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Dynamics of complex interfaces. I. Rheology, morphology, and diffusion
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In this paper, we investigate, on two levels of description, the isothermal coupling:~i! between
rheology and morphology in immiscible blends~A/B! and ~ii ! among rheology, morphology, and
diffusion in mixtures consisting of an immiscible blend~A/B! and one simple fluid,s. The interface
separating the phases A and B is described, on the kinetic level by an area density distribution
function and on the mesoscopic level by a scalar and a traceless symmetric second order tensor. The
nonlinear formulations are derived using the general equation for nonequilibrium reversible and
irreversible coupling formalism which ensures the consistency of dynamics with thermodynamics.
In addition to the non-Fickian character of mass transport, the coupled three-dimensional governing
equations explicitly show the effects of the external flow and diffusion on the size and shape of the
interface. New expressions for the stress tensor emerge naturally in the models including the
contributions of the diffusion fluxes and the isotropic~Laplace! and anisotropic deformations of the
interface. Asymptotic solutions of the governing equations also show that the transport coefficients
~diffusivity, etc.! are explicitly dependent on the interfacial tension and on the velocity gradient of
the applied flow. The latter dependence renders the process of mass transfer highly anisotropic even
in the absence of internal stresses created by the deformation of the interface. The diffusion-free
models of Doi–Ohta and Lee–Park are recovered as particular cases. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1571052#
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I. INTRODUCTION

Individual components of most multiphase mixture
such as polymeric blends, are immiscible, and this gener
manifests itself by the presence of a complex interface wh
morphology plays an important role in the properties of
blend. The time-dependent and equilibrium sizes and sha
of the interface are determined by the competition amo
many factors, the most important of which are identified
be the applied flow, viscoelasticity, and the interfacial te
sion. Conversely, the dynamics of the blend is also obser
to be influenced by the presence of the interface and its
formation.

If, in addition, the immiscible blend also contains low
molecular weight substances such as solvents or surfac
tive agents, its morphology may also undergo additio
changes due to the contribution of the diffusion fluxes
these inclusions and their physicochemical nature. In
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case, suitable descriptions of a nonequilibrium behavior
immiscible blends containing other substances, such as
vents, possibly miscible with their components, should c
sider not only the effects of the coupling between rheolo
and the deformation of the interfacial morphology but a
their relationship with mass transport.

In diffusion-freeimmiscible polymeric blends~A/B!, the
morphology–rheology coupling has been the subject
many theoretical as well as experimental investigations.1–16

Under an applied flow, the interface undergoes deformatio
distortions that generally lead to complex morphologies a
patterns~Fig. 1! resulting from simultaneous and comple
processes such as coalescence and break-up. Pre
developments3–11 show that the behavior of the interfac
contributes to the dynamics of the whole multiphase sys
by the addition of an excess stress attributed to the sh
anisotropy. One popular approach involves the mesosc
model4 derived for dynamics of interfaces. The interface
characterized by two structural variables, a scalar associ
with the area density, and a second-order tensor assoc
with the anisotropic changes of the shape. These varia
il:
7 © 2003 American Institute of Physics
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can be defined either over the whole interfacial area of
blend4 or over the surface of a single droplet,16 if coales-
cence and break-up processes are discarded. Severa
provements of this model for incompressible fluids for bo
constrained5–10 or unconstrained16 volumes have been sug
gested and comparisons with experimental measurement
termined the range of validity of its predictions.10–16 While
most previous derivations for incompressible blends arriv
similar terms for the reversible part of the governing eq
tions for the area and shape densities, some discrepa
still appear in the irreversible portion~dissipation!. More-
over, the expression for the stress tensor for compress
blends is still considered to be incomplete~e.g., the Laplace
term is absent! and thus the time evolution equations descr
ing the dynamics of the blend and the flow behavior
inaccurate. One goal of this paper is to clarify some of th
points for compressible immiscible blends. We then deriv
thermodynamically compatible model on a kinetic level a
use it as a starting point to achieve a mesoscopic descrip
Several earlier models such as those of Doi and Ohta,4 Lee
and Park,5 Grmelaet al.,6,7 Lacroix et al.10 are recovered as
particular cases.

In interface-freemiscible polymer solutions, the cou
pling between rheology and diffusion has led to interest
and unexpected observations such as phase separation
gration across streamlines,17–19 etc. In these studies, th
polymeric chains and the solvent molecules are regarde
thermodynamically miscible in all proportions and hence
terfacial quantities are irrelevant~Fig. 2!. Due to the large
amount of both experimental and theoretical17–35 studies de-

FIG. 1. Blend of two immiscible fluids A and B with a complex interfac

FIG. 2. Polymer solution consisting of a solvent~dots! and polymeric
chains.
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voted to these effects, their origin seems to be well und
stood. Most of the reported observations can be reprodu
if the deformation of the polymer internal structure is tak
into account. Qualitatively, mass transfer deviates from
predictions of Fick’s laws and these deviations are obser
to be more noticeable when the diffusion characteristic ti
scale is comparable to, or smaller than, the relaxation c
acteristic time scale of the internal structure. The bre
through in modeling, for expressing explicitly and rigorous
this mutual interdependence in the governing equations
mainly attributed to the so-called two-fluid model.36 As a
result, the expression of the diffusion mass flux is extend
by explicitly including the internal stresses. Although the
are many studies dealing with miscible solvent/polymer m
tures, few investigations have considered features of rh
ogy and morphology with mass transport in multiphase i
miscible blends containing simple substances. A m
fundamental understanding of such processes would be
eficial since they are omnipresent in many biological a
industrial systems. For instance, in lungs, surfactants red
the air–liquid interfacial tension and thus minimize the ri
of a probable obstruction of pulmonary airways that occ
during respiratory distress syndrome~RDS!.37 Another inter-
esting case involves the behavior of gas bubbles rising fre
in non-Newtonian polymeric solutions. Measurements sh
some unexpected behavior such as the occurrence of a
continuity in their rise velocity at a certain critical volume.38

In addition to the goal of addressing the rheology
morphology coupling described earlier, we address the r
tionships among rheology, morphology and mass transpo
mixtures consisting of an immiscible blend~A/B! and a
simple fluid,s ~e.g., solvent! ~Fig. 3!. Here, we also provide
two levels of description to study the relationship amon
these three phenomena.

In summary, the goal of this paper is twofold. First, w
investigate the effects of the coupling between rheology
morphology in compressible immiscible blends~A/B! that do
not contain other substances~e.g., solvent!. Second, we gen-
eralize this study to examine how such a coupling is affec
by mass transport in the case of mixtures of an immisci
blend ~A/B! containing a simple fluid,s. Our aim is to pro-
vide a family of compatible models suitable for discussi
such couplings on both kinetic and mesoscopic levels of
scription. To develop these models, we use the general e

FIG. 3. Mixture of a simple fluid~dots! and a blend of two immiscible fluids
with a complex interface.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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tion for the nonequilibrium reversible and irreversible co
plings ~GENERIC! ~Ref. 39! that guarantees the consisten
of dynamics with thermodynamics. The obtained govern
equations are parameterized by the internal free energy
the kinetic coefficients which express all the individual fe
tures of the system under consideration.

This paper is organized as follows: A brief description
the GENERIC method is given in Sec. II. In Sec. III, w
derive new models on two levels of description for discu
ing the relationship between rheology and morphology
compressible immiscible fluids~A/B!. We first formulate the
model on a kinetic level of description, and then use it
derive, directly and rigorously, the model on the mesosco
level. We discuss in detail two well-known models retriev
as particular cases.4,5 In Sec. IV, we extend this study t
address the coupling among rheology, morphology, and
fusion in multiphase mixtures of an immiscible blend~A/B!
and a simple fluid,s ~e.g., solvent!. The main outcome is tha
the size and shape of the interface are modified by both
applied flow and diffusion. In turn, the diffusion process b
comes influenced by the presence of the interface.

II. THE GENERIC FORMALISM

The GENERIC~Ref. 39! method has been introduced
describe the behavior of nonequilibrium systems while
suring the consistency of their dynamics with thermodyna
ics. This Hamiltonian method extended to dissipative s
tems has been developed and evolved during the last
decades due to the contributions of many groups. These
forts started with the pioneering works of Grmela,40 followed
by the dissipation bracket method of Beris and Edwards41 to
reach a final structure known in the literature as GENER
developed by Grmela and O¨ ttinger.

In these two papers, we shall assume that the sys
under consideration is kept at a constant temperature den
by T. If X represents the set of the independent state varia
used for a complete description of the system under con
eration, then GENERIC can be written in the following co
densed form:42

]X

]t
5L

]F

]X
2

]C

d~dF/dX!
, ~1!

wheret denotes time. Equation~1! involves two potentialsF
andC. The first,F5E2TS, is the Helmholtz free energy
whereE andS are the total energy and entropy potentials
the system expressed in the space of the state variables
second,C, is the dissipation potential expressed in the sp
of the conjugate variablesdF/dX. L is the Poisson operato
The first term on the right-hand side of Eq.~1! accounts for
the reversible kinematics, whereas the second represent
irreversible kinematics or dissipation. Since the tempera
is constant in this analysis, Eq.~1! is in fact a particular case
of a more general and rich structure introduced in~Ref. 39!.

A bracket can be defined from the bivector operatorL as
$A,B%5^dA/dX,L(dB/dX)&, where^,& is the inner product
and A and B are smooth real valued functionals ofX. This
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bracket is called a Poisson bracket if~i! $A,B%52$B,A%
(L52LT, i.e., L is antisymmetric, the superscriptT stands
for the transpose operator!, ~ii ! the Jacobi identity
$$B,C%,A%1$$A,B%,C%1$$C,A%,B%50 holds. The latter
identity expressing the time invariance of the reversi
structure may help to single out physically admissible c
sure approximations.43

The dissipation potentialC satisfies the following prop-
erties:~i! Cuequilibrium50, ~ii ! C reaches its minimum at equi
librium, ~iii ! C is convex. In view of the properties liste
above, Eq.~1! implies the dissipation inequalitydF/dt<0.

A GENERIC derivation of a new set of coupled tim
evolution equations consists in an adequate choice of
state variables, a determination of their reversible~Poisson
operatorL! and irreversible~dissipation potentialC! kine-
matics and finally a specification of the Helmholtz free e
ergy F. These four steps are followed in the forthcomin
sections; first for the rheology and morphology relations
and second for the rheology–morphology–diffusion co
pling in compressible immiscible fluids.

III. RHEOLOGY AND MORPHOLOGY
IN COMPRESSIBLE IMMISCIBLE BLENDS:
A TWO-LEVEL DESCRIPTION

In this section, we investigate the relationship betwe
rheology and morphology changes on two levels of desc
tion. The system under consideration is a blend consistin
two compressible immiscible fluids A and B. The presence
the interface makes the fluid behave as a complex fluid e
though the latter is composed of simple Newtonian fluids
is well known that, in most complex fluids, deviations fro
the Newtonian behavior are due to the contribution of
inherent internal structure. Here, the internal structure is
garded to mainly stem from the morphology of the interfa

We consider the case where the two phases have e
velocities. This approximation holds far from critical point
or in case of high interfacial friction between the compone
of the blend.44,45 The blend is regarded as a pseudo-on
component fluid embedding an interface.4–16The first step in
the GENERIC algorithm requires an adequate choice of
independent state variables. The usual state variables us
describe a fluid under consideration are the fields of the c
sical fluid mechanics~hydrodynamics!, i.e., a scalar mass
density r(r ) and a linear momentum density vectoru~r !,
wherer is the position vector. However, the presence of
interface necessitates additional state variables to accoun
its contribution. To gain a better physical insight for the d
namics of this immiscible blend, we provide a description
two levels; a kinetic level and an averaged level. On
kinetic level ~to be denoted byf-level!, the interface is de-
scribed by an area density distribution functionf (r ,n,t), n is
the outward unit vector normal to the interface andt stands
for time ~ f can also be seen as a distribution function for t
orientation of the vectorn!. On the mesoscopic level@to be
denoted by (Q,q)-level#, other averaged variables can b
defined as moments of the kinetic functionf 4: the zeroth
moment, a scalar
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Q5E d2n f~r ,n,t !, ~2!

denoting the interfacial area density, and the traceless se
moment, a second order tensor

q5E d2n~nn2 1
3I ! f ~r ,n,t !, ~3!

denoting, interfacial orientation tensor density.I is the unit
second order tensor,nn is the dyadic tensor, andd2n is the
differential solid angle. A combination of Eqs.~2! and ~3!
gives

nn5E d2n f~n,r ,t !nn5q1 1
3QI . ~4!

The two state variablesQ andq constitute the basis stat
variables for the mesoscopic averaged approach introdu
by Doi and Ohta,4 and adopted later by many groups.5–16 It
has been derived originally4 for describing the dynamics o
incompressible immiscible fluids at the~Q, q!-level. Here,
we first provide, for compressible fluids, a ‘‘kinetic’’ descrip
tion on thef-level and derive from it a description on the~Q,
q!-level. This extension to compressible fluids becomes
eluctable when diffusion is involved in dynamical process
since mass transport is in most cases accompanied by
ume changes due to swelling or shrinkage of the system
dergoing diffusion.

Summing up: in this multistage formulation, the fluid
described either by the state variablesr, u, and f on the
kinetic f-level or alternatively byr, u, Q, andq on the aver-
aged~Q, q!-level. In the following, we shall derive the re
versible and irreversible kinematics embodied respectiv
by the Poisson bracket and by the dissipative potential
provide the governing equations on both levels of desc
tion.

The reversible kinematics is expressed through the P
son bracket. For notation convenience, we write the Pois
bracket as a sum of two contributions: the first results fr
the fields of classical fluid mechanics~to be abbreviated her
by cfm!: r~r ! andu~r !, and the second arises from the inte
face fields:f or Q(r ) andq~r !,

$A,B%5$A,B%~cfm!1$A,B%~ Interface!. ~5!

The irreversible kinematics is generated by dissipat
which stems from two contributions. The first is due to t
effective shear and bulk viscosities of the whole fluid a
response to the velocity gradient of the applied external fl
v5u/r. The second arises from the relaxation of the int
face due to its surface tension which reduces the size of
interfacial area and tends to render the shape isotropic.
dissipation potential can therefore be written as a sum of
parts,

C5C~cfm!1C~ Interface!. ~6!

We shall first determine the reversible$A,B%(cfm) and
irreversibleC (cfm) kinematics of the contribution of the clas
sical fluid mechanics variablesr andu. The task of deriving
the same quantities on the two levels of description for
interface is postponed to the next two subsections.
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The first bracket in Eq.~5! has the following classica
form:46

$A,B%~cfm!5E d3rrF S dB

dua
D ]aS dA

dr D2S dA

dua
D ]aS dB

dr D G
1ugF S dB

dua
D ]aS dA

dug
D2S dA

dua
D ]aS dB

dug
D G ,

~7!

where A and B are arbitrary regular real valued functiona
The dissipation potential, on the other hand, can be w

ten as

C~cfm!5E d3r S ]bS dF

dua
D1]aS dF

dub
D D h

4 S ]bS dF

dua
D

1]aS dF

dub
D D1E d3r ]bS dF

dua
D 1

2

3S hd2
2

3
h D ]bS dF

dua
D , ~8!

where h and hd are, respectively, the effective shear a
dilational viscosities of the blend. In Eqs.~7! and ~8!, we
have used the following notations:]a[]/]r a , aP$1,2,3%
anddA/du to represent the Volterra functional derivative
A with respect tou ~idem forr, etc.!.41 For repeated indices
the summation convention is understood.

In Sec. III A, we shall derive the Poisson brack
$A,B%(Interface), the dissipation potentialC (Interface) for the in-
terface and the governing equations on thef-level of descrip-
tion. This f-level of description will be used, in Sec. III B a
a starting point to derive a family of models on the~Q, q!-
level.

A. Kinetic level of description: f-level

1. Poisson bracket

The complex fluid on thef-level of description is char-
acterized by the set of the independent state variables,

X5~r,u, f !. ~9!

The reversible part of the time evolution equation for t
interface variablef can be written under the following form

] f

]tU
reversible

52
]

]r a
~ ṙ a f !2

]

]na
~ ṅa f !1R f. ~10!

n is the outward unit vector normal to the interface andṅ
refers to its time derivative whose expression is given by2,4

ṅa52kbanb1kbgnbngna , ~11!

wherekab5]va /]r b is the macroscopic velocity gradien
The third term on the right-hand side of Eq.~10! is attributed
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



at

e

10231J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Dynamics of complex interfaces. I
to the changes of the surface by the flow, with a certain r
R, having the following form:2,4

R5kaa2kbanbna . ~12!

Inserting expressions~11! and ~12! into Eq. ~10!, we obtain
he
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e, ] f

]tU
reversible

52va

] f

]r a
1

]

]na
~nb f kba!

2
]

]na
~nbngna f kbg!2kbanbna f . ~13!

Using Eq.~13!, we construct the Poisson bracket for th
interface variable,f, as follows:
$A,B% Interface5E d3r E d2n f~r ,n,t !F]aS S dA

d f D S dB

dua
D D2]aS S dB

d f D S dA

dua
D D G2E d3r E d2n nb f ~r ,n,t !

3F ]

]na
S ]A

] f D ]aS dB

dub
D2

]

]na
S dB

d f D ]aS dA

dub
D G1E d3r E d2n nbngna f ~r ,n,t !F ]

]na
S dA

d f D ]gS dB

dub
D

2
]

]na
S dB

d f D ]gS dA

dub
D G2E d3r E d2n nanb f ~r ,n,t !F S dA

d f D ]bS dB

dua
D2S dB

d f D ]bS dA

dua
D G . ~14!
v-

e
s a

ity

-

While the first term in each integral, contributes to t
advection of the distribution functionf by the flow, its sym-
metric counterpart contributes to the total stress tensor a
ing in the momentum governing equation~force balance!.

2. Dissipation potential

The dissipation potential for the interface is chosen to
a quadratic functional of the conjugate variable,dF/d f , of f,

C~ Interface!5E d3r E d2nS l f

2 D ~ f ~n,r !2 f * ~n,r !!S dF

d f D 2

,

~15!

wherel f is a positive phenomenological parameter related
the rate of relaxation off, and f * refers to a final state
reached after cessation of the applied flow. IfF designates
the deformation gradient tensor andf 0 is a reference~e.g.,
initial! distribution function, then following Ref. 4,

f * ~n,r !5 f o

~detF!2

uF1
•nu4

.

We have singled out the form for this potential to expre
that dissipation arises mainly from a simple relaxation of
interface area density function. The relaxation may ar
from collisions and interaction phenomena that lead to c
lescence and break up processes. In case of coalescenc
parameterl f can be related to the frequency of collisio
between the drops and the probability of their coalescenc47

A more general description may arise by defining a dissi
tion potential similar to a Boltzmann-type collision expre
sion. Here, we limit the investigation to the simplest expr
sion similar to the collision factor proposed b
Bhatnagar–Gross–Krook.48 We will show that with this
simple choice for the dissipation potential, we are capable
developing a more general formulation on the~Q, q!-level
~mesoscopic level! from which some previously derive
models are recovered as particular cases,4,5 provided that ap-
propriate expressions for the interfacial free energy are u
is-

e

o

s
e
e
-

, the

.
-

-

of

d.

Therefore the contribution of the relaxation to the go
erning equation for the state variablef is

] f

]tU
relaxation

52
dC

d~dF/d f !

52l f~ f ~r ,n!2 f * ~r ,n!!S dF

d f D . ~16!

Note that the quantity,l f(dF/d f ), has a dimension of in-
verse of time.

3. Free energy

We first limit ourselves to a partial specification for th
free energy. The total free energy density always involve
kinetic and internal energy terms, i.e.,

w̃5S u2

2r D1w~r, f !, ~17!

wherew̃ denotes the Helmholtz free energy density, i.e.,F
5*d3r w̃ and w stands for the internal free energy dens
that is independent of the linear momentumu5rv.

4. Governing equations

Substituting into Eq.~1! the contributions of the revers
ible kinematics embodied by Eqs.~7! and ~14!, the irrevers-
ible kinematics given by Eq.~8! or ~15! and the partial speci-
fication for the free energy~17!, we arrive at the governing
equations for the setX5(r,u, f ),
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]r

]t
52]a~rva!, ~18!

]ua

]t
52]b~uavb!2]ap2]bsba , ~19!

] f

]t
52va]a f 1

]

]na
~nb f kba!2

]

]na
~nbngna f kbg!

2nanb f kab2l f~ f 2 f * !S dw

d f D . ~20!

The first equation,~18!, is the well-known continuity
equation ~mass conservation!. The second equation,~19!,
represents the momentum conservation equation. This e
tion involves the quantities: the hydrodynamic press
given by

p52w1r
]w

]r
1E d2n f~n,r !S dw

d f D ~21!

and the stress tensor

sab5sab
~cfm!1sab

~ Interface! , ~22!

where the first term on the right-hand side has the follow
classical form:49

sab
~cfm!52hġab2~hd2 2

3h!kggdab . ~23!

The parametersh and hd have been defined earlier as th
effective shear and dilational viscosities respectively and
symbol dab stands for the Kronecker delta. We recall th
kab5]va /]r b and ġab5kab1kba represent, respectively
the gradient of the overall velocity and the symmet
deformation-rate tensor.49 The contribution of the interface to
the extra stress tensor, given by the second term on the r
hand side in Eq.~22!, is expressed as

sab
~ Interface!5E d2n f~n,r !Fnb

]

]na
S dw

d f D2nanbng

]

]ng
S dw

d f D
1nanbS dw

d f D2dabS dw

d f D G . ~24!

The last equation,~20! represents the time evolution k
netic equation for the distribution functionf. The dissipation
process is chosen, here, to be of a relaxation type but
Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
a-
e

g

e
t

ht-

et

involving the conjugate variable off and thus the interna
free energy density,w. The latter can be specified dependin
on the physical insight we have of the problem under inv
tigation. One of the simplest choices is

w~r, f !5GE d2n f~n,r !, ~25!

where the parameter,G, refers to the interfacial tension
Therefore, the irreversible part of Eq.~20! becomes

] f

]tU
relaxation

52l fG~ f 2 f * !, ~26!

and the expression for the stress tensor simplifies to

sab
~ Interface!5GE d2n f~n,r ,t !@nanb2dab#, ~27!

with a deviatoric part,S5s(Interface)2 1
3Tr(s(Interface))I5Gq,

corresponding exactly to the expression derived in previ
investigations.1,3

B. Mesoscopic approach: „Q, q…-level

Here, we investigate the same problem~rheology–
morphology coupling! on the mesoscopic averaged~Q, q!-
level by using as a starting point the setting that we ha
already provided on thef-level ~previous subsection!. While
the necessary derivation on thef-level ensures a more phys
cal understanding regarding the interface and its dynam
the details provided may be overwhelming and sometim
not easily handled. This issue is removed on the~Q, q!-level,
where the predictions and consequences of the model
come directly comparable to experimental data. We then
rive a family of compatible models on the~Q, q!-level by
following the same GENERIC procedure.
1. Poisson bracket

The complex fluid is now characterized by the set of t
independent state variables,

X5~r,u,q,Q!. ~28!

To arrive at the Poisson bracket on the~Q, q!-level, we
start from the Poisson bracket, Eq.~14!, derived on the
f-level of description, and use the following chain rule:

d

d f
5ninj S S d iad j b2

1

3
d i j dabD d

dqab
1d i j

d

dQD . ~29!

By substituting Eq.~29! into Eq. ~14!, we obtain
$A,B% Interface5E d3r Fqab]gS dA

dqab

dB

dug
D2qagS dA

dqab
D ]bS dB

dug
D2qbgS dA

dqab
D ]aS dB

dug
D1

qabquv

Q S dA

dqab
D ]vS dB

duu
D

2
Q

3 S dA

dqab
D S ]bS dB

dua
D1]aS dB

dub
D D1

1

3 S qab1
2Q

3
dabD S dA

dqab
D ]gS dB

dug
D1

2

3
dabquvS dA

dqab
D ]vS dB

duu
D

2S qab1
Q

3
dabD S dA

dQD ]aS dB

dub
D1Q]gS dA

dQ

dB

dug
D2A↔BG . ~30!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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The notation, A↔B ~used in this bracket will be used for th
sake of simplicity in the rest of this paper! stands for the
same quantities but with A and B interchanged. To arrive
this final form in Eq.~30!, we have also used the fact th
nn5*d2n f(n,r ,t)nn5q1 1

3QI . Moreover, a fourth order
momentnnnn arises while transforming the bracket from th
f-level to the (Q,q)-level, forcing us to use the quadrat
closure approximation put forward in Ref. 4 and proved to
physically admissible,43

ninjnanb5
1

Q
ninj nanb

5
qi j qab

Q
1

1

3
d i j qab1

1

3
dabqi j 1

Q

9
d i j dab . ~31!

A slightly different Poisson bracket has been derived
Refs. 6 and 7 for incompressible fluids by noting that t
tensor Q(q1IQ/3) transforms covariantly under the flow
Our formulation has the advantage of starting from a kine
level of description and of providing an extension to co
pressible fluids. The Poisson brackets given in Refs. 6 an
are recovered as particular cases of Eq.~30! if incompress-
ibility is assumed (¹•v50).

We should emphasize that all the results that will
obtained in this paper are intimately dependent on the cho
closure approximation~31!. A more general Poisson brack
is given in the Appendix, where the fourth-order moment h
been kept in its original form. In that case any other~more
accurate! closure8,43 can be used to close the set of governi
equations. Thus the outcome, or more precisely the rev
ible part, will be of a different structure.

2. Dissipation potential

The dissipation potential is constructed in the same m
ner as the Poisson bracket. We insert the chain rule~29! into
the dissipation potential~15! suggested on thef-level. The
result is straightforward and is given by

C~ Interface!5E d3r F S dF

dqi j
D lab i j

q

2 S dF

dqab
D

1S dF

dQD lQ

2 S dF

dQD1S dF

dqi j
Dl i j

qQS dF

dQD G ,
~32!

where the parameters arising in Eq.~32! have the following
explicit form:

lagb i j
q 5E d2n~ f ~n,r !2 f * ~n,r !!l f@ninjnanb

2 1
3dabninj2

1
3d i j nanb1 1

9d i j dab#, ~33!

lQ5E d2n~ f ~n,r !2 f * ~n,r !!l f , ~34!

l i j
qQ5E d2n~ f ~n,r !2 f * ~n,r !!l f@ninj2

1
3d i j #. ~35!

Note that these parameters are functions of one par
eter,l f , related to the rate of relaxation of the distributio
Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
t

e

e

c
-
7

en

s

s-

n-

-

function f. The first, Eq.~33!, denotes the rate of relaxatio
of the shape of the interface and the second, Eq.~34!, refers
to the rate of relaxation of the size~coalescence!. The last
one, Eq.~35!, refers to a coupling tensorial coefficient whic
relates the relaxation processes of the size and the s
~break-up!. These parameters, in addition to be positive se
definite, possess the following symmetry properties:lab i j

q

5l i j ab
q 5lab j i

q 5lba i j
q for the first andlab

qQ5lba
qQ for the

third.
The irreversible parts of the time evolution equations

Q andq are given as

]Q

]t U
relaxation

52
dC

d~dF/dQ!

52lQS dF

dQD2l i j
qQS dF

dqi j
D , ~36!

]qi j

]t U
relaxation

52
dC

d~dF/dqi j !

52l i j
qQS dF

dQD2l i j ab
q S dF

dqab
D . ~37!

The first term on the right-hand side of Eq.~36! accounts
for coalescence and the second represents break-up
cesses. The relaxation of the shape is expressed by the
terms on the right-hand side of Eq.~37!. The physical mean-
ing associated with these terms will become clearer w
discussing the Doi–Ohta and Lee–Park special cases.

3. Free energy

The free energy density defined byF5*d3r w̃, can be
written as

w̃5S u2

2r D1w~r,Q,q!. ~38!

The quantityw is still left unspecified at this point, bu
we shall suggest, in the next subsection, some express
accounting for the contribution of the interface.

4. Governing equations

The governing equations on the (Q,q)-level are

]r

]t
52]a~rva!, ~39!

]ua

]t
52]b~uavb!2]ap2]bsba , ~40!

]Q

]t
52va]aQ2qagkga2

Q

3
kaa

2lQS ]w

]QD2lab
qQS ]w

]qab
D , ~41!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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]qab

]t
52vu]uqab2qagkgb2qbgkga1

qabquv

Q
kuv

2
Q

3
ġab1

1

3 S qab1
2Q

3
dabDkuu

1
2

3
dabquvkuv2lab

qQS ]w

]QD2l i j ab
q S ]w

]qi j
D . ~42!

Here, the momentum balance equation,~40!, will depend
on the constitutive equations which are expressed now
terms of the state variables,Q and q. The hydrodynamic
pressurep is given by

p52w1r
]w

]r
1Q

]w

]Q
1qab

]w

]qab
, ~43!

and the contribution of the interface to the extra stress ten
sab5sab

(cfm)1sab
(Interface) reads as

sab
~ Interface!52qagS ]w

]qgb
D1qabS ]w

]QD1
2Q

3 S ]w

]qab
D

2
qabqgv

Q S ]w

]qgv
D2

2

3
dabS QS ]w

]QD
12qvuS ]w

]qvu
D D2

2

3
d i j S qab1

1

3
QdabD S ]w

]qi j
D .

~44!

The hydrodynamics part,s(cfm), remains unchanged
with respect to its expression given by Eq.~23!. While, the
first four terms in Eq.~44! are similar to those derived in
Refs. 6 and 10, the last four terms are new. The fifth te
2
3Q(]w/]Q), is the well known Laplace contribution
(]w/]Q5G is the interfacial tension!, which is now ex-
tended by a nonequilibrium contribution,4

3qvu(]w/]qvu),
stemming from the anisotropy of the interface. Note that
the blend consists of a matrix~major phase! and a dispersed
phase~minor! composed of spherical droplets with radiusR
and a volume fractionf, one recovers Laplace’s equatio
Dp5(2G/R)f ~whereQ53f/R andq50 due to isotropy!.
We emphasize that expressions~43! and ~44! arise naturally
in the governing equations from the Poisson bracket and
ad hoc assumptions are required. Using the transforma
Eq. ~29!, one can verify that these expressions are consis
with their kinetic counterparts given by Eq.~21! and ~24!.

Equations~41! and ~42! are the governing equations fo
the interface on the mesoscopic~Q,q!-level. The fact that we
have started the derivation from a kinetic level of descript
allows us to derive a more general formulation on the av
aged level. Indeed, we recover as particular cases most o
earlier derivations.4–7,10Their reversible part is recovered b
putting “"v50 ~incompressibility constraint!. In addition,
the irreversible terms in our approach also derived rigorou
from a kinetic level, show new interesting consequences.
relaxation is not only produced by direct processes but a
by cross coupling terms. By choosing adequately the exp
sion of the internal free energy, many relaxation proces
become thus available depending on the physical prob
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under consideration. As an illustration, we shall discuss t
well-known specific cases, namely the Doi–Ohta4 and
Lee–Park5 formulations.

5. Special cases

If l f5l f
0 is assumed to be a constant independent on,

then Eqs.~33!–~35! become

lab i j
q 5l f

0E d2n~ f 2 f * !@ninjnanb2 1
3 dabninj

2 1
3 d i j nanb1 1

9 d i j dab#

5l f
0S qi j qab

Q
2

qi j* qab*

Q* D , ~45!

lQ5l f
0E d2n~ f 2 f * !5l f

0~Q2Q* !, ~46!

lab
qQ5l f

0E d2n~ f 2 f * !@nanb2 1
3dab#5l f

0~qab2qab* !,

~47!

where expressions~2!–~4! and ~31! have been used. Notic
that Eq.~45! involves a fourth moment and if the quadrat
closure~31! is not used, Eq.~45! will result in a different
expression. The quantitiesQ* andq* denote the values fo
the size and shape of the interface given, respectively, b

Q* 5E d2n f0

~detF!2

uF1.nu4

and

qab* 5E d2n f0

~detF!2

uF1.nu4 S nanb2
1

3
dabD .

a. Doi–Ohta model: To recover the Doi–Ohta model,4

we put Q* 50 ~complete phase separation! and q* 50 and
choose the internal free energy density as

w~r,Q,q!5GQ, ~48!

whereG is the interfacial tension. Therefore, Eqs.~36! and
~37! simplify as

]Q

]t U
relaxation

52lQS ]w

]QD52l f
0GQ, ~49!

]qab

]t U
relaxation

52lab
qQS ]w

]QD52l f
0Gqab . ~50!

If the system does not possess a length scale, dimens
analysis yields4

l f
05r 1S Q

h D , ~51!

wherer 1 is a positive parameter. This choice leads to a co
plete phase separation, sinceQ* 50. We notice that on the
(Q,q)-level, contrary to the original Doi–Ohta model, on
one positive parameter,r 1 is involved. This is in agreemen
with the comparison with other simulation data carried out
Ref. 9. It is also interesting to note that from Eq.~50!, the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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relaxation of the shape is produced uniquely by the rel
ation of the size through the coupling tensorial parame
lqQ. This assumes that the relaxation of the shape, occur
very slowly (lq>0), is indirectly but completely controlled
by the relaxation of the size.

Furthermore, the contribution of the interface to t
stress tensor becomes

sab
~ Interface!5Gqab2 2

3dabGQ. ~52!

The second term on the right-hand side is Laplace’s con
bution to the stress tensor. This term is missing in the d
vation of Doi and Ohta.

b. Lee and Park model: Here, we also putQ* 50
~complete phase separation! andq* 50 ~isotropy! and write
the internal free energy under a form including the ani
tropic changes of the interface,

w~r,Q,q!5GQ1 1
2aq:q. ~53!

The second term on the right-hand side has been sugge7

to account for nonequilibrium contributions of the variableq.
a is a parameter accounting for the anisotropy of the in
face. Therefore, Eqs.~36! and ~37! reduce to

]Q

]t U
relaxation

52l f
0~GQ1aqabqab!, ~54!

]qab

]t U
relaxation

52l f
0S Gqab1a

qi j qab

Q
qi j D . ~55!

We recover rigorously the ad hoc equations put forward
Ref. 5, provided the free energy has the form of Eq.~53!.
Their physical5 intuitive choice for the relaxation process
is justified by the possible occurrence of coalescence@the
first term on the right-hand side of Eq.~54!# and break-up of
the droplets@second term on the right-hand side of Eq.~54!#
under the flow conditions. Via our formulation, a mo
physical understanding for the relaxation processes is a
able. The relaxation of the size is described directly as w
as indirectly through the first and second terms on the rig
hand side of Eq.~36!, respectively. The same is true for th
relaxation of the shape. Moreover, we can now more ea
distinguish between the direct and indirect processes~pro-
duced by the coupling! that are involved in the relaxation.

The interfacial contribution to the stress tensor becom

sab
~ Interface!5Gqab1aS 2qagqgb2

qgvqgv

Q
qab2

2

3
QqabD

2
2

3
dab~GQ12aqgvqgv!.

In this nonequilibrium description, the Laplace term is mo
fied by the contribution of the anisotropy,4

3aqgvqgv . Only
the first term on the right-hand side of the above express
is present in the Lee and Park model.

We point out that the relaxation processes on
(Q,q)-level, which consider the relaxation of the size, sha
and also their coupling, are obtained from a kinetic formu
tion suggested in this work. We have reproduced these
models by assuming thatl f5l f

0 is constant and by applying
the quadratic closure~31!. If this is not the case, as may b
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expected in more complex situations, then the formulat
provided by Eqs.~33!–~44! is well suited and offers a more
general description.

IV. RHEOLOGY, MORPHOLOGY, AND DIFFUSION
IN MIXTURES OF AN IMMISCIBLE BLEND „AÕB… AND A
SIMPLE FLUID s: A TWO-LEVEL DESCRIPTION

A. Problem statement

In Sec. III, we have discussed the coupling occurri
between the flow dynamics and the deformation of the in
face in an immiscible blendb[(A/B) that does not contain
other substances such as solvents. In this section, we ex
this investigation, by adding a simple fluid,s to the immis-
cible blendb ~see Fig. 3!. That is, we address the dynam
behavior of mixtures,$b1s% consisting of an immiscible
blendb ~e.g., polymeric blend! and one simple fluid,s ~e.g.,
a solvent! miscible with the blend components A and B. A
discussed earlier, the fluids A and B are assumed to re
their immiscibility ~no interpenetration between A and B! in
the presence of the simple fluid. The blendb is regarded as a
pseudo-one-component fluid in which an interface
embedded4–16 ~see Sec. III!. The only diffusion process tha
occurs in this multiphase mixture is the one resulting fro
the transport of the simple fluid in both phases A and B. T
molecules of the simple fluid are assumed to have equal
locities in A and B. This reduces the number of independ
state variables and thus the number of the governing eq
tions. The whole mixture,$b1s% can be considered as con
sisting of two fluids:36 i.e., the pseudo-one-component im
miscible blendb with an apparent mass densityrb and a
momentum densityub5rbvb and the simple fluid,s with an
apparent mass densityrs and a momentum densityus

5rsvs . Since, the fluid,s and the blend,b are miscible they
can be regarded as two interpenetrating media.36 As dis-
cussed earlier, we choose to describe the interface by its
density distribution functionf (r ,n,t) or by its moments: the
scalarQ(r ,t) and the second-order tensorq(r ,t).

For rheological studies, it is preferable to use global a
relative variables of the whole mixture. Consequently,
use the following one-to-one transformation,33,50,51

r5rs1rb ,

u5us1ub ,
~56!

c5
rs

rs1rb
,

J5
rb

rs1rb
us2

rs

rs1rb
ub ,

wherer(r ) is the total mass density,u~r ! is the total momen-
tum vector,c(r ) is the mass fraction of the simple flui
concentration, andJ~r ! is its relative momentum density vec
tor. The latter coincides exactly with the mass flux dens
relative to the local mass-average velocity.51 The whole
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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mixture is now characterized by the set of the state variab

X5~r,u,c,J, f ! ~57!

if f is used to describe the complex interface, or alternativ
by

X5~r,u,c,J,Q,q! ~58!

if Q andq are used instead.
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1. Poisson bracket
The Poisson bracket for the whole mixture is now giv

by

$A,B%5$A,B%~cfm!1$A,B%~diffusion!1$A,B%~ Interface!.
~59!

The first term remains unchanged with respect to Eq.~7!.
The bracket expressing the contribution of diffusion to t
reversible dynamics is given as in33
$A,B%~diffusion!5E d3r FJg]aS ]A

dJg
D S ]B

dua
D1JgdaS dA

dug
D S dB

dJa
D2]a~c!S dA

dc D S dB

dua
D2Jg]aS c

dA

dJg
D S dB

dJa
D

1~12c!~cug1Jg!]aS dA

dJg
D S dB

dJa
D1rc~12c!]aS 1

r

dA

dc D dB

dJa
2rc~12c!]aS ug

r

dA

dJg
D dB

dJa
2A↔BG .

~60!
in
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We shall derive the last bracket in Eq.~59! accounting
for the interface on two levels of description@f and (Q,q)
levels# in Secs. IV B and IV C.

2. Dissipation potential

In addition to the dissipation phenomena stemming fr
the relaxation of the interface~attributed mainly to its inter-
facial tension!, and from the viscosity of the fluids~as a
response to the velocity gradient of the external flow!, there
is also a contribution due to diffusion. Therefore, the dis
pation potential can be written as

C5C~cfm!1C~ Interface!1C~diffusion!. ~61!

The first term on the right-hand side is similar to Eq.~8!, and
the second term is given by33,51

C~diffusion!5E d3r S dF

dJ D T rc~12c!LJ

2 S dF

dJ D , ~62!

where T is the transpose operator. The phenomenolog
parameter,LJ is the inverse of the relaxation time. In view o
the properties of the dissipation potential,C, LJ must be a
positive parameter. In the vicinity of equilibrium, we ca
express this coefficient as a function of the Bearman mic
scopic friction coefficient,52 jsb* , i.e.,

LJ5
rNA

2

MsMb
jsb* ,

whereNA is Avogadro’s number andM j denotes the molecu
lar weight of componentj. As we focus on interfaces with
infinite friction coefficient between the two phases A and
(jAB* →`), we express the solvent/blend friction coefficie
as

1

jsb*
5S fA* gA

jsA*
1

~12fA* !gB

jsB*
D Y ~gAfA* 1gB~12fA* !!,

as a function of the friction coefficients,jsA* and jsB* of the
systemss/A and s/B, respectively.fA* 5VA /(VA1VB) is
-

al

-

t

the volume fraction of phase A in the blendb[A/B, andg i

refers to the material density of the componenti ( i[A or B!.
The specification of the dissipation potential,C (Interface),

accounting for the interface contribution is provided
Secs. IV B and IV C.

3. Free energy

Using the one-on-one transformation~56!, and assuming
that the kinetic energy for the mixture can be written as
sum of the kinetic energy expressions for the blend and
the simple fluid, ((us

2/2rs)1(ub
2/2rb)), we arrive at the fol-

lowing expression:51

w̃5S u2

2r
1

J2

2rc~12c! D1w, ~63!

where the first term on the right-hand side represents
global kinetic energy and the second term stands for the r
tive kinetic energy. The quantityw, still left unspecified, de-
notes the internal free energy density that is independentu
andJ. That is,w5w(r,c, f ) or w5w(r,c,Q,q) if Eq. ~57!
or Eq.~58! are used, respectively, as the sets for the indep
dent variables. This functional can be written as a sum of t
contributions: a Flory–Huggins53 expression for mixing and
an additional term describing the interface contribution,

w5wmixing~c!1w Interface~r,c,Q,q!, ~64!

if Eq. ~58! is used as the set of state variables.
So far, we have partially specified the Poisson brack

and the dissipation potentials for classical fluid mechan
~cfm! and diffusion. What remains to be done is to determ
the same quantities for the interface on both thef and (Q,q)
levels of description and derive the corresponding equati
governing the time evolution for the whole mixture$s1b%.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. Model on the f-level of description

Here we determine the remaining quantitie
$A,B%(Interface), C (Interface), and the corresponding governin
equations on thef-level.
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:

1. Poisson bracket

Now, in addition to the changes brought about by t
external flow, the Poisson bracket for the interface conta
the contribution of the mass transfer. We express it as
$A,B%~ Interface!5$A,B%~1.14!2E d3r E d2n f~r ,n,t !F]aS cS ]A

d f D S dB

dJa
D D2]aS cS dB

d f D S dA

dJa
D D G

1E d3r E d2nS nb f ~r ,n,t !F ]

]na
S ]A

] f D ]aS c
]B

dJb
D2

]

]na
S dB

d f D ]aS c
]A

dJb
D G D

2E d3r E d2nS nbngna f ~r ,n,t !F ]

]na
S dA

d f D ]gS c
]B

dJb
D2

]

]na
S dB

d f D ]gS c
dA

dJb
D G D

1E d3r E d2nS nanb f ~r ,n,t !F S dA

d f D ]bS c
dB

dJa
D2S dB

d f D ]bS c
dA

dJa
D G D , ~65!
n
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en-

re-
the
where the first bracket on the right-hand side in Eq.~65! is
the Poisson bracket given by Eq.~14!.

2. Dissipation potential

We assume, as previously that dissipation is genera
by a simple relaxation. In this way, we ignore any intrins
diffusion process between the phases A and B of the imm
cible blendb[A/B. Therefore,

C~ Interface!5E d3r E d2nS L f~c!

2 D ~ f ~n,r ,t !2 f eq~c!!

3S dF

] f D 2

, ~66!

whereL f , concentration dependent, is a positive parame
related to the relaxation rate of the interface.f eq is the area
distribution function density at equilibrium. The presence
the simple fluid in the blend may determine the amount
the interfacial area, which leads to an equilibrium valu
Contrary to the diffusion-free problem, the system may n
have a characteristic length scale and thus an intrinsic t
scale.

3. Governing equations

Using Eqs.~63!, ~65!, and~66!, we arrive at the govern
ing equations for the state variables (r,u,c,J, f ),

]r

]t
52]a~rva!, ~67!

]ua

]t
52]b~uavb!2]ap2]bsba , ~68!

r
]c

]t
52rva]ac2]aJa , ~69!
ed

s-

r

f
f
.

e

]Ja

]t
52]g~Javg!2Jgkag2~12c!]bS JaJb

rc~12c! D
1]bS JaJb

rc~12c! D2rc~12c!]aS 1

r

]w

]c D
1cE d2n f~n,r ,t !]aS ]w

] f D
1c]gsag

~ Interface!2LJJa , ~70!

] f

]t
52S va2

Ja

r~12c! D ]a f 1
]

]na
~nb f ~kba2dba!!

2
]

]na
~nbngna~kbg2dbg! f !

2nangb~kab2dab! f 2L f~c!~ f 2 f eq~c!!S ]w

] f D .

~71!

We now deal with five nonlinear coupled time evolutio
equations describing the flow dynamics of the mixtu
$b1s%, the diffusion process of the simple fluid, and th
deformation of the interface produced by the applied fl
and diffusion. While the hydrodynamic pressurep has the
same expression as in Eq.~21!, the stress tensor,s, now
becomes

s5s~cfm!1s~ Interface!1s~diffusion!. ~72!

The first term,s(cfm) is given by Eq.~23!. The second
term, s(Interface), is given by Eq.~24! except that the free
energy density must now consider the effects of mass tra
port of the simple fluid into the blend A/B. This will gene
ally lead to a different expression attributed to the dep
dence of the state equations of the model~e.g., interfacial
tension! on the penetrant mass fraction. The last term rep
senting the direct effect of diffusion on the dynamics has
following form:
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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s~diffusion!5JS ]w̃

]J D5
JJ

rc~12c!
. ~73!

The third equation refers to the continuity equation
the simple fluid, and the fourth represents the time evolut
equation for the diffusion mass flux. In addition to the effe
of the flow on diffusion through the velocity gradientkab

5]va /]r b , the diffusion mass flux equation explicitly con
tains the chemical potential of the simple fluid also rep
senting the osmotic pressure of the blend,b[A/B ~the fifth
and sixth terms on the right-hand side!. Note also that the
diffusion is explicitly influenced by the interfacial stress
~seventh term! created by the deformation of the interface

The last equation~71! provides the time evolution of the
changes that occur at the interface. Both flow and diffus
directly affect the distribution function densityf. In addition
to the gradient of the applied velocity,kab5]va /]r b , a
new gradient,

dab5
]

]r b
S Ja

r~12c! D , ~74!

involving the diffusion mass flux enters Eq.~71!. We point
out that this term arises in the governing equation natur
b

ti

in

tie
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from the reversible kinematics~i.e., Poisson bracket! without
any ad hoc assumption. The emergence of this gradient i
cates clearly the direct and explicit influence of mass tra
port on the interface dynamics.

C. „Q,q…-level of description

As discussed in Sec. III, we have shown the usefuln
of deriving the governing equations on the (Q,q)-level for
investigating the relationship between flow and morpholo
changes. Here we intend to similarly examine the relati
ship among the flow, the morphology deformation and dif
sion on the mesoscopic level. What remains is to determ
are the interfacial quantities:$A,B%(Interface), C (Interface), and
the corresponding governing equations on the (Q,q)-level.

1. Poisson bracket

The Poisson bracket on this level can be obtained ei
from the Poisson bracket derived on thef-level and using the
chain rule ~29! or via the Poisson bracket~30! using the
one-to-one transformation~56!. The result is given as
$A,B%~ Interface!5$A,B%~1.30!1E d3r F2qab]gS c
]A

dqab

dB

dJg
D1qagS dA

dqab
D ]bS c

dB

dJg
D1qbgS dA

dqab
D ]aS c

]B

]Jg
D

2
qabquv

Q S dA

dqab
D ]vS c

dB

dJu
D2

1

3 S qab1
2Q

3
dabD S dA

dqab
D ]ggS c

dB

dJg
D2

2

3
dabquvS dA

dqab
D ]vS c

dB

dJu
D

1
Q

3 S dA

dqab
D F]bS c

dB

dJa
D1]aS c

dB

dJb
D G2Q]gS c

dA

dQ

dB

dJg
D1S qab1

Q

3
dabD S ]A

dQD ]aS c
dB

dJb
D2A↔BG ,

~75!
ng
where the first bracket on the right-hand side is given
Eq. ~30!.

2. Dissipation potential

On the other hand, the calculated dissipation poten
has the same form as in Eq.~32!, except that the kinetic
phenomenological parameters have now different mean
due to their intimate dependence on the parameterL f intro-
duced on thef-level. Therefore,

C~ Interface!5E d3r F S dF

dqi j
D Lab i j

q ~c!

2 S dF

dqab
D

1S dF

dqi j
DL i j

qQ~c!S dF

dQD
1S dF

dQD LQ~c!

2 S dF

dQD G . ~76!

The phenomenological parametersLq, LQ, andLqQ satisfy-
ing the symmetry and positive semidefiniteness proper
are expressed by Eqs.~33!–~35! but with l f replaced byL f ,
y

al

gs

s

Q* by Qeq(c), and q* by qeq(c). Diffusion introduces a
characteristic length scale identified here by 1/Qeq which
gives a characteristic time scale for the system as

t5~GL f !
215h/GQeq. ~77!

3. Governing equations

Using Eqs.~63!, ~76!, and~77!, and following the same
procedure as before, we obtain the following governi
equations for the set of state variables (r,u,c,J,Q,q):

]r

]t
52]a~rva!, ~78!

]ua

]t
52]b~uavb!2]ap2]bsba , ~79!

r
]c

]t
52rva]ac2]aJa , ~80!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



ua
iff
iz
io

ng
re
co

t
a

io
u

ere
, we

ex-
and

ass
to

s:
ow
ch a
m-
ed

ore

on

ss

10239J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Dynamics of complex interfaces. I
]Ja

]t
52]g~Javg!2Jgkag2~12c!]bS JaJb

rc~12c! D
1]bS JaJb

r~12c! D2rc~12c!]aS 1

r

]w

]c D
1cQ]aS ]w

]QD1cqbg]aS ]w

]qbg
D1c]gsag

~ Interface!

2LJJa , ~81!

]Q

]t
52S va2

Ja

r~12c! D ]aQ2qag~kga2dga!

2
Q

3
~kaa2daa!2LQ~c!S ]w

]QD2Lab
qQ~c!

3S ]w

]qab
D , ~82!

]qab

]t
52S vg2

Jg

r~12c! D ]gqab2qag~kgb2dgb!

2qbg~kga2dga!1
qabqug

Q
~kug2dug!

2
Q

3
~ ġab2~dab1dba!!1

1

3 S qab1
2Q

3
dabD

3~kgg2dgg!1
2

3
dabqug~kug2dug!2Lab

qQ~c!

3S ]w

]QD2Lab i j
q ~c!S ]w

]qi j
D . ~83!

On this mesoscopic level, six coupled governing eq
tions are necessary to describe the flow behavior, the d
sion of the simple fluid as well as the deformation of the s
and shape of the interface. Here, the constitutive equat
are now expressed in terms of theQ and q variables. Here
the hydrodynamic pressurep is as in Eq.~43! and the stress
tensor,s, is given by

s5s~cfm!1s~ Interface!1s~diffusion!, ~84!

wheres(cfm) is given by Eq.~23!, s(Interface)by Eq.~44!, and
s(diffusion) by Eq. ~73!.

As already established on thef-level of description, dif-
fusion is strongly affected by the presence of the interface
well as by the applied flow. This is shown in the governi
equation of the diffusion mass flux of the simple fluid, whe
the stresses created by the deformation of the interface
tribute to mass transport. In turn, the gradientdab

5]b(Ja /r(12c)), entering the governing Eqs.~82! and
~83! for the interface variablesQ and q demonstrates tha
mass transport causes significant changes in both the size
shape. Such interrelationships among dynamics, diffus
and morphology become more transparent in the next s
section discussing asymptotic solutions.
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4. Asymptotic solutions

In this section, we look for some particular cases wh
some state variables become dependent. In this reduction
show that the model provided on the (Q,q)-level encom-
passes the well-known Fickian diffusion and also new
tended formulations where the changes of both the size
shape of the interface contribute to the mass flux.

When the relaxation characteristic time scale, (LJ)
21, is

smaller than the diffusion characteristic time scale,J equili-
brates faster and we can assume thatdJ/dt'0. Moreover,
we assume that the quadratic terms appearing in the m
flux governing Eq.~81! are small enough to be relevant
the process of diffusion.

In the following, we shall discuss two particular case
the first corresponding to a weak coupling between the fl
and diffusion and the second to a general case where su
coupling may become strong. In the latter case, we will de
onstrate that the transport coefficients are directly modifi
by the applied flow.

5. Weak coupling with the flow kab™LJ

Here, in addition to the above assumptions, we ign
the effect of the gradient of the applied flowkab

5]va /]r b assumed to be small compared with the fricti
coefficientLJ . Thereby, the governing Eq.~81! for the dif-
fusion mass fluxJ reduces to the following expression:

LJJa52rc~12c!]aS 1

r

]w

]c D1cQ]aS ]w

]QD
1cqbg]aS ]w

]qbg
D1c]bsab

~ Interface! . ~85!

Reformulating this equation, we arrive at the diffusion ma
flux,

Ja52rD]ac2rH]aQ2rGbg]aqbg1R]bsab
~ Interface! ,

~86!

where the interface stress tensor,s(Interface), is given by Eq.
~44!. The transport coefficientsD, K, G, andE arising in Eq.
~86! have the following explicit form:

D5
c

LJ
S ]m

]c D , ~87!

H5
c

LJ
S ]m

]QD , ~88!

Gbg5
c

LJ
S ]m

]qbg
D , ~89!

R5
c

LJ
, ~90!

where

r~m2m0!5w1~12c!S ]w

]c D2QS ]w

]QD2qabS ]w

]qab
D
~91!
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is the chemical potential per unit mass of the simple fluid,m0

is a reference value at the pure state. In view of the defini
suggested for the internal free energy density Eq.~64!, we
note that the chemical potential can be written as

m5mmixing1m Interface, ~92!

where

r~m2m0!mixing5wmixing1~12c!S ]wmixing

]c D , ~93!

r~m2m0! Interface5w Interface1~12c!S ]w Interface

]c D
2QS ]w Interface

]Q D2qabS ]w Interface

]qab
D .

~94!

Substituting these expressions into Eqs.~87!–~89!, we obtain

D5Dmixing1D Interface, ~95!

H5H Interface, ~96!

G5GInterface. ~97!

D refers to a cooperative diffusion coefficient, involvin
mixing and interface contributions. The mass transport of
simple fluid,s may be different in phases A and B. This
due to the different attractive/repulsive forces arising
tween the simple fluid molecules with the two phases. In
model, the governing equations as well as the transport
efficients ~e.g., diffusion coefficient! are parameterized b
the free energy density which explicitly involves the Flory
Huggins interaction parameters53 accounting for such inter
actions~steric, van der Waals,...!. The interaction paramete
of the simple fluid/blend mixture can be expressed as a fu
tion of the interaction parameters of the solvent with ea
component A and B, i.e.,xsb5fA* xsA1(12fA* )xsB , where
fA* 5VA /(VA1VB) is the volume fraction of phase A in th
blend b[A/B. This is justified by the fact that here, w
focus on the simplified case where the phases A and B h
equal velocities, and that the molecules of the simple fl
also move with a same velocity in both phases A and B. T
mixture, $s1b% is regarded as consisting of two fluids:
pseudo-one-component fluid,b and a simple fluid,s. In this
case, the mixing part of the free energy can be written
proximately as
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w~Flory–Huggins!>
RT

Vs
S fs ln fs1

~12fs!

xn
ln~12fs!

1xsbfs~12fs! D ,

whereVs is the molar volume of the simple fluid,R is the gas
constant,T is the temperature,xn is an average chain mono
mer number for the blend, andfs5Vs /(Vs1Vb) is the vol-
ume fraction of the simple fluid in the mixture$s1b%. Note
that the volume fraction of componenti is related to its mass
fractionci by rci5g if i , wherer is the mass density of the
whole mixture,g i5mi /Vi is the material density of compo
nenti ~m, mass;V, volume!. The equilibrium state is attaine
when the chemical potential of the simple fluid in its pu
state equals its value in the blendb, i.e., m5m0. The latter
equation provides an average value for the equilibrium c
centration of the penetrant in the blend, which is expresse
terms of the properties of phases A and B, since the m
fraction of the blend reads as

cb5
~12fs!

r
~gAfA* 1gB~12fA* !!.

The combination of Eqs.~86! and~63! generates a quan
tity to be denoted here byF (JJ) that does not involve the
kinetic and internal energy terms. Therefore,

F~JJ!5E d3r S J2

2rc~12c! D
5E d3r S 1

2c~12c! D @rD2u¹cu21rH2u¹Qu2

1rGi j Gkl¹qi j ¹qkl1R2u¹.su22rDH¹c.¹Q

12rDGi j ¹c .¹qi j 12rHGi j ¹Q.¹qi j

22R~D¹c1Gi j ¹qi j 1H¹Q!.¹.s#. ~98!

Equation ~98! indicates that fluctuations may occur
the concentration as well as in the size and shape of
interface. The first term on the right-hand side (}u¹cu2)
is well-known from irreversible thermodynamic conside
ations,54 while the other terms are new. Performing the sa
calculations for the diffusion stresses~73!, we arrive at
affect the
sab
diffusion5

1

rc~12c!
@r2D2]ac]bc1r2H2]aQ]bQ1r2Gi j Gkl]aqi j ]bqkl1R2] isa i

Interface] js j b
Interface1r2DH~]ac]bQ

1]bc]aQ!1r2DGlm~]ac]bqlm1]bc]aqlm!1r2HGlm~]aQ]bqlm1]aQ]bqlm!2rRD~]ac]ggsgb

1]bc]gsga!2rRH~]aQ]gsgb1]bQ]gsga!2rRGi j ~]aqi j ]gsgb1]bqi j ]gsga!#. ~99!

Fluctuations in the concentration and in the size and shape of the interface create additional stresses that may
flow dynamics. Such phenomena have in fact been observed in some sheared polymer solutions,17–19 and it would be
interesting to establish whether similar behavior occur in immiscible solutions under an applied flow.
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To summarize, the governing equations are

r
]c

]t
52rva]ac1]a~rD]ac1rH]aQ1rGbu]aqbu

2R]bsab
Interface!, ~100!

where the momentum balance is given by Eq.~79!, the pres-
sure is given by Eq.~43!, the stress tensor is given by E
~84!, the mass flux is given by Eq.~86!, and the governing
equations for (Q,q) are given by Eqs.~82! and~83!, respec-
tively.

6. Coupling with the flow

In this section, we keep the influence of the gradient
the applied velocity which is assumed to be of the sa
magnitude~or larger! than the friction coefficient,LJ . Equa-
tion ~81! now reduces to

LJJa52rc~12c!]aS 1

r

]w

]c D1cQ]aS ]w

]QD
1cqbg]aS ]w

]qbg
D1c]bsab

Interface2Jgkag2Jakbb .

~101!

The last two terms on the right-hand side are the two ad
tional terms that were ignored in Eq.~85!. Rearranging Eq.
~101!, we arrive at the following form for the diffusion mas
flux:

Ja52rDag* ]gc2rHag* ]gQ2rGbuag* ]gqbu

1Rag* ]bsgb
Interface, ~102!

where now the transport coefficients are

Dag* 5
D

S 11
kbb

LJ
D dag1

kag

LJ

, ~103!

Hag* 5
K

S 11
kbb

LJ
D dag1

kag

LJ

, ~104!

Gag«u* 5
G«u

S 11
kbb

LJ
D dag1

kag

LJ

, ~105!

Rag* 5
E

S 11
kbb

LJ
D dag1

kag

LJ

. ~106!

In the presence of the flow, the transport coefficie
transform into higher order tensors. The flow affects the p
cess of diffusion which becomes therefore highly ani
tropic. These off-diagonal terms in the transport coefficie
may generate new fluxes that cannot be observed in the
sence of the flow.

The governing equations are now
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]c

]t
52rva]ac1]a~rDag* ]gc1rHag* ]gQ

1rGbuag* ]gqbu2Rag* ]bsgb
Interface!, ~107!

where the momentum balance is given by Eq.~79!, the pres-
sure is given by Eq.~43!, the stress tensor is given by E
~84!, the mass flux is given by Eq.~102! with Eqs. ~103!–
~106!, and the governing equations for (Q,q) are given, re-
spectively, by Eqs.~82! and ~83!.

V. CONCLUSION

We have addressed, in the framework of GENERIC
systematic study on two levels of description on the relati
ship ~i! between rheology and morphology in a compressi
immiscible blend A/B embedding an interface and~ii ! among
rheology, morphology, and diffusion in a compressible m
ture of one immiscible blend~A/B! and one simple fluid,s.
We first provide a kinetic description,~denoted by the
f-level! and then use it as a starting point to derive an av
aged mesoscopic approach, (Q,q)-level. The use of the GE-
NERIC formalism guarantees the consistency of the dyna
cal models with thermodynamics.

In the former investigation, the compressible immiscib
blend A/B is characterized by its mass density, its moment
density vector, and structural variables characterizing the
terface. The latter are chosen to be either the area den
distribution functionf (n,r) or its moments, the scalar are
densityQ(r ) and the shape densityq~r !. New expressions
for the extra stress tensor on both levels of description
obtained and include in addition to the Laplace contributio
the anisotropic deformation of the interface. This shows t
the flow dynamics depend explicitly on the interface stru
tural changes. By expressing the dissipation for the variabf
as a simple relaxation, we develop richer and more gen
expressions for the relaxation phenomena occurring on
averaged (Q,q)-level. We emphasize that the latter formul
tion is derived rigorously and completely from thef-level of
description. As a result, we were able to distinguish betw
the direct and indirect relaxation processes involved in
dissipation of the size and shape of the interface. Many p
vious models are recovered as particular cases.

In the latter investigation ~rheology, morphology,
and diffusion!, the state variables of the whole mixtur
$b[A/B1s%, are the mass densityr(r ), the overall momen-
tum densityu~r !, the mass fractionc(r ) of the simple fluid
and its diffusion mass flux vectorJ~r ! and the structural vari-
ables accounting for the interface state variablesf or Q andq.
We show that the presence of the solvent in the immisc
blendb directly affects the flow dynamics and the morpho
ogy of the interface. A new gradient of the diffusion ma
flux of the simple fluid,

dab5
]

]r b
S Ja

r~12c! D
emerges naturally in the governing equations of the interfa
Mass transport becomes non-Fickian due to the dyna
changes occurring in the interface. For the particular c
where the inertia of the diffusion mass flux becomes irr
evant, we have found that the transport coefficients beco
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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explicitly dependent on the surface tension of the interf
G(c) and also on the velocity gradient of the applied flo
kab5]va /]r b .

These studies can be regarded as an interesting fra
work for discussing other problems involving couplin
among diffusion, morphology and rheology in blends of tw
viscoelastic fluids and multicomponent mixtures. We sho
point out that we here examine only processes that are
from critical points. In the vicinity of criticality, the thicknes
of the interface and the interfacial tension become also c
trolled by molecular diffusion between the two phases A a
B. This plays a determinant role for the dynamics of t
interface.55

In Paper II, we investigate the particular situation whe
the mixture is not subjected to any external flow and forc
.

ro-
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APPENDIX: POISSON BRACKET WITHOUT
THE DECOUPLING APPROXIMATION

The Poisson bracket without any closure approximat
has the following form:
$A,B% Interface5E d3r Fqab]gS dA

dqab

dB

dug
D2qagS dA

dqab
D ]bS dB

dug
D2qbgS dA

dqab
D ]aS dB

dug
D2

Q

3 S dA

dqab
D S ]bS dB

dua
D

1]aS dB

dub
D D2S qab1

Q

3
dabD S dA

dQD ]aS dB

dub
D1

1

3
d i j S qab1

Q

3
dabD S dA

dqi j
D ]aS dB

dub
D1Q]gS dA

dQ

dB

dug
D

1nknlnjni S dA

dqi j
D ] l S dB

duk
D2A↔BG ,

which involves the fourth-order momentnnnn5*d2nnnnnf (n,r ,t).
es.
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