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Dynamics of complex interfaces. II. Diffusion and morphology
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In this contribution, we theoretically investigate the isothermal mass transport of a simple fluid into
a blend of two immiscible Newtonian polymers. Using internal state variables, we derive a nonlinear
formulation that addresses the effects of the diffusion/interface coupling on both the mass transport
as well as on the morphology of the interface. The approach uses a scalar and a second-order tensor
to directly track the dynamic changes of the size and shape of the interface. The mass flux governing
equation includes new terms that lead to non-Fickian behavior attributed to the viscoelatic
contribution of the interface. In turn, the size and shape of the interface are modified by diffusion.
In one-dimensional analysis, we examine the nature of propagation of both nonlinear hyperbolic and
linear dispersive waves. Explicit formulas for the characteristic speed, phase velocity, and
attenuation are provided. ©2003 American Institute of Physics.@DOI: 10.1063/1.1571053#
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I. INTRODUCTION

Mass transport of small molecules into structured me
does not generally obey Fick’s laws.1 The deformation of the
internal structure couples to diffusion and brings about in
tia and viscoelasticity into the molecular process. In this
per, we investigate, in the absence of an applied flow
external forces, the behavior of mass transport of small m
ecules into blends of immiscible Newtonian polymers. Sin
the polymers are Newtonian and do not interpenetrate,
internal structure of the mixture stems exclusively from t
presence of the interface separating the different immisc
components and not from their conformation. The interfa
may be deformed and distorted by internal diffusion flux
and as such, interesting and unexpected non-Fickian be
ior may be observed. As the conformational changes of
polymers do not play a significant role in the process of m
transport, the non-Fickian character arises mainly from
coupling between diffusion and interfacial changes. Our a
here is to study the effects of the diffusion-interface coupl
on the behavior of both the mass transfer as well as on
interfacial morphology changes. Examples where results
this study are applicable involve immiscible polymer
blends with tailor made morphology.

Before studying the diffusion/interface coupling o
curring in blends of immiscible polymers embedding an

a!Author to whom correspondence should be addressed. Electronic
aelafif@tulane.edu and alielafif@hotmail.com
10240021-9606/2003/118(22)/10244/10/$20.00

Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
a

r-
-
d
l-
e
e

le
e
,
v-
e
s
e

g
e

of

-

terface, we first provide an outline of previous inves
gations2–30 devoted to the effects of the diffusion
conformation coupling carried out for polymeric media th
do not involve an interface. Even though the blend cons
of Newtonian components, it may behave as a viscoela
medium due to the presence of the interface and its defor
tion. Therefore, in both couplings, the internal structure~i.e.,
the interface in the former and the conformation in the latt!
exhibits viscoelasticity. Due to the large number of both e
perimental and theoretical investigations devoted to
diffusion-conformation/stress coupling,2–30 a good under-
standing of the collected data has been reached. For t
complex media, Fick’s laws and their modified forms10 fail
to provide a reasonable explanation for the experimental
servations. Indeed, these laws do not take into account
contribution of the internal structure; a property that is inh
ent to complex fluids. In these structured fluids, the mic
structure may strongly interact with the diffusion process
cause inertial and viscoelastic effects. From a qualitat
point of view, when the relaxation characteristic time scale
larger than or comparable to the diffusion characteristic ti
scale, deviations from Fickian diffusion are expected.21–24

Thereby, the internal structure changes have to be assoc
with the mathematical formulation of diffusion. This ha
been achieved by requiring the compatibility of diffusio
with thermodynamics. The driving force for diffusion is n
longer the gradient of the concentration as stipulated
Fick’s law but rather the gradient of the chemical potenti
As a result, the expression for the mass flux contains a
il:
4 © 2003 American Institute of Physics
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10245J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Dynamics of complex interfaces. II
tional terms accounting for the viscoelastic contribution. D
to the anisotropy brought about by the internal structure,
state variable is generally chosen to be a second order te
Two choices can be adopted: an indirect macroscopic
scription embodied by the stress tensor,s, and a direct and
more microscopic description given by the conformation t
sor of the polymeric chains. The latter state variable is g
erally recommended. To close the set of the governing eq
tions, the non-Fickian formulation necessitates a ti
evolution equation accounting for the deformation of the
ternal structure. Based on the experience collected in
field of rheology,27,31 several viscoelastic models, if appro
priately adapted to diffusion, can be used. In previous m
roscopic descriptions, the Maxwell,12 the Kelvin–Voig,28 and
the Jeffrey-type29 models have been adopted where the str
tensor,s, was chosen as the state variable. In more mic
scopic descriptions, where the conformation tensor has b
selected as a state variable, the polymeric chains have
described as Hookean or more generally as finitely ex
sible non linear elastic dumbbells~FENE-P!.20 In this case,
the models were appropriately modified to take into acco
the volume changes of the polymeric fluid~swelling! attrib-
uted to diffusion.

Here, our objective is to propose a new approach s
able for discussing non-Fickian behavior that is caused
the interface/diffusion coupling occurring in immiscib
~Newtonian! polymeric systems embedding an interface. W
aim at deriving a comprehensive model that includes b
the effects of inertia in the diffusion mass flux and of t
viscoelasticity resulting from the presence of the interfa
Reductions to special cases, such as inertia-free models
be discussed based on the nature and the physical prop
of the penetrant/blend overall mixture under investigation
this part, we investigate predictions implied by the family
models introduced in Paper I. We restrict our investigation
diffusion ~soaking, sorption, desorption, permeation, et!
under mechanical equilibrium and in the absence of b
overall flow and external forces. The model involves in a
dition to the mass fraction, the mass flux densityJ as an
independent state variable to conform to the irreversible th
modynamics approaches.35,36Furthermore, the interface con
tribution must be included into the formulation. As discuss
in Paper I, we characterize the interface by two state v
ables, a scalarQ and a second-order tensorq, denoting, re-
spectively, its size and shape.32 Therefore, the set of the in
dependent state variables used in this theoretical formula
for describing the evolution of such mixtures is (c,J,Q,q).
The corresponding governing equations appear in Sec
For the qualitative analysis of solutions of the governi
equations, we use the method of characteristics for disc
ing the formation and propagation of discontinuities~hyper-
bolic! and linear~dispersive! waves in a one-dimensiona
setting~Sec. III!. In the last section, we discuss some lim
ing cases of the model and provide new reduced theore
descriptions, in which some of the state variables beco
dependent. This analysis leads to models describing diffu
into blends in which~i! the behavior is dominantly Fickian
~ii ! the interface evolves isotropically;~iii ! the size is con-
served, but not the shape; and~iv! both the size and shape o
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the interface undergo significant changes to influence m
transport. In these four special cases, the inertia in the m
flux can be neglected when considering mass transport.

II. MODEL DERIVATION

We investigate the mass transport of a simple fluids
such as a solvent into a blend of two immiscible Newton
polymers,b[A/B. In our model, we regard the immiscibl
blendb as a pseudo-one-component fluid in which an int
face is embedded~see Paper I!. In the absence of interpen
etration between the immiscible fluids A and B, the who
mixture, can be regarded as consisting of two fluids,33 $b
1s%: one is the pseudo-one-component immiscible blenb
with an apparent mass densityrb and an apparent momen
tum densityub5rbvb ~b refers to blend! and the other is the
simple fluid,s with an apparent mass densityrs and an ap-
parent momentum densityus5rsvs . Since, the solvent,s
and the blend,b are miscible they can be regarded as tw
interpenetrating media. As discussed earlier~Paper I, and ref-
erences therein!, we choose to describe the interface by
area density distribution functionf (r ,n,t) or by its moments:
the scalarQ(r ,t),

Q5E d2n f~r ,n,t !, ~1!

and the traceless second order tensor

q5E d2n~nn2 1
3I ! f ~r ,n,t !, ~2!

denoting, respectively, the interfacial area and the anisotro
orientation tensor densities.I is the unit second order tenso
nn is a dyadic tensor, andd2n is the differential solid angle.
These two quantities are defined as moments of the distr
tion function f representing the area density of the interfa
Therefore the state variables of the whole mixture beco
(rs ,rb ,us ,ub ,Q,q).

Using the one-to-one transformation~56! given in Paper
I, the whole mixture is described by the global mass dens
r5rs1rb , the overall momentum densityu(r )5us(r )
1ub(r ), the mass fractionc(r )5rs /(rs1rb) and the
mass flux density J(r )5(rb /(rs1rb))us(r )2(rs /(rs

1rb))ub(r ) of the simple fluid and the two interfacial var
ables defined above. We have derived in Paper I equat
governing the time evolution of the state variabl
(r,u,c,J,Q,q). In this paper, we limit our study to the fol
lowing special situation; we consider the mixture, in the a
sence of an applied overall flow,

u50, ~3!

and under mechanical equilibrium

]ap1]bsba50, ~4!

wherep is the hydrodynamic pressure given by Eq.~43! and
s is the extra stress tensor whose expression iss
5JJ/rc(12c)1s(Interface). The quantity,s(Interface) is pro-
vided by Eq.~44! ~see Paper I! and denotes the contributio
of the interface. The notation,]a[]/]r a aP$1,2,3%, is used
throughout this paper, wherer is the position vector. Unde
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the constraints~3–4! and the overall incompressibility re
quirement (r5const), the model derived in Paper I@Eqs.
~78!–~84!# leads to

r
]c

]t
52]aJa , ~5!

]Ja

]t
52]gS JaJg

rc D2c]awc2LJJa , ~6!

]Q

]t
5S Ja

r~12c! D ]aQ1qag]aS Jg

r~12c! D
1

Q

3
]aS Ja

r~12c! D2LQwQ2Lab
qQwqab

, ~7!

]qab

]t
5S Jg

r~12c! D ]gqab1qag]bS Jg

r~12c! D
1qbg]aS Jg

r~12c! D2
qabqug

Q
]gS Ju

r~12c! D
1

Q

3 S ]bS Ja

r~12c! D1]aS Jb

r~12c! D D
2

1

3 S qab1
2Q

3
dabD ]gS Jg

r~12c! D
2

2

3
dabqug]gS Ju

r~12c! D2Lab
qQwQ2Lab i j

q wqi j
.

~8!

These equations are supplemented by the expressio

aab
~ Interface!52qagwqgb

1qabwQ1
2Q

3
wqab

2
qabqgn

Q
wqgn

2
2

3
dab~QwQ12qnuwqn0

!

2
2

3
d i j S qab1

1

3
QdabDwqi j

~9!

representing the internal stresses created by diffusion wi
the immiscible fluid. By solving the governing Eqs.~5!–~8!
we arrive at an explicit expression for the distribution of t
interfacial stresses in terms of the state variablesc, Q, andq.
In Eqs. ~5!–~9!, we have used, the following notation:wc

5]w/]c, wQ5]w/]Q, wqab
5]w/]qab to denote the partia

derivative ofw with respect toc, Q, andq, respectively. We
recall that the governing equations are parameterized by
free energyw and by the kinetic coefficientsLJ , LQ, LQq,
and Lq entering the dissipation potential,C. These kinetic
parameters, which satisfy the positive and semidefinite
quirements implied by the GENERIC formalism are writt
as ~see Paper I!

Lab i j
q 5E d2n~ f ~n,r ,t !2 f * !L f@ninjnanb2 1

3dabninj

2 1
3d i j nanb1 1

9d i j dab#, ~10!
Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
in
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e-

LQ5E d2n~ f ~n,r ,t !2 f * !L f , ~11!

L i j
qQ5E d2n~ f ~n,r ,t !2 f * !L f@ninj2

1
3d i j #, ~12!

whereL f stands for the rate of relaxation of the distributio
functionf. f * is a certain local equilibrium distribution func
tion for the deformed interfacial area density. The intern
free energy density,w5w(c,Q,q), which still remains un-
specified at this point, is an independent function of the m
flux densityJ. Its expression can approximately be written
a sum of two contributions: a Flory–Huggins34 term for mix-
ing and an additional term describing the interface contri
tion,

w~c,Q,q!5wmixing~c!1w Interface~c,Q,q!. ~13!

The formulations~5!–~9! provide a three-dimensiona
and nonlinear description for~i! diffusion, ~ii ! interface dy-
namic changes, and~iii ! distribution of stresses create
within the polymeric immiscible blend. Four independe
state variables,c, J, Q, andq, with their coupled governing
equations, are necessary for describing the time evolutio
the mixture under investigation in mechanical equilibriu
and in the absence of external flow and forces.

Equation~5! is the mass conservation of the simple flu
~penetrants continuity equation!. Equation~6!, which intro-
duces inertia, is the time evolution equation for the ma
flux, J. The motivations for introducing inertia into diffusio
stem from both physical insight and experimental points
view. It is well known that the diffusion parabolic equatio
obtained via Fick’s laws, predicts a propagation of diffusi
signals with infinite speed.35,36 Consequently, such a propa
gation will instantaneously influence the whole system
phenomenon which is not physically admissible. Due to
perimental measurements of mass transport carried ou
polymeric solutions, gels, and particularly for glassy sy
tems, it has become obvious that inertia may play a key r
in the occurrence of non-Fickian behavior. An interesti
case that has aroused the interest of many groups is the
called case II diffusion,3,6,7 also known as shock-wave-typ
mass transport due to its resemblance with shock waves
served in compressible gases.37,38 Generally speaking, the
limitations of the Fickian description are found to ari
mainly from its inability to correctly include two importan
non-Fickian effects: one related to relaxation processes a
second one to nonlinear phenomena.

The attempt to describe nonlinear effects and relaxa
processes based on the concept of inertia has been the su
of several works.11,13,20,25–27,35,36,39–42It came about as a
natural extension to existing linear constitutive equations
order to consider nonlinear effects observed in complex m
dia. The physical reason has been mainly attributed to
interactions occurring between the medium and applied g
eralized forces. Generally speaking, when the coupling
tween the applied forces and the response of the med
becomes significant, one expects the occurrence of nonst
ard phenomena whose descriptions are beyond the scope
range of validity of linear laws, such as Fick’s law or Fou
er’s law, for example. Since the medium actively participa
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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10247J. Chem. Phys., Vol. 118, No. 22, 8 June 2003 Dynamics of complex interfaces. II
in such physical processes, its response, dictated by its i
nal structural changes, has to be explicitly taken into
count. One should then identify an appropriate~or a set of!
internal state variable~s! that provides the best description
these structural changes. In the case of mass transport
out chemical reactions, the changes of the internal struc
are mechanical in their nature, and thereby provide an in
cation of the type of the internal state variables to be chos

Equation~6! has the advantage of providing an extens
to Fick’s theory when the interface couples to diffusion in t
absence of external forces. To gain a better physical inter
tation, we write Eq. ~6! ~using c]awc5cwcc]ac
1cwcQ]aQ1cwcqbg

]aqbg) as follows:

]Ja

]t
52]gS JaJg

rc D2LJ~Ja1rD~]ac1A]aQ

1Ebg]aqbg!!, ~14!

where

D5
cwcc

rLJ
~15!

is identified as the diffusion coefficient. Equation~14! also
involves a scalar

A5
wcQ

wcc
, ~16!

and a second order tensor

Eab5
wcqab

wcc
, ~17!

which depend on the state variablesc, Q, andq. We refer to
the second derivative ofw with respect toc, ~c, Q! and (c,q)
by wcc5]2w/]c2, wcQ5]2w/]c]Q, wcqab

5]2w/]c]qab ,
respectively. The quantities,A andE compare, respectively
the effects of the interfacial tension and of the anisotropy
the interface, with the contribution of the total internal fr
energy. Such a qualitative interpretation results from
physical insight expressed in the internal free energy den
~13!. If the contribution of the interfacial free energy dens
is written as

w Interface5G~c!Q1 1
2a~c!q:q, ~18!

whereG is the interfacial tension anda is a parameter relate
to the degree of anisotropy, thereforewcQ5Gc and wcq
5acq. On the other hand, in view of Eqs.~13! and~18!, we
see that the second derivative ofw with respect toc is wcc

5wcc
mixing1QGcc1(q:q/2)acc , where the first term on the

right-hand side is given bywcc
mixing}RT/Ṽs , whereR is the

gas constant,T is temperature, andṼs is the solvent molar
volume. It is thus clear that the scalarA and the second orde
tensorE are strong functions of concentration provided t
surface tensionG and the anisotropy parametera are not
constant.

Finally, the last two Eqs.~7! and ~8! are the governing
equations for the interface state variables. By involving
plicitly the mass fraction and the diffusion mass flux, t
behavior of the interface is directly and nonlinearly infl
Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
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enced by the diffusion processes. These nonlinear terms
necessary if the fluid undergoes volume changes or in cas
an abrupt propagation of the solvent front.3,6,7 Moreover, as
in Paper I, we consider that both direct and indirect proces
contribute to the relaxation of the interface through cro
coupling terms. This assumes that the relaxation processe
the size and shape are strongly related. However, a de
pling may occur if the interface evolves either isotropica
(q50) or by conserving its size (Q5const.) during diffu-
sion.

III. TRAVELING WAVES

Here, we examine the propagation of both hyperbo
and dispersive waves produced by disturbances in the m
fraction. To discuss solutions of Eqs.~5!–~8!, it is useful to
rewrite them into the compact form

]U

]t
1M¹U52NU, ~19!

whereU5(c,v,Q,q)T is the set of the state variables,M and
N are the matrices that arise by identifying Eq.~19! with
Eqs.~5!–~8!. We have used the velocityv of the solvent front
propagation, as a state variable, instead of the diffusion m
flux J5rcv. Thev-description is well suited for discussing
mathematically, the nature of traveling waves, while t
J-description is generally used for a direct comparison w
measured data obtained by the classical experiments of m
transport ~sorption, permeation, pervaporation, etc.!. As
many experimental observations are unidirectional, we
rive predictions of Eq.~19! for a one-dimensional setting. In
this setting,U5(c,v,Q,q)T, wherev is the component of
the velocity in the direction of diffusion. As diffusion in
polymeric fluids is usually accompanied by swelling,3,6,7 the
changes occurring in the internal structure are assumed t
significant in thex-direction representing the direction of di
fusion. Therefore, in this simplified picture, the symmetry
this problem reduces the number of the components of
tensorq to one independent variableqxx to be denoted byq.
While the off-diagonal components vanish, the remain
two diagonal components are expressed as:qyy52q/2 and
qzz52q/2, satisfying the traceless property of the tensorq.
Consequently, the matricesM andN arising in Eq.~19! are
given by

M5S v c 0 0

a21 v a22 a23

a31v a32 a33v 0

a41v a42 0 a33v
D ,

~20!

N5S 0 0 0 0

0 LJ 0 0

0 0 n1 n12

0 0 n12 n2

D ,

where, for the sake of brevity, we have used the followi
notation:

ra215wcc , ra225wcQ , ra2353wcq
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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a3352
c

~12c!
, aj 15

aj 2

c~12c!
52

r j 23

~12c!2 , j 53,4,

~21!

r 05q1
Q

3
, r 15q2

q2

Q
1

4

9
Q,

for the parameters arising in matrixM and

n15
LQwQ

Q
, n125

3LqQwq

q
, n215

LqQwQ

Q
,

~22!

n25
3Lqwq

q
,

for the ones used in matrixN. The symmetry property ofN
requires thatqwQ53Qwq .

We use the theory of characteristics36–38 to study the
nature of the nonlinear wave propagation due to the conc
tration disturbances. The characteristics corresponding to
~19! are the curvest→(t(t),x(t)) in the ~x, t! plane, where
t is a parameter. These characteristics are generated, re
tively, by

dt

dt
51,

dx

dt
52

cv
12c

,

dt

dt
51,

dx

dt
5v1F1

r S cwcc2
c

12c
~r 0wcQ13r 1wcq! D G1/2

,

dt

dt
51,

dx

dt
5v2F1

r S cwcc2
c

12c
~r 0wcQ13r 1wcq! D G1/2

. ~23!

The set of the governing Eq.~19! with Eq. ~20! is time-
hyperbolic if the eigenvalues ofM are real. This requiremen
leads to the following condition:

k5
1

r S cwcc2
c

12c
~r 0wcQ13r 1wcq! D>0, ~24!

where the characteristic speed of these nonlinear hyperb
waves is given byAk. Moreover, the solutions are stable
the real parts of the eigenvalues ofN are non-negative. The
requirement of stability leads to

LJ>0,
~25!

n1>0, n2>0, n12<An1n2.

Expressions~24! and ~25! constitute the stability condition
for diffusion described by Eq.~19! in the one-dimensiona
setting. The waves obtained as solutions of these equa
are called osmotic waves.20

Now we turn our attention to linear dispersive wave
These waves are created by small-amplitude perturbation
an equilibrium state characterized byUeq(Ceq0,Qeq,qeq) as-
sumed to be time and position independent. Here, we ass
that the interface is locked into an anisotropic shape, soqeq is
different from zero. The special case where the interfac
Downloaded 12 Jun 2003 to 129.81.170.11. Redistribution subject to A
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isotropic can be deduced by settingqeq50. Such waves can
be written asU5Ueq1Ũ exp(i(kx1vt)), wherev is the real
frequency andk refers to a complex wave number. By inse
ing the expression ofU into Eq. ~19! and keeping only the
terms that are linear inŨ, we arrive at the dispersion relatio
k5k(v),

detF I1S k

v D M̃2S i

v D ÑG50, ~26!

whereM̃5M ueq andÑ5Nueq. By solving Eq.~26!, we arrive
at

S k

v D 2

5X1 iY, ~27!

where

X~v!5
v2A1B11A2B2

v2A1
21A2

2 , Y~v!5
v~A1B22A2B1!

v2A1
21A2

2 ,

~28!

written as functions of the following parameters:

A5A11 i
A2

v
, B5B11 i

B2

v
,

with

A15Fk1
ca21

v2 ~n12
2 2n1n2!G

eq

,

A25@a33~n12~r 1a231r 0a24!2r 0n2a232r 1n1a24!

2ca21~n11n2!#eq,
~29!

B15F11
n12

2 2n1n22LJ~n11n2!

v2 GU
eq

,

B252FL1n11n21
LJ~n12

2 2n1n2!

v2 GU
eq

.

Equation~26! predicts two wave solutions, but one is di
carded by considering positive values of wave speed. Th
fore, the phase velocity has the following form:

vph5
v

Re~k!
5A 2

X1AX21Y2
~30!

and the attenuation of the intensity is given by

a~v!522 Im~k!52vYvph52vYA 2

X1AX21Y2
.

~31!

At the high frequency limit,v→`, we arrive at

vph
` >Akeq, ~32!

a`>
~LJeq

1n1eq1n2eq!keq1A2

keqAkeq

. ~33!

The phase velocity reduces to the characteristic spee
the hyperbolic waves, and the attenuation has a posi
value discarding any amplification of such waves. Note t
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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these two quantities are frequency independent. We rec
the results predicted by Fick’s laws by setting in Eqs.~32!–
~33! Q50, q50 n i50, andn i j 50 (; i , j ). We recall that
Fickian diffusion presents some limitations,35 such as a pre-
diction of infinite values for the speed and intensity atten
tion at small relaxation times (LJ→`). These limitations
are removed by introducing inertia into the process of dif
sion which is expressed both in the equation of the mass
and also by taking the influence of the interface into accou

At the low frequency limit,v→0, Eqs.~30!–~31! be-
come

vph
0 ~v!>A2Dv, ~34!

a0~v!>A2v

D
, ~35!

whereD is the diffusion coefficient defined in Eq.~15!. Both
the phase velocity and the attenuation are directly prop
tional to the square root of the frequency, and therefore t
to zero. These results agree with previous developments
tained in gases35 and in polymeric fluids20 where these quan
tities become functions of one parameter, the diffusion co
ficient.

IV. LIMITING CASES

In this section, we look for some particular cases of
family of models ~5!–~9!, where some state variables b
come dependent variables. In this reduction, we show
the family encompasses the well-known Fickian diffusi
and also new extended formulations where the change
both the size and shape of the interface contribute to
mass flux. The reduction to simpler models requires us
elucidate, among others, the relevance of inertia in nonsta
ard diffusion processes. The latter depends on the sys
under consideration, and in particular, on the time scales
volved. Vrentaset al.21–24 have applied the concept of th
Deborah number to mass transfer which provides a very
ful tool for a determination of the range of validity of inertia
as well as viscoelastic effects. The Deborah number c
pares the characteristic time scale of the relaxation of
internal structure described by~nonconserved! internal vari-
ables to the characteristic time scale of diffusion. Here
have two types of~nonconserved! structural state variables
one is the diffusion mass flux and the other variables
associated with the interface. Each nonconserved vari
relaxes to its equilibrium state in a certain~or a set of! re-
laxation time~s!. Following Vrentaset al.,21–24 and Neogi11

we define aJ-Deborah number as a ratio of the relaxati
characteristic time for the diffusion flux to the diffusion cha
acteristic time scale. The treatment of interfacial variab
requires particular consideration, since it depends on the
ture of the morphology of the interface and the proba
presence of a length scale. To identify dimensionless qua
ties that are of importance to this dynamic process, we in
duce the following dimensionless quantities for the tim
space, and the state variables:

u5t/td , ]a5
1

L0
¹a , C5

c

Ceq
J̃5

Jtd

rCeqL0
,
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Q̃5
Q

Q0
, q̃5

q

Q0
, ~36!

where

td5
L0

2

D0
~37!

refers to the diffusion characteristic time scale.D0 , Q0 , and
L0 are the diffusivity coefficient, the interfacial size densi
and the thickness of the medium, respectively, at the ini
state.Ceq is the equilibrium mass fraction. The dimensio
less form for the mass flux time evolution equation is

] J̃a

]u
52¹gS J̃aJ̃g

C
D

2
1

DeJ
~ J̃a1D̃~¹aC1Ã¹aQ̃1Ẽbg¹aq̃bg!!, ~38!

where D̃5D/D0 , Ã5A/g0 , and Ẽ5E/g1 . The quantities
g0 and g1 are dimensionless groups of physical paramet
to be defined. This equation involves three dimensionl
quantities, the most important of which is theJ-Deborah
number,

DeJ5
tJ

td
, ~39!

wheretJ5LJ
21 is the relaxation time for the diffusion mas

flux density. Several special cases arise as dictated mainl
the magnitude of the dimensionless number DeJ . Inertial
terms become relevant for large aJ-Deborah number. The
analogy of this case with flows of high Reynolds number
straightforward. For small DeJ , diffusion is mainly governed
by the Fickian term and the extension provided by t
changes occurring at the interface. Two other numbers
importance in this case, are

g05
GoQoṼs

RT
and g15

aoQo
2Ṽs

RT
. ~40!

The quantitiesGo andao are the interfacial tension an
the modulus of anisotropy, at the initial state, respective
We will discuss, in the following sections, the implication
of the magnitudes of these two groups on diffusion. Note t
these two groups of numbers (g0 and g1) show that the
behavior of mass transport intimately depends on the ph
cal properties of both the blend and of the penetrants as
as on the experimental conditions. Finally, for intermedi
values of DeJ , mass transport is influenced by both iner
and the deformation of the interface.

Now let us turn our attention to the interface time ev
lution equations. Two possible cases arise from the prese
or absence of a length scale in the blend. If the interface
a length scale, it becomes possible to define a time scale
therefore a Deborah number. The relaxation time becom
related to the size of the droplets constituting the min
phase. In the case of spherical droplets with an initial rad
Ro , the relaxation time scale of the interface is given
tQq53hof/(QoGo), whereho is the matrix constant viscos
ity, Qo53f/Ro refers to the interfacial size density, andf is
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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the volume fraction of the minor phase in the blend. If t
system is composed of two co-continuous media, there is
natural length scale in the system.32

Let us focus on the case of blends possessing a le
scale for whichL f5L f

0 is constant. The dimensionless for
of the governing Eqs.~7!–~8! reads as follows:

]Q̃

]u
5

]Q̃

]u
U

diffusion

1
]Q̃

]u
U

relaxation

, ~41!

]q̃ab

]u
5

]q̃ab

]u U
diffusion

1
]q̃ab

]u U
relaxation

. ~42!

The interface Deborah number defined as

DeQq5
tQq

td
~43!

emerges naturally in the relaxation part of the interface g
erning equations as

]Q̃

]u
U

relaxation

52
1

DeQq
~~Q̃2Q̃* !w̃Q̃1~ q̃ab2q̃ab* !w̃ q̃ab

!,

~44!

]q̃ab

]u
U

relaxation

52
1

DeQq
S ~ q̃ab2q̃ab* !w̃Q̃

1S q̃i j q̃ab

Q̃
2

q̃i j* q̃ab*

Q̃*
D w̃ q̃i j D , ~45!

whereq* andQ* are certain local equilibrium values for th
shape and size of the interface, andw̃5w/(GoQo) is a nor-
malized expression of the internal free energy density.

The presence of these four dimensionless groups (DJ ,
DeQq , go , andg1) in the family of models provides us with
several special cases. Our aim, in these papers, is to der
comprehensive model under a general form and to discus
special cases based on the importance of its dimension
numbers. In the following, we shall discuss in more de
the relevance of inertia in the mass flux and discuss so
particular situations encompassing the Fickian descrip
and some of its extended forms. Such a reduction can
seen as analogous to the reduction of the Navier–Sto
equation to the Stokes equation for low Reynolds numbe
fluid dynamics.

This task necessitates an accurate evaluation of the
ferent time scales involved during the dynamic process.
should point out that a precise determination of the mag
tude of the relaxation time for the diffusion mass flux,J, is
required from microscopic considerations that are still mi
ing at this time. This issue has been already arisen in m
previous theoretical investigations.25,27 Therefore, the
J-Deborah number becomes, here, a parameter of the m
that has to be determined from experimental measurem
in a similar way as that has been used by Neogi.11 As in
several media, the inertial terms in the governing equa
for J are not relevant to mass transport. This occurs when
relaxation characteristic time scale (LJ)

21 becomes smalle
than the diffusion characteristic time scale. ThereforeJ
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equilibrates faster than the interfacial variablesQ andq and
we can assume thatdJ/dt;0 in Eq. ~14!. The mass flux
density,J, becomes a dependent state variable. In the follo
ing, we shall discuss four models derived as special case
the inertia-free formulation where theJ-Deborah number is
considered very small compared to unity.

A. c-model

It is well known that diffusion in simple media is ad
equately described by Fick’s laws. In such systems,
changes of the internal structure do not contribute to
diffusion process and only the mass fraction suffices to
scribe the behavior of mass transport. The Fickian beha
is also expected to occur in blends of immiscible compone
in which the coupling between the diffusion and the chan
of the interfacial morphology are very weak. Consid
for instance, mass transport of methanol into a thin fi
of the immiscible blend@polydimethylsiloxane~PDMS!/
polyisobutylene~PIB!# of thickness 1023 m at room tem-
perature. The methanol has a molar volume of 4.0531025

and a diffusivity of the order of 10211 m2/s. The blend
has a viscosity of 100 Pas,42 an interfacial tension of
2.431023 N/m,42 an anisotropy modulus estimated
10211 N,43 a minor phase volume fraction of 0.5, and a si
density of 33104 m21. Therefore, the coupling constan
arising in Eq.~38! are approximately equal tog0;1026 and
g1;10210. Since g0!1 and g1!1, we can assume tha
Max(uAu,uEbgu)!1 in Eq.~14!. Therefore, we can ignore, in
addition to inertial terms, the third and fourth terms on t
right-hand side of Eq.~14! or ~38! and arrive at the familiar
expression for the Fickian mass flux,

Ja52rD]ac. ~46!

A combination of Eq.~46! with the mass balance Eq.~5!
leads to the diffusion parabolic equation,

]c

]t
5]a~D]ac! ~47!

describing the time evolution of the solvent concentrat
into the Fickian immiscible blend. We recall that Eq.~47! is
obtained by assuming that the changes of the interface c
small effects in the diffusion mass flux~i.e., uwcQu!uwccu
and uwcqu!uwccu).

Even though mass transfer is Fickian, it still affects t
size and shape of the interface via the diffusion mass
appearing in theQ andq governing equations. These equ
tions involve, as discussed earlier, the interface Debo
number DeQq53h0fD0 /(QoGoL0

2) which is of the order of
1025 for the MeOH–~PDMS/PIB! mixture. The relaxation
part is dominant in the governing equations of the interfa
~43!–~44!, and the size and shape relax rapidly to their fin
equilibrium values.

Note that the Fickian description can also be obtain
for immiscible fluids with a frozen morphology in whic
there are no changes in both the size and shape of the i
face during the whole process. In this case, no interfa
stresses are created.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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B. „c ,Q…-model: Isotropically evolving interfaces

Here, we discuss the case where diffusion does not a
the isotropy of the interface during the whole dynamic p
cess. In this caseq50, and onlyQ is kept as the only state
variable characterizing the interface. From Eq.~38!, this oc-
curs when

g1!min~1,g0! ~48!

which leads to a size density satisfyingQ0

!min(ART/Ṽao,Go /ao). This provides an indication of the
size of the droplets constituting the minor phase and also
range of applicability of this reduced model. If we consid
for instance, the MeOH–~PDMS/PIB! mixture, we see tha
the size of the droplets approaches the nanoscale. From
~40! and ~48!, we also deduce that an increase of the int
facial tension or a change in the experimental conditio
such as a decrease in temperature may also lead to situa
in which the shape changes do not contribute to mass tr
port. If we examine the effects of the interface Deborah nu
ber on mass transport, non-Fickian behavior is expected
values of DeQq in the vicinity of unity. In the case of the
immiscible blend~PDMS/PIB!, the relaxation time for the
interface,tQq is of the order of seconds. Therefore, a no
standard behavior may be observed for a diffusion charac
istic time scale of order of 1 s, that isL0

2;D0 . Realistically,
one should seek a compromise among the model param
values. Here, these parameters are the morphology
physical properties of the blend, the physical properties
the penetrants and the geometry of the sample.

The shape state variable,q, in addition to the mass flux
densityJ becomes thus dependent state variable~we recall
that we have already assumed thatLJ is very large!. Hence,
the set of the independent variables is reduced to~c, Q!.
Therefore, the diffusion mass flux~14! simplifies to

Ja52rD~]ac1A]aQ!. ~49!

By substituting this expression into Eqs.~5! and~7!, we ob-
tain

]c

]t
5]a~D]ac!1]a~AD]aQ!, ~50!

]Q

]t
52S D

~12c! D ]ac]aQ2S DA

~12c! D ]aQ]aQ

2
Q

3
]aS D

~12c!
]acD2

Q

3
]aS AD

~12c!
]aQD2LQwQ ,

~51!

which constitute the governing equations for diffusion in is
tropically evolving immiscible media. Note that Eq.~51! in-
volves nonlinear terms in the gradients ofc andQ. Here, we
assume that diffusion does not cause any changes in the
isotropy. Furthermore, settingq50 in Eq. ~8! leads to the
following constraint for the diffusion mass flux:

]bS Ja

r~12c! D1]aS Jb

r~12c! D5
2

3
dab]gS Jg

r~12c! D .

~52!
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Once the solutions of Eqs.~50! and~51! are determined, we
can calculate the distribution of isotropic stresses create
the immiscible fluid using

sab
~ Interface!52 2

3 dabQwQ . ~53!

This expression, which in fact stands for the Laplace term
obtained as a special case of Eq.~9! by settingq50.

Note that here the non-Fickian diffusion is produced
the coupling between the mass flux and the changes of
interfacial size, while the shape has no effect on mass tra
port. Another interesting case may occur if there are no c
centration gradients within the system (g0@1). We deduce
from Eq. ~49! that the diffusion mass flux reduces toJa

52rDA]aQ. Note that any local changes of the interfac
size density may also cause diffusion of the penetrant m
ecules.

C. „c ,q …-model

Changes occurring in the shape but not in the size m
also cause non-Fickian behavior. This phenomenon can
be predicted by the model~5!–~9!. From Eq.~38!, we deduce
that the following condition has to be satisfied:

go!min~1,g1!, ~54!

which gives an indication of the size densityGo /ao!Q0

!(RT/ṼGo). Similarly, for the MeOH–~PDMS/PIB! mix-
ture, the size of the droplets may also attain the nanosc
provided the other physical properties remain unchang
The change in the size of the interface may be overloo
and the size density variable can be assumed as a con
during the whole process of diffusion, i.e.,Q5Q0 . There-
fore, the mass flux density becomes

Ja52rD~]ac1Ebg]aqbg!. ~55!

Inserting Eq.~55! into Eq. ~5! yields

]c

]t
5]a~D]ac!1]a~DEbg]aqbg! ~56!

which depends onq ~representing the shape variable! whose
governing equation is given by Eq.~8! but with the diffusion
mass flux densityJ replaced by Eq.~55!. Similarly, the stress
tensor is now given by

sab
Interface52qagwqab

1Gqab1
2Q0

3
wqab

2
qabqgn

Q0
wqgn

2
2

3
dab~QoG12qnuwqnu

!

2
2

3
d i j S qab1

1

3
Q0dabDwqi j

. ~57!

In this model, a non-Fickian behavior is predicted
occur only through the coupling between the interfac
shape changes and the diffusion mass flux, while the chan
of the size are not assumed to significantly affect mass tra
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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port. The same discussion as for the~c, Q!-model holds here;
that is, only shape changes may be a source of creatio
mass fluxes within the blend (g1@1).

D. „c ,Q,q …-models

Here, we address a more general case where both
size and shape undergo substantial changes and contribu
the diffusion mass flux. In this case, the magnitudes of
mensionless constantsg0 and g1 become significant and
strongly couple diffusion to interfacial changes. From E
~40! an increase in the size density, or in the interfacial a
anisotropy coefficients, as well as a decrease in the temp
ture of the experiment may lead to such a physical situat
Nanodispersions may also fall into this category. Therefo
the governing equation~14!, for the mass flux reduces to

Ja52rD~]ac1A]aQ1Ebg]aqbg!. ~58!

Fick’s second law, initially expressed as a linear functi
of the gradient of the concentration is now extended by t
additional terms involving the gradients of the areaQ and
anisotropyq densities of the interface. The solvent mass b
ance, obtained by substituting Eq.~58! into Eq. ~5!, trans-
forms to the following parabolic equation:

]c

]t
5]a~D~]ac1A]aQ1Ebg]qbg!! ~59!

which involves the interfacial variablesQ andq, whose gov-
erning equations are given by Eqs.~7! and ~8!, respectively,
provided the mass flux expression is given by Eq.~58!. Note
that the independent state variables in the (c,Q,q)-model are
the mass fraction, the surface area, and the anisotropy te
By solving the governing equations~59! and ~7!–~8! in
which J is replaced by Eq.~58!, we obtain information con-
cerning their profiles and also the distribution of stresses~9!
created by the deformation of the interface.

V. CONCLUSION

The main result of this paper is the set of the govern
Eqs. ~5!–~9! of a new model of isothermal diffusion of
simple fluid into a blend of two immiscible polymers und
mechanical equilibrium and in the absence of external fl
and forces. The state variables describing such mixtures
the mass fraction and the diffusion mass flux density of
simple fluid and two interfacial structural variables, a sca
and a symmetric traceless second order tensor. The s
and the tensor denote the size of the area density and
anisotropy of the shape of the interface, respectively. T
main outcome is that diffusion–interface coupling may b
come significant and may influence the behavior of m
transport as well as that of the morphology of the interfa
Consequently, mass transport becomes non-Fickian du
the interfacial dynamic changes and in turn the size
shape of the interface may undergo substantial deformat
produced by the mass fluxes. As a result, diffusion may
accompanied by a development and propagation of inte
stresses whose consequences are creation of interf
cracks and crazes. An explicit formula for such stresse
provided. The model consists of four first order partial d
ferential equations parameterized by the internal free ene
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density and the kinetic coefficients entering the dissipat
potential. All the physical parameters and properties of
penetrants and of the blend as well as of the experime
conditions are explicitly included into the governing equ
tions.

As many experiments are unidirectional, we have inv
tigated the nature of hyperbolic and dispersive waves i
one-dimensional setting, and provided explicit formulas
the characteristic speed, phase velocity, and attenuatio
the intensity. In the high frequency limit, the phase veloc
coincides exactly with the characteristic speed of the osm
waves~hyperbolic!. The attenuation of the intensity reduce
to a positive constant value discarding any amplification
the high frequency waves. In the low frequency limit, bo
the phase velocity and the attenuation become proportio
to the square root of the frequency.

The dimensionless form of the model shows that
effects of the diffusion–interface coupling on mass transp
as well as on the interface depend on the magnitude of
dimensionless groups of physical parameters. Two are De
rah numbers and two are coupling constants that relate
fusion to interfacial changes. We have discussed some li
ing cases of Eqs.~5!–~9! in which the diffusion mass flux
becomes the dependent state variable. By further redu
the number of independent variables, we have examined
fusion in both isotropically evolving interfaces (q50) and in
interfaces with a constant size but with a transient shapes
both cases, an expression for the interfacial stress tens
provided.
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