weak coupling between the flow
and diffusion and the second to a general case where such a
de coupling may become strong. In the latter case, we will dem-
(3qa5)' (82) onstrate that the transport coefficients are directly modified
by the applied flow.
a9, J
&tIB = ( Uy™ p(lic)) Iy 9ap = Qay( Ky~ dyp)
5. Weak coupling with the flow  k,g<A;
— gy Kya— ) + q“ﬁq”(,{ay_day) Here, in addition to the above assumptions, we ignore
Q the effect of the gradient of the applied flow,g
Q 20Q =dv,/dr g assumed to be small compared with the friction

Uap™ 3 5a,3) coefficientA ;. Thereby, the governing E¢81) for the dif-

. 1
3 (Yap™ (daptdpa)) 3
fusion mass fluxJ reduces to the following expression:

2
X7y Ay + 3 a0y~ 00y) — A 5(O) Asda= —pc(l—c)ﬁa(E [;_(p) +0Qaa<j_g
c
e e
TPV A9 (o) 22 J
x aQ) A“B”(C)(aqij)' ®3 +Cqﬁ‘yé’a(Wi7’ +Ca gz (85)

On this mesoscopic level, six coupled governing equaReformuIating this equation, we arrive at the diffusion mass
tions are necessary to describe the flow behavior, the diffulux,
sion of the simple fluid as well as the deformation of the size _ (Interface
) e ) J,=—pDd,c—pHI,Q—pGys,d,05,+ RIz0, ,
and shape of the interface. Here, the constitutive equations P PHIQ=PGpydalpy T RIp0ap (86)
are now expressed in terms of teand q variables. Here _ ntert o
the hydrodynamic pressueis as in Eq.(43) and the stress Where the interface stress tensof"*™) is given by Eq.

tensor,o, is given by (44). The transport coefficien®, K, G, andE arising in Eq.
(86) have the following explicit form:
o= o(cfm)+ O,(Interface)+ 0,(diffusion), (84) c 07,“
-5l %) ®7
whereo{®™ is given by Eq.(23), o{"eface) by Eq.(44), and
oldifiusion) phy Eq (73). _ i(é’_,u) (88)
As already established on tlidevel of description, dif- A\ 0Q)°
fusion is strongly affected by the presence of the interface as
well as by the applied flow. This is shown in the governing G :i( Lad ) (89)
equation of the diffusion mass flux of the simple fluid, where Py A\ ddg,)’
the stresses created by the deformation of the interface con- c
tribute to mass transport. In turn, the gradied, R=—, (90)
=dg(J,/p(1—c)), entering the governing Eq$82) and Ay
(83) for the interface variable® and g demonstrates that \ypere
mass transport causes significant changes in both the size and
shape. Such interrelationships among dynamics, diffusion on Je de Jde
and morphology become more transparent in the next sub- P#7# )_‘P+(1_C)<E) _Q(%) _qaﬁ(@)
section discussing asymptotic solutions. 91
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is the chemical potential per unit mass of the simple flpi, ) R

is a reference value at the pure state. In view of the definition @'Y ~Hu99S= V_( dsIn ps+
suggested for the internal free energy density &4), we s
note that the chemical potential can be written as

(1-¢s)

Xn

In(1— )

+Xsb¢s(1_¢s))y

M:Mmixing_i_Mlnterface: (92)
where whereV is the molar volume of the simple flui® is the gas
9oMXiNg constant,T is the temperature,, is an average chain mono-
p(p— pu0)mxing—= ¢mixing+(1_c)( ) (93 mer number for the blend, anty;=V,/(Vs+V,) is the vol-
dc ume fraction of the simple fluid in the mixtufs+b}. Note

fractionc; by pci=y;¢;, wherep is the mass density of the

whole mixture,y;=m;/V, is the material density of compo-
§¢p'nterfac d¢p'ntertac nenti (m, massyV, volume. The equilibrium state is attained

( PTe) e)‘Qaﬁ( aq e) when the chemical potential of the simple fluid in its pure

“p state equals its value in the blebi.e., u=u’. The latter

(94) equation provides an average value for the equilibrium con-

Substituting these expressions into E@¥)—(89), we obtain  centration of the penetrant in the blend, which is expressed in

terms of the properties of phases A and B, since the mass

P (leerface) that the volume fraction of componeinis related to its mass
Jc

P(M _ MO) Interface_ (plnterface_'_ (1- C)(

-Q

— pmixing Interface
D=D +D ’ (99 fraction of the blend reads as
H=H Interface, (96)
_ > Interface (1 - ¢ )
G=GT ©7) Co=———(yadh + ¥a(1~ 6})).

D refers to a cooperative diffusion coefficient, involving

mixing and interface contributions. The mass transport of the  The combination of Eqg86) and(63) generates a quan-

simple fluid,s may be different in phases A and B. This is tity to be denoted here bgp? that does not involve the
due to the different attractive/repulsive forces arising bekinetic and internal energy terms. Therefore,

tween the simple fluid molecules with the two phases. In our

model, the governing equations as well as the transport co- 32
efficients (e.g., diffusion coefficientare parameterized by q)UJ):f d3r(—)
the free energy density which explicitly involves the Flory— 2pc(1-c)

Huggins interaction parametétsaccounting for such inter- 1

actions(steric, van der Waals,..The interaction parameter =f d3r(m)[pD2|Vc|2+ pH?|VQJ?

of the simple fluid/blend mixture can be expressed as a func-

tion of the interaction parameters of the solvent with each +pGijGVai;Vay + R?|V.0]?2pDHVc.VQ

component A and B, i.exsp= daxsat (1— P1) xss, Where

dx=Val(Va+Vg) is the volume fraction of phase A in the +2pDGijVe.Vaij +2pHG;; VQ.V

blend b=A/B. _Thig_is justified by the fact that here, we —2R(DVc+G;;Vq;;+HVQ).V.0o]. (98
focus on the simplified case where the phases A and B have

equal velocities, and that the molecules of the simple fluid  Equation(98) indicates that fluctuations may occur in
also move with a same velocity in both phases A and B. Thehe concentration as well as in the size and shape of the
mixture, {s+b} is regarded as consisting of two fluids: a interface. The first term on the right-hand side|¥c|?)
pseudo-one-component fluid,and a simple fluids. In this  is well-known from irreversible thermodynamic consider-
case, the mixing part of the free energy can be written apations>* while the other terms are new. Performing the same
proximately as calculations for the diffusion stress€&3), we arrive at

diffusion 1 2n2 2142 2 2 Interface, _Interface, 2
oy :m[p D &QC&BC—Fp H (9an9BQ+p Giij|¢9aqijaﬁqk|+R &iaai &]Uj,B +p DH(aaC&BQ

+35C6Q) + p?D Gin(96CgCim+ IpCd oClim) + P?HGim( Q3 glim+ 90 Q7 glim) — PRD(94Cdgq0 15
+3945€d,0,,) —pRH(3,Qd,0,5+ 35Q0,0,,) — pRG;;(9,0i; 9,05+ d50ijd,0 ,4) . (99

Fluctuations in the concentration and in the size and shape of the interface create additional stresses that may affect the
flow dynamics. Such phenomena have in fact been observed in some sheared polymer $6fdtiams] it would be
interesting to establish whether similar behavior occur in immiscible solutions under an applied flow.
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To summarize, the governing equations are Jc . .
ac pE:_pvaaac_l—aa(pDay(?yC+pHayayQ
P == PV, Ctd,(pD I+ pHI,Q+ pGppd,dgy
at afa>’ Ca “ “ “ + PG gaydylgo— R, 505 2%, (107
- R&B(r';,},.'”’”ac , (100  where the momentum balance is given by Et§), the pres-

sure is given by Eq(43), the stress tensor is given by Eq.
(84), the mass flux is given by Eq102 with Egs. (103—
(106), and the governing equations foR(q) are given, re-
spectively, by Eqs(82) and(83).

where the momentum balance is given by Et9), the pres-
sure is given by Eq(43), the stress tensor is given by Eq.
(84), the mass flux is given by E@86), and the governing
equations for Q,q) are given by Eqs(82) and(83), respec-
tively. V. CONCLUSION

We have addressed, in the framework of GENERIC, a
systematic study on two levels of description on the relation-
6. Coupling with the flow ship (i) between rheology and morphology in a compressible
_ _ _ _ immiscible blend A/B embedding an interface giiglamong
In this section, we keep the influence of the gradient ofyneplogy, morphology, and diffusion in a compressible mix-
the applied velocity which is assumed to be of the samqyre of one immiscible blendA/B) and one simple fluids.
magnitude(or large) than the friction coefficient) ;. Equa-  \wve first provide a kinetic description(denoted by the

tion (81) now reduces to f-level) and then use it as a starting point to derive an aver-
1 de Je aged mesoscopic approack,)-level. The use of the GE-
Ayd,=—pc(l- c)aa(; 7 + cQaa( E) NERIC formalism guarantees the consistency of the dynami-

cal models with thermodynamics.
In the former investigation, the compressible immiscible
+ Caﬁﬁgéerface—%f(ar Jukpg- blend A/B is characterized by its mass density, its momentum
density vector, and structural variables characterizing the in-
(101 terface. The latter are chosen to be either the area density
The last two terms on the right-hand side are the two addidistribution functionf(n,r) or its moments, the scalar area
tional terms that were ignored in E¢B5). Rearranging Eq. density Q(r) and the shape density(r). New expressions
(101), we arrive at the following form for the diffusion mass for the extra stress tensor on both levels of description are

de
+ cqﬁyﬁa _ﬂqu

flux: obtained and include in addition to the Laplace contribution,
the anisotropic deformation of the interface. This shows that
J.=—pD},d,c=pH7,3,Q— pGRyay9,0s0 the flow dynamics depend explicitly on the interface struc-
R* aﬁgmmrface' (102 tural changes. By expressing the dISS.IpatIOI’I for the variable
ay BB as a simple relaxation, we develop richer and more general
where now the transport coefficients are expressions for the relaxation phenomena occurring on the
averaged Q,q)-level. We emphasize that the latter formula-
D* — D (103 tion is derived rigorously and completely from théevel of
«y Kpg Koy ' description. As a result, we were able to distinguish between
1+ A_J) Sayt A_J the direct and indirect relaxation processes involved in the
dissipation of the size and shape of the interface. Many pre-
g — K (104 vious models are recovered as particular cases.
ay Kpp Koy ' In the latter investigation (rheology, morphology,
1+A_J 5a7+A_J and diffusion, the state variables of the whole mixture,
{b=A/B+ s}, are the mass densip(r), the overall momen-
. G,o tum densityu(r), the mass fractior(r) of the simple fluid
Glayeo™ Kpp PR (109 and its diffusion mass flux vectdfr) and the structural vari-
1+ A Oayt A—y ables accounting for the interface state variab®sQ andq.
J J We show that the presence of the solvent in the immiscible
E blendb directly affects the flow dynamics and the morphol-
R:,= p P (106)  ogy of the interface. A new gradient of the diffusion mass
(1+ —B8 8ot —2 flux of the simple fluid,
In the presence of the flow, the transport coefficients daﬁ,:%(%)

transform into higher order tensors. The flow affects the pro-
cess of diffusion which becomes therefore highly aniso-emerges naturally in the governing equations of the interface.
tropic. These off-diagonal terms in the transport coefficientdMass transport becomes non-Fickian due to the dynamic
may generate new fluxes that cannot be observed in the abhanges occurring in the interface. For the particular case
sence of the flow. where the inertia of the diffusion mass flux becomes irrel-
The governing equations are now evant, we have found that the transport coefficients become
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from critical points. In the vicinity of criticality, the thickness

of the interface and the interfacial tension become also con-

trolled by molecular diffusion between the two phases A andyppENDIX: POISSON BRACKET WITHOUT
B. This plays a determinant role for the dynamics of theTHE DECOUPLING APPROXIMATION

interface>®

In Paper Il, we investigate the particular situation where

The Poisson bracket without any closure approximation

the mixture is not subjected to any external flow and forceshas the following form:

oA oB

oA
5qaﬁ E - qay

5qoz[3

o

{A,B}Interface: f d3r { qaﬁ(97<

N 58) N Q s oA ( 6B
dq Eﬁ Qap™ 3 Oap 30 Jq Hﬁ
— [ 6A 6B

+nkn|njni W a, 5_Uk —A<~B]|,

ij

oB

ou,

oA oB Q( 6A oB

=98 5,50 30,) = 3 | 5,5 | % 5,
N 1 s N Q5 oA ( oB N oA 6B
39| dap™ 3 Oup 5 I S, Qd, 5Q au,

which involves the fourth-order momentnn= fd?nnnnnf(n,r,t).
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