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Dynamics of complex interfaces. II. Diffusion and morphology
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In this contribution, we theoretically investigate the isothermal mass transport of a simple fluid into

a blend of two immiscible Newtonian polymers. Using internal state variables, we derive a nonlinear
formulation that addresses the effects of the diffusion/interface coupling on both the mass transport
as well as on the morphology of the interface. The approach uses a scalar and a second-order tensor
to directly track the dynamic changes of the size and shape of the interface. The mass flux governing
equation includes new terms that lead to non-Fickian behavior attributed to the viscoelatic
contribution of the interface. In turn, the size and shape of the interface are modified by diffusion.

In one-dimensional analysis, we examine the nature of propagation of both nonlinear hyperbolic and
linear dispersive waves. Explicit formulas for the characteristic speed, phase velocity, and
attenuation are provided. @003 American Institute of Physic§DOI: 10.1063/1.1571053

I. INTRODUCTION terface, we first provide an outline of previous investi-
gationd° devoted to the effects of the diffusion/
Mass transport of small molecules into structured mediaonformation coupling carried out for polymeric media that
does not generally obey Fick's lawdhe deformation of the do not involve an interface. Even though the blend consists
internal structure couples to diffusion and brings about inerof Newtonian components, it may behave as a viscoelastic
tia and viscoelasticity into the molecular process. In this pamedium due to the presence of the interface and its deforma-
per, we investigate, in the absence of an applied flow andéion. Therefore, in both couplings, the internal structire.,
external forces, the behavior of mass transport of small molthe interface in the former and the conformation in the latter
ecules into blends of immiscible Newtonian polymers. Sinceexhibits viscoelasticity. Due to the large number of both ex-
the polymers are Newtonian and do not interpenetrate, thgerimental and theoretical investigations devoted to the
internal structure of the mixture stems exclusively from thediffusion-conformation/stress couplifg®® a good under-
presence of the interface separating the different immisciblgtanding of the collected data has been reached. For these
components and not from their conformation. The interfac&complex media, Fick's laws and their modified forfhsail
may be deformed and distorted by internal diffusion fluxesito provide a reasonable explanation for the experimental ob-
and as such, interesting and unexpected non-Fickian behagervations. Indeed, these laws do not take into account the
ior may be observed. As the conformational changes of theontribution of the internal structure; a property that is inher-
polymers do not play a significant role in the process of masgnt to complex fluids. In these structured fluids, the micro-
transport, the non-Fickian character arises mainly from thetructure may strongly interact with the diffusion process to
coupling between diffusion and interfacial changes. Our aintause inertial and viscoelastic effects. From a qualitative
here is to study the effects of the diffusion-interface couplingpoint of view, when the relaxation characteristic time scale is
on the behavior of both the mass transfer as well as on thiarger than or comparable to the diffusion characteristic time
interfacial morphology changes. Examples where results ofcale, deviations from Fickian diffusion are expected?
this study are applicable involve immiscible polymeric Thereby, the internal structure changes have to be associated
blends with tailor made morphology. with the mathematical formulation of diffusion. This has
Before studying the diffusion/interface coupling oc- been achieved by requiring the compatibility of diffusion
curring in blends of immiscible polymers embedding an in-with thermodynamics. The driving force for diffusion is no
longer the gradient of the concentration as stipulated by
3Author to whom correspondence should be addressed. Electronic mail-ICK'S 1aw but rather the gradient of the chemical potential.
aelafif@tulane.edu and alielafif@hotmail.com As a result, the expression for the mass flux contains addi-
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tional terms accounting for the viscoelastic contribution. Duethe interface undergo significant changes to influence mass
to the anisotropy brought about by the internal structure, itdransport. In these four special cases, the inertia in the mass
state variable is generally chosen to be a second order tensflux can be neglected when considering mass transport.

Two choices can be adopted: an indirect macroscopic de-

scription embodied by the stress tensey,and a direct and

more microscopic description given by the conformation tendl. MODEL DERIVATION

sor of the polymeric chains. The latter state varlablg is gen- \vo investigate the mass transport of a simple flsid,
erally recommended. To close the set of the governing equa- : oL .

: S : g ~such as a solvent into a blend of two immiscible Newtonian
tions, the non-Fickian formulation necessitates a time

evolution equation accounting for the deformation of the in_polymers,bEA/B. In our model, we regard the immiscible
d 9 . : blendb as a pseudo-one-component fluid in which an inter-
ternal structure. Based on the experience collected in th

field of rheology?’! several viscoelastic models, if appro- face is embeddecsee Papen) In the absence of interpen-

. P . etration between the immiscible fluids A and B, the whole
priately adapted to diffusion, can be used. In previous mac:

: - _ _ mixture, can be regarded as consisting of two flditigh
roscopic descriptions, the Maxweflthe Kelvin-Voig?® and +s}: one is the psgudo—one—componengt] immiscible b$lbnd
the Jeffrey-typ& models have been adopted where the stresa’ith an apparent mass densjsy, and an apparent momen-

tensor,o, was chosen as the state variable. In more microg m densityu, = ppvi, (b refers to blengland the other is the

scopic descriptions, where the conformation tensor has beeﬁmple fluid, s with an apparent mass densjty and an ap-
selected as a state variable, the polymeric chains have beﬁﬁrent morﬁentum density,= pve. Since, the solvents
S sYs+ 1

described as Hookean or more generall;goas finitely extenz 4 the plendp are miscible they can be regarded as two
sible non linear elastic dumbbel{EENE-P.“" In this case,

X - . interpenetrating media. As discussed eaflRaper |, and ref-
the models were appropriately modified to take into acCOUNg e ces therejnwe choose to describe the interface by its
the volume changes of the polymeric fluisivelling attrib-

area density distribution functiof{r,n,t) or by its moments:

uted to diffusion._ o _the scalaiQ(r,t),
Here, our objective is to propose a new approach suit-

able for discussing non-Fickian behavior that is caused by
the interface/diffusion coupling occurring in immiscible
(Newtonian polymeric systems embedding an interface. We,, 4 the traceless second order tensor
aim at deriving a comprehensive model that includes both
the effects of inertia in the diffusion mass flux and of the

viscoelasticity resulting from the presence of the interface.

Reductions to special cases, such as inertia-free models, Wilanoting, respectively, the interfacial area and the anisotropic
be discussed based on the nature and the physical propertiggentation tensor densitiekis the unit second order tensor,
of the penetrant/blend overall mixture under investigation. In,, is a dyadic tensor, and?n is the differential solid angle.
this part, we investigate predictions implied by the family of These two quantities are defined as moments of the distribu-
models introduced in Paper I. We restrict our investigation tQion functionf representing the area density of the interface.
diffusion (soaking, sorption, desorption, permeation, JetC. Therefore the state variables of the whole mixture become
under mechanical equilibrium and in the absence of both, "y  u,  Q,q).

overall flow and external forces. The model involves in ad- "~ ysing the one-to-one transformati¢B6) given in Paper

dition to the mass fraction, the mass flux densltys an | the whole mixture is described by the global mass density,
independent state variable to conform to the irreversible therp: ps+pp, the overall momentum density(r)=ug(r)

modynamics approach&s®® Furthermore, the interface con- 4y (r), the mass fractionc(r)=pe/(ps+py) and the
tribution must be included into the formulation. As discussedmass ~ flux  density J(r)=(py/(ps+ pp))Us(r) = (ps/(ps

in Paper |, we characterize the interface by two state vari- , y)u,(r) of the simple fluid and the two interfacial vari-
ables, a scala@ and a second-order tensqr denoting, re-  aples defined above. We have derived in Paper | equations
spectively, its size and shafeTherefore, the set of the in- governing the time evolution of the state variables
dependent state variables used in this theoretical fOI’mU|atiO('b,u,C'J,Q,q)_ In this paper, we limit our study to the fol-
for describing the evolution of such mixtures i5,4,Q.d).  lowing special situation; we consider the mixture, in the ab-

The corresponding governing equations appear in Sec. lkence of an applied overall flow,
For the qualitative analysis of solutions of the governing u=0 3

equations, we use the method of characteristics for discuss-
ing the formation and propagation of discontinuitidyper-  and under mechanical equilibrium
bolic) and linear(dispersivgé waves in a one-dimensional
setting(Sec. lll). In the last section, we discuss some limit-
ing cases of the model and provide new reduced theoreticatherep is the hydrodynamic pressure given by E4@) and
descriptions, in which some of the state variables become is the extra stress tensor whose expression gis
dependent. This analysis leads to models describing diffusior JJ/pc(1—c) + ot"ea€) The quantity,o('™e) js pro-
into blends in which(i) the behavior is dominantly Fickian; vided by Eq.(44) (see Paper)land denotes the contribution
(i) the interface evolves isotropicallyiii) the size is con- of the interface. The notation,=d/dr , « €{1,2,3}, is used
served, but not the shape; atid) both the size and shape of throughout this paper, whereis the position vector. Under

Q=f d?nf(r,n,t), (1)

q=Jd2n(nn—%l)f(r,n,t), 2)

ﬁap-i-(?BO'Ba:O, (4)
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the constraintg3—4) and the overall incompressibility re- o 5
quirement p=const), the model derived in PaperEgs. A =f d*n(f(n,r,t)—f*) Ay, (11
(78)—(84)] leads to
Jc Aﬂ-Q=J d’n(f(n,r,t)— ) ALnin;— 351, (12)
pE:_&aJai (5)

where A ; stands for the rate of relaxation of the distribution
functionf. f* is a certain local equilibrium distribution func-
)_C&a()DC_AJ‘]al (6) tion for the deformed interfacial area density. The internal
free energy densityp = ¢(c,Q,q), which still remains un-
specified at this point, is an independent function of the mass

9, 5 J.d,
a7

@ :( Ja )& Q+q,.d ( Jy ) flux densityJ. Its expression can approximately be written as
ot \p(l-c)) 7\ p(l-c) a sum of two contributions: a Flory—Huggitiserm for mix-
Q J, ing and an additional term describing the interface contribu-
¢(c.Q.q)=¢™M(c) + ¢, Q,q). (13
aqa/s: J, )& Gupt Ua &B(L) The formulations(5)—(9) provide a three-dimensional
at p(l=c)) 7 Plp(l-c) and nonlinear description fdf) diffusion, (ii) interface dy-
J, gy J, ngmjc changes, ap(ﬂi?i) Qistribution of stres;es created
+qﬁyaa< (1—c))_ 0 y( (1—c)> within the polymeric immiscible blend. Four independent
p P state variables;, J, Q, andq, with their coupled governing
Q J, Jg equations, are necessary for describing the time evolution of
+§ aﬁ(p(l-C)) f?a(p(l_c))> the mixture under investigation in mechanical equilibrium
and in the absence of external flow and forces.
1

2Q J, Equation(5) is the mass conservation of the simple fluid
Qap T ?5%)‘37(,)(1—(;)) (penetrants continuity equatiprEquation(6), which intro-
duces inertia, is the time evolution equation for the mass
_ E(S P ( Jo )_AqQ _AD flux, J. The motivations for introducing inertia into diffusion
3 289077 p(1—c) apPQ Rapii Payj: stem from both physical insight and experimental points of
®) view. It is well known that the diffusion parabolic equation,
obtained via Fick’s laws, predicts a propagation of diffusion
These equations are supplemented by the expression, signals with infinite speetf*® Consequently, such a propa-
gation will instantaneously influence the whole system; a
phenomenon which is not physically admissible. Due to ex-
perimental measurements of mass transport carried out in
polymeric solutions, gels, and particularly for glassy sys-
_ Yaplyv _ E 8.4(Qeo+ 24 ) tems, it has become obvious that inertia may play a key role
Q Fan 3 e e¥QT HvoPa, in the occurrence of non-Fickian behavior. An interesting
1 case that has aroused the interest of many groups is the so-
Qupt §Q5aﬁ> ¢q, (9) called case Il diffusio,®” also known as shock-wave-type
mass transport due to its resemblance with shock waves ob-
erved in compressible gas€s® Generally speaking, the
Imitations of the Fickian description are found to arise
mainly from its inability to correctly include two important
non-Fickian effects: one related to relaxation processes and a
second one to nonlinear phenomena.
The attempt to describe nonlinear effects and relaxation

=deldc, po=d¢ldQ, =del dq,z to denote the partial e )
.(P . #Q q.) Q a,~ 09! 0as . P processes based on the concept of inertia has been the subject
derivative of with respect tac, Q, andq, respectively. We 41,13,20,25-27,35,36,39-43;
recall that the governing equations are parameterized b thOf several works. came about as a
free ener agd b thg kiﬂetic coefficierl)th AQ AQM Y Matural extension to existing linear constitutive equations in
9P y the Xine . J o order to consider nonlinear effects observed in complex me-
and A% entering the dissipation potentiali. These kinetic

. ) o S dia. The physical reason has been mainly attributed to the
parameters, which satisfy the positive and semidefinite re- phy y

. L . . interactions occurring between the medium and applied gen-
gg;rse;eg;sp:enrﬂ)ﬁ)lled by the GENERIC formalism are written eralized forces. Generally speaking, when the coupling be-

tween the applied forces and the response of the medium
becomes significant, one expects the occurrence of nonstand-

3

2
Interface __
agy?aerace_zqaygoqyﬂ_’_qa,BQDQ—’— 3 QanB

2
_§§ij

representing the internal stresses created by diffusion withi
the immiscible fluid. By solving the governing Eq%)—(8)
we arrive at an explicit expression for the distribution of the
interfacial stresses in terms of the state variabl&3, andq.
In Egs. (5—(9), we have used, the following notatiog;

Agﬁ” = f d2n(f(n,r,t)—f* JA¢[nininng— %5aﬁninj ard phenomena whose descriptions are beyond the scope and
range of validity of linear laws, such as Fick’s law or Fouri-
- %5” nyNg+ 35”— Oapls (10 er’s law, for example. Since the medium actively participates
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in such physical processes, its response, dictated by its inteenced by the diffusion processes. These nonlinear terms are

nal structural changes, has to be explicitly taken into acnecessary if the fluid undergoes volume changes or in case of

count. One should then identify an appropriéte a set of  an abrupt propagation of the solvent frdfit’ Moreover, as

internal state variablés) that provides the best description of in Paper |, we consider that both direct and indirect processes

these structural changes. In the case of mass transport withentribute to the relaxation of the interface through cross

out chemical reactions, the changes of the internal structureoupling terms. This assumes that the relaxation processes of

are mechanical in their nature, and thereby provide an indithe size and shape are strongly related. However, a decou-

cation of the type of the internal state variables to be choserpling may occur if the interface evolves either isotropically
Equation(6) has the advantage of providing an extension(q=0) or by conserving its size@=const.) during diffu-

to Fick’s theory when the interface couples to diffusion in thesion.

absence of external forces. To gain a better physical interpre-

tation, we write Eq. (6) (usmg CAy®c=CPccd,C L. TRAVELING WAVES

+ CzpCQ&aQJrc%qﬁy&aqM) as follows:

Here, we examine the propagation of both hyperbolic

%: 9 (J“Jy) — A3+ pD(d,c+Ad,Q and dispersive waves produced by disturbances in the mass
at "\ pc ¢ “ ¢ fraction. To discuss solutions of Eq&)—(8), it is useful to
+Ep,040s,), (14) rewrite them into the compact form
JuU
where —r TMYU=—NU, (19
c
D= % (15  whereU=(c,v,Q,q)" is the set of the state variableéd, and
J

N are the matrices that arise by identifying EG9) with
Eqgs.(5)—(8). We have used the velocityof the solvent front
propagation, as a state variable, instead of the diffusion mass
flux J=pcv. Thev-description is well suited for discussing,

is identified as the diffusion coefficient. Equati¢t¥) also
involves a scalar

A:@, (1) ~ mathematically, the nature of traveling waves, while the
Pec J-description is generally used for a direct comparison with
and a second order tensor measured data obtained by the classical experiments of mass
transport (sorption, permeation, pervaporation, gtcAs
Pea,p many experimental observations are unidirectional, we de-
Eaﬁ:(P_CC' 17) rive predictions of Eq(19) for a one-dimensional setting. In

which depend on the state variabesQ, andqg. We refer to

this setting,U=(c,v,Q,q)", wherev is the component of
the velocity in the direction of diffusion. As diffusion in

the second derivative af with respect ta, (¢, Q and €,0)  polymeric fluids is usually accompanied by swellfy the

by o= ?@ldc? @cq=3"@ldCiQ, eq,,= > @lICIU s, changes occurring in the internal structure are assumed to be
respectively. The quantitiegy and E compare, respectively, significant in thex-direction representing the direction of dif-
the effects of the interfacial tension and of the anisotropy ofusjon. Therefore, in this simplified picture, the symmetry of
the interface, with the contribution of the total internal free this problem reduces the number of the components of the
energy. Such a qualitative interpretation results from theensorq to one independent variabtg, to be denoted by.
physical insight expressed in the internal free energy densityyhile the off-diagonal components vanish, the remaining
(13). If the contribution of the interfacial free energy density two diagonal components are expressedggs= —q/2 and

is written as d,,~= —9/2, satisfying the traceless property of the tengor
onerface (0O + La(c)q:q, (18) ;Sgieg;ently, the matricéd andN arising in Eq.(19) are

wherel is the interfacial tension andlis a parameter related 0 0

to the degree of anisotropy, thereforgo=I1"c and ¢ v ¢

= a.g. On the other hand, in view of Eq&L3) and(18), we Ay U Ay A

s_ee mtlgilg the secongl derivative @fwith respect toc is ¢cc Az A8z Az 0 |’

=@ee T QI+ (0:9/2) ., Where the first term on the a a 0 a

right-hand side is given by “"=<RT/V,, whereR is the av a2 3 20

gas constant] is temperature, an¥ is the solvent molar 0 0 0 O

volume. It is thus clear that the scalaand the second order 0 Ay O O

tensorE are strong functions of concentration provided the  N= 0 0 ,

surface tensiorl” and the anisotropy parameter are not Vi V12

constant. 0 0 vy v

Fipally, the Ia;t two Eqs(7) and(8) are the goverping where, for the sake of brevity,
equations for the interface state variables. By involving ex-, i-iion:
plicitly the mass fraction and the diffusion mass flux, the
behavior of the interface is directly and nonlinearly influ-

we have used the following

PA21= Pecy  PA2T ey PA23T 3Pcq
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c a ri_
= o j2 ___i-3 P
33~ (1-c)’ 1 c(l-c) (1-c)*’ =34,
fo=a+ 3. r1=q—6+§Q,
for the parameters arising in mati and
) :AQ(PQ . :3AqQ¢,q § :Aqu)Q
1 Q ’ 12 q ’ 21 Q ’
(22)
_3Aq<pq
Vo= y
q

for the ones used in matriX. The symmetry property afl

requires thagpo=3Q¢,.
We use the theory of characteristits® to study the

nature of the nonlinear wave propagation due to the concen-
tration disturbances. The characteristics corresponding to Eq.

(19) are the curves— (t(7),x(7)) in the (x, t) plane, where

Tis a parameter. These characteristics are generated, respec-

tively, by
dt_l dX_ cv
dr 7 dr 1-c¢’
at_,
dr 7
dx 1 c 12
g.vT » Cpec™ 7-¢ (FoPeQt 3rigeg) ||
dt_,
a__ ’
dx 1 c 12
a U7, Cpee™ 7 (ToPe@t3rigeg) | | - (23

The set of the governing E§19) with Eqg. (20) is time-
hyperbolic if the eigenvalues il are real. This requirement
leads to the following condition:

El Afif et al.

isotropic can be deduced by settigg,=0. Such waves can

be written ad) =Ugqt U exp(i(kx+ wt)), wherew is the real
frequency andk refers to a complex wave number. By insert-
ing the expression of) into Eq. (19) and keeping only the
terms that are linear itJ, we arrive at the dispersion relation

k=k(w),
k\ - i\~
detl+|—|M—|—|N|=0, (26)
w w
whereM =M |qandN=N|g,. By solving Eq.(26), we arrive
at
k 2
(—) =X+iY, (27)
w
where
2
w AlBl+Asz w(AlBZ_AzBl)
Xo)=—pzpz Y@= 2z
(28)
written as functions of the following parameters:
Ay B>
A:Al+|_, B:Bl+|_,
w w
with
cay
A= k+ —5 (Vi—viva) |
w eq
Az=[azg(v1al 1823+ o@24) — T V2803~ I1V1824)
—cap(v1+v5) ey
29
[ Vi v1vy— A(vi+ ) 29
Bi=|1 2 )
w eq
A (V2= viw,)
BZZ_ A+V1+V2+% .
eq

Equation(26) predicts two wave solutions, but one is dis-

1 c carded by considering positive values of wave speed. There-
K= Py Cocc™ ﬁ(rO‘PcQ“L 3r1¢eq) | =0, (24 fore, the phase velocity has the following form:
where the characteristic speed of these nonlinear hyperbolic )

waves is given by/k. Moreover, the solutions are stable if

the real parts of the eigenvalues fare non-negative. The
requirement of stability leads to

A,=0,

(30

2
N X5 %2

and the attenuation of the intensity is given by

/ 2
a(w)=—2lm(k)=—vaph=—wY W

Urh T Rek)

25

v1=0, v,=0, v=\riv,. 29 (31)
Expressiong24) and (25) constitute the stability conditions . - .
for diffusion described by Eq19) in the one-dimensional At the high frequency limitw—ce, we arrive at
setting. The waves obtained as solutions of these equations v = 1keq (32
are called osmotic waveés.

Now we turn our attention to linear dispersive waves. L Ayt vieqt Vaed Kegt Az
These waves are created by small-amplitude perturbationsto @ = . (33

Keq\/Keq

an equilibrium state characterized bl Cef0,Qeq,0eq) as-

sumed to be time and position independent. Here, we assume The phase velocity reduces to the characteristic speed of

that the interface is locked into an anisotropic shape.§s

the hyperbolic waves, and the attenuation has a positive

different from zero. The special case where the interface isalue discarding any amplification of such waves. Note that
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these two quantities are frequency independent. We recover .  Q

the results predicted by Fick’s laws by setting in E@2)— Q= o 3 oy (36)
(33 Q=0, q=0 »=0, and»;=0 (Vi,j). We recall that ° °

Fickian diffusion presents some limitatiofissuch as a pre- Where

diction of infinite values for the speed and intensity attenua- L2
tion at small relaxation timesA(;—o). These limitations Td:_o (37)
are removed by introducing inertia into the process of diffu- Do

sion which is expressed both in the equation of the mass fluyxefers to the diffusion characteristic time scddy, Qp, and

and also by taking the influence of the interface into account_; are the diffusivity coefficient, the interfacial size density,
At the low frequency limit,w—0, Egs.(30—(31) be-  and the thickness of the medium, respectively, at the initial

come state.Cgq is the equilibrium mass fraction. The dimension-
vgh(w)z 2Dw, (34) less form for the mass flux time evolution equation is

0 2w &:_v ‘Ja‘-]'y
(@)= 5 (35 PR e

whereD is the diffusion coefficient defined in E¢L5). Both

the phase velocity and the attenuation are directly propor-
tional to the square root of the frequency, and therefore tend ~ ~ ~ .
to zero. These results agree with previous developments ofhere D=D/Do, A=A/go, andE=E/g,. The quantities
tained in gasé® and in polymeric fluid® where these quan- 9o @ndg, are dimensionless groups of physical parameters
tities become functions of one parameter, the diffusion coefl® P& defined. This equation involves three dimensionless

1 - - - o~ o~
—D—eJ(Ja+D(VaC+AVaQ+EﬁyVaﬁﬁy)), (38

ficient. quantities, the most important of which is tlleDeborah
number,
IV. LIMITING CASES T3
. : . Degy=—, (39
In this section, we look for some particular cases of the Td

family of models (5)—(9), where some state variables be- wherer;=A; ! is the relaxation time for the diffusion mass

come dependent variables. In this reduction, we show thg}, qensity. Several special cases arise as dictated mainly by
the family encompasses the well-known Fickian diffusiony, magnitude of the dimensionless number, Dinertial

and also new extended formulations where the changes @frmns pecome relevant for largeJaDeborah number. The
both the size and shape of the interface contribute to then, gy of this case with flows of high Reynolds number is
mass flux. The reduction to simpler models requires us t%traightforward. For small De diffusion is mainly governed

elucidate, among others, the relevance of inertia in nonstanq)-y the Fickian term and the extension provided by the

ard diffusion processes. The latter depends on the Systegjanges occurring at the interface. Two other numbers, of
under consideration, and in particular, on the time scales i”l’mportance in this case. are

volved. Vrentaset al?=2* have applied the concept of the
Deborah number to mass transfer which provides a very use- [,QuVs aoQgT/S
ful tool for a determination of the range of validity of inertial Yo=—gry aMdOi=—p7 - (40)
as well as viscoelastic effects. The Deborah number com-
pares the characteristic time scale of the relaxation of the ~The quantitied’, and «,, are the interfacial tension and
internal structure described liponconservedinternal vari- ~ the modulus of anisotropy, at the initial state, respectively.
ables to the characteristic time scale of diffusion. Here wé/\Ve will discuss, in the following sections, the implications
have two types ofnonconservedstructural state variables, Of the magnitudes of these two groups on diffusion. Note that
one is the diffusion mass flux and the other variables aréhese two groups of numbergq and g;) show that the
associated with the interface. Each nonconserved variableehavior of mass transport intimately depends on the physi-
relaxes to its equilibrium state in a certgior a set of re-  cal properties of both the blend and of the penetrants as well
laxation timés). Following Vrentaset al_,21_24 and Neog:ﬁ1 as on the experimental conditions. Finally, for intermediate
we define aJ-Deborah number as a ratio of the relaxationvalues of Dg, mass transport is influenced by both inertia
characteristic time for the diffusion flux to the diffusion char- and the deformation of the interface.
acteristic time scale. The treatment of interfacial variables ~Now let us turn our attention to the interface time evo-
requires particular consideration, since it depends on the nadtion equations. Two possible cases arise from the presence
ture of the morphology of the interface and the probableor absence of a length scale in the blend. If the interface has
presence of a length scale. To identify dimensionless quant® length scale, it becomes possible to define a time scale and
ties that are of importance to this dynamic process, we introtherefore a Deborah number. The relaxation time becomes
duce the following dimensionless quantities for the time,related to the size of the droplets constituting the minor
space, and the state variables: phase. In the case of spherical droplets with an initial radius
R,, the relaxation time scale of the interface is given by
:i C~_ Toq= 370P/ (Qol'), Wherezn, is the matrix constant viscos-
Lo Ceq  PCedo’ ity, Q,=3¢/R, refers to the interfacial size density, apds

JTd

6=tirg, d,=—V,, C=
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the volume fraction of the minor phase in the blend. If theequilibrates faster than the interfacial variabl@®endq and
system is composed of two co-continuous media, there is nwe can assume thatJ/dt~0 in Eq. (14). The mass flux
natural length scale in the systéfn. density,J, becomes a dependent state variable. In the follow-
Let us focus on the case of blends possessing a lengtihg, we shall discuss four models derived as special cases of
scale for whichA ;=AY is constant. The dimensionless form the inertia-free formulation where thkDeborah number is

of the governing Eqs.7)—(8) reads as follows: considered very small compared to unity.
9Q G e
_(gz_(; +_(§ , (41)
J J diffusion J relaxation A. c-model
IUop  IGap T ap 12 It is well known that diffusion in simple media is ad-
20 a0 difiusion elaxation (42) equately described by Fick's laws. In such systems, the
. =0 e _ changes of the internal structure do not contribute to the
The interface Deborah number defined as diffusion process and only the mass fraction suffices to de-
- scribe the behavior of mass transport. The Fickian behavior
Dquzﬂ (43) is also expected to occur in blends of immiscible components
Td

in which the coupling between the diffusion and the changes
emerges naturally in the relaxation part of the interface govof the interfacial morphology are very weak. Consider,
erning equations as for instance, mass transport of methanol into a thin film
_ of the immiscible blend[polydimethylsiloxane (PDMS)/
9Q 1~ olyisobutylene(PIB)] of thickness 10% m at room tem-
T = e (@ @B M WFa,)  peraure. The metha
relaxation q

perature. The methanol has a molar volume of 408 °
449y and a diffusivity of the order of 10" m?/s. The blend
has a viscosity of 100 P48, an interfacial tension of

T ap O 2.4x10°2 N/m,** an anisotropy modulus estimated at
- - (Aap—Tap) PQ 10~ % N,*® a minor phase volume fraction of 0.5, and a size
relaxation q density of 3x10* m~ . Therefore, the coupling constants
i TG arising in Eq.(38) are approximately equal ig,~10"° and
+(”T"B— 1 "ap h‘;’ﬁ--)’ (45  g1~107'° Sincegy<1 and gl<1, we can assume that
Q Q* ! Max(|Al,|E,|)<1 in Eq.(14). Therefore, we can ignore, in

addition to inertial terms, the third and fourth terms on the
right-hand side of Eq(14) or (38) and arrive at the familiar
expression for the Fickian mass flux,

whereq* andQ* are certain local equilibrium values for the
shape and size of the interface, ape ¢/ (I';Q,) is a nor-
malized expression of the internal free energy density.

The presence of these four dimensionless groups (De J,=—pDd,cC. (46)
Degq. 9o, andg,) in the family of models provides us with o .
several special cases. Our aim, in these papers, is to derive a A cOmbination of Eq(46) with the mass balance E¢)
comprehensive model under a general form and to discuss it§2dS o the diffusion parabolic equation,
special cases based on the importance of its dimensionless ;¢
numbers. In the following, we shall discuss in more detail ~ —-=du(Dd,C) (47)
the relevance of inertia in the mass flux and discuss some
particular situations encompassing the Fickian descriptiomlescribing the time evolution of the solvent concentration
and some of its extended forms. Such a reduction can biato the Fickian immiscible blend. We recall that E¢7) is
seen as analogous to the reduction of the Navier—Stokesbtained by assuming that the changes of the interface cause
equation to the Stokes equation for low Reynolds number irsmall effects in the diffusion mass fluke., [¢col <|@c|
fluid dynamics. and|@cql<|eccl)-

This task necessitates an accurate evaluation of the dif- Even though mass transfer is Fickian, it still affects the
ferent time scales involved during the dynamic process. Waize and shape of the interface via the diffusion mass flux
should point out that a precise determination of the magniappearing in th& andq governing equations. These equa-
tude of the relaxation time for the diffusion mass fldx,s  tions involve, as discussed earlier, the interface Deborah
required from microscopic considerations that are still missnumber D@q=3no¢DO/(Q0FOL§) which is of the order of
ing at this time. This issue has been already arisen in mang0 ° for the MeOH«PDMS/PIB mixture. The relaxation
previous theoretical investigatioAs?’ Therefore, the part is dominant in the governing equations of the interface
J-Deborah number becomes, here, a parameter of the mod@l3)—(44), and the size and shape relax rapidly to their final
that has to be determined from experimental measuremenégjuilibrium values.
in a similar way as that has been used by Nébdis in Note that the Fickian description can also be obtained
several media, the inertial terms in the governing equatiorfior immiscible fluids with a frozen morphology in which
for J are not relevant to mass transport. This occurs when ththere are no changes in both the size and shape of the inter-
relaxation characteristic time scald {) ~! becomes smaller face during the whole process. In this case, no interfacial
than the diffusion characteristic time scale. Therefale, stresses are created.
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B. (¢, Q)-model: Isotropically evolving interfaces Once the solutions of Eq$50) and(51) are determined, we

Here, we discuss the case where diffusion does not aﬁeé\ﬁn calculate the distribution of isotropic stresses created in

the isotropy of the interface during the whole dynamic pro-t & immiscible fluid using

cess. In this casg=0, and onlyQ is kept as the only state lnterface _ _ 2 s ) (53
variable characterizing the interface. From E2g), this oc- ap 3%apePQ-
curs when This expression, which in fact stands for the Laplace term, is

(48) obtained as a special case of E§). by settingg=0.

Note that here the non-Fickian diffusion is produced by
which leads to a size density satisfyingQ, the coupling between the mass flux and the changes of the
<min(VRT/Va,,T',/a,). This provides an indication of the interfacial size, while the shape has no effect on mass trans-
size of the droplets constituting the minor phase and also theort. Another interesting case may occur if there are no con-
range of applicability of this reduced model. If we consider,centration gradients within the systemyg1). We deduce
for instance, the MeOHPDMS/PIB mixture, we see that from Eq. (49) that the diffusion mass flux reduces I
the size of the droplets approaches the nanoscale. From Egs.— PDAJ,Q. Note that any local changes of the interfacial
(40) and (48), we also deduce that an increase of the interSize density may also cause diffusion of the penetrant mol-
facial tension or a change in the experimental condition€cules.
such as a decrease in temperature may also lead to situations
in which the shape changes do not contribute to mass trans-
port. If we examine the effects.of.the interche !Z)eborah UMzt (¢, g)-model
ber on mass transport, non-Fickian behavior is expected for o . .
values of Dg, in the vicinity of unity. In the case of the Changes occurring in the shape but not in the size may
immiscible blend(PDMS/PIB), the relaxation time for the also cause non-Fickian behavior. This phenomenon can also
interface, 7o is of the order of seconds. Therefore, a non-Pe predicted by the modéd)—(9). From Eq.(38), we deduce
standard behavior may be observed for a diffusion charactefbat the following condition has to be satisfied:
istic time scale of order of 1 s, thati§~D,. Realistically,
one should seek a compromise among the model parameter
values. Here, these parameters are the morphology anghich gives an indication of the size densify/a,<Qq
physical properties of the blend, the physical properties OQ(RT/T/FO). Similarly, for the MeOH-PDMS/PIB mix-
the penetrants and the geometry of the sample. ture, the size of the droplets may also attain the nanoscale,

The shape state variable, in addition to the mass flux 56ided the other physical properties remain unchanged.
densityJ becomes thus dependent state varidble recall  The change in the size of the interface may be overlooked

that we have already assumed thatis very large. Hence, 5 the size density variable can be assumed as a constant

the set of the independent variables is reducedctoQ). during the whole process of diffusion, i.€@=Q,. There-
Therefore, the diffusion mass flut4) simplifies to fore, the mass flux density becomes

g1<m|n(11g0)

go<min(1!gl)1 (54)

Ja=7pD (LT AQ). (49 Ju=—pD(3,C+E 040, (55)

By substituting this expression into EJ$) and(7), we ob- Inserting Eq.(55) into Eq. (5) yields

tain
Jc
Jc — =
1 =2a(D3,C)+ 3,(AD3,Q), (50 gt~ 9a(D9aC)+ 9a(DEgydallyy) (5
o) D DA which depends oq (representing the shape variabliehose
= _< )gacaaQ_ (_) 9,Q4,Q governing equation is given by E) but with the diffusion
at (1-0) (1-c) mass flux density replaced by Eq(55). Similarly, the stress
0 ( D ) o) ( AD ) tensor is now given by
— 04| T 0aC | — 5 ol = 7.Q| — A%,
3% (1= 7€)~ 3 %[ {10y %R A e . 2Q  Guglly
Oug =200y¢q ,FtTapt ——@q ,— @
(51 apB Y¥ap BT 3 Tlup Qo Ay,

which constitute the governing equations for diffusion in iso- 2

tropically evolving immiscible media. Note that E¢p1) in- - §5aﬂ(Qor+2qv9¢qyg)
volves nonlinear terms in the gradientscodnd Q. Here, we

assume that diffusion does not cause any changes in the an- _Zs
isotropy. Furthermore, setting=0 in Eq. (8) leads to the 37
following constraint for the diffusion mass flux:

1
qa,B+ §Q05a5) (’inj . (57)

In this model, a non-Fickian behavior is predicted to

Jg 2 J, occur only through the coupling between the interfacial
p(1—c)] 3% c))’ shape changes and the diffusion mass flux, while the changes
(52 of the size are not assumed to significantly affect mass trans-

p(1—c)

a

‘93(p<1—c>
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port. The same discussion as for tlse Q)-model holds here; density and the kinetic coefficients entering the dissipation
that is, only shape changes may be a source of creation gtential. All the physical parameters and properties of the
mass fluxes within the blendy(>1). penetrants and of the blend as well as of the experimental
conditions are explicitly included into the governing equa-

tions.

Here, we address a more general case where both the As many experiments are unidirectional, we have inves-
size and shape undergo substantial changes and contributetigated the nature of hyperbolic and dispersive waves in a
the diffusion mass flux. In this case, the magnitudes of dione-dimensional setting, and provided explicit formulas for
mensionless constanty, and g, become significant and the characteristic speed, phase velocity, and attenuation of
strongly couple diffusion to interfacial changes. From Eqg.the intensity. In the high frequency limit, the phase velocity
(40) an increase in the size density, or in the interfacial anctoincides exactly with the characteristic speed of the osmotic
anisotropy coefficients, as well as a decrease in the temperaraves(hyperbolig. The attenuation of the intensity reduces
ture of the experiment may lead to such a physical situationto a positive constant value discarding any amplification of
Nanodispersions may also fall into this category. Thereforethe high frequency waves. In the low frequency limit, both
the governing equatiofil4), for the mass flux reduces to  the phase velocity and the attenuation become proportional

_ to the square root of the frequency.

Ja= = pD(IuCH AQ+ Egy0alpy). 8 The dimensionless form of the model shows that the

Fick's second law, initially expressed as a linear functioneffects of the diffusion—interface coupling on mass transport
of the gradient of the concentration is now extended by twaas well as on the interface depend on the magnitude of four
additional terms involving the gradients of the a®aand  dimensionless groups of physical parameters. Two are Debo-
anisotropyq densities of the interface. The solvent mass balvah numbers and two are coupling constants that relate dif-
ance, obtained by substituting E(8) into Eg. (5), trans-  fusion to interfacial changes. We have discussed some limit-

D. (¢,Q,qg)-models

forms to the following parabolic equation: ing cases of Eqs(5)—(9) in which the diffusion mass flux
Jc becomes the dependent state variable. By further reducing
i do(D(d,+Ad,Q+Eg,dq4,)) (59 the number of independent variables, we have examined dif-

fusion in both isotropically evolving interfaceg< 0) and in
which involves the interfacial variabl€3 andq, whose gov- interfaces with a constant size but with a transient shapes. In
erning equations are given by Eq%) and(8), respectively, both cases, an expression for the interfacial stress tensor is
provided the mass flux expression is given by &@). Note  provided.
that the independent state variables in thg),q)-model are
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