
Journal of Computational Physics 258 (2014) 1–14
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

A fast numerical method for computing doubly-periodic
regularized Stokes flow in 3D

Ricardo Cortez, Franz Hoffmann ∗

Department of Mathematics, Tulane University, New Orleans, LA 70118, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 10 March 2013
Received in revised form 11 October 2013
Accepted 17 October 2013
Available online 23 October 2013

Keywords:
Stokes flow
Ewald summation
FFT

A new numerical method for computing three-dimensional Stokes flow driven by a doubly-
periodic array of regularized forces is presented. The method is based on deriving an
analytical representation of a regularized Green’s function in Fourier space. Then only an
inverse fast Fourier transform (inverse FFT) has to be computed to determine the fluid
velocity on a grid in the physical domain. The velocity at other points can be interpolated
from this grid. Accuracy is verified by comparing numerical results to a solution that is
independent of the method. Although the regularized forces lead to a smooth velocity field,
the Green’s function may contain rapid transitions that are not captured properly on a
coarse grid. In that case, an Ewald splitting technique is used to compute the grid-resolved
part of the flow using an inverse FFT and a sum in physical space for the localized part
of the velocity. The splitting parameter can be chosen as small as a few grid cells, which
makes the sum in physical space converge extremely fast. We present numerical examples
that demonstrate that fact. In some cases, when the grid size is sufficiently small compared
to the regularization parameter, the Ewald splitting is not needed.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

We present a numerical method for computing doubly periodic Stokes flow in three dimensions. Stokes flow is relevant
when viscous forces dominate inertial forces, as is the case in highly viscous fluids or when the length scales in the
problem are tiny. We are motivated by periodic flows created, for instance, by synchronized beating of cilia [1]. Cilia are
hair-like structures found on the surfaces of cells and their arrangement on a two-dimensional surface makes the flow
doubly-periodic. Coordinated beating of cilia plays a role in the transport of fluids or the locomotion of microorganisms. In
this paper we will focus our attention on numerical aspects.

Consider first incompressible Stokes flow driven by N singular forces in unbounded three-dimensional space without
periodicity. The Stokes equations are

0 = μ�u − ∇p +
N∑

n=1

fnδ(x − xn),

0 = ∇ · u, (1)

where u is the fluid velocity, p is pressure and μ is the fluid viscosity. The external force is a linear combination of Dirac
delta distributions. The second equation is the incompressibility condition. The solution is a sum of Stokeslets given by

* Corresponding author. Tel.: +1 504 862 8391.
E-mail addresses: rcortez@tulane.edu (R. Cortez), fhoffma@tulane.edu (F. Hoffmann).
0021-9991/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcp.2013.10.032

http://dx.doi.org/10.1016/j.jcp.2013.10.032
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcp
mailto:rcortez@tulane.edu
mailto:fhoffma@tulane.edu
http://dx.doi.org/10.1016/j.jcp.2013.10.032
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcp.2013.10.032&domain=pdf

2 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
Fig. 1. Schematic for the computation of the velocity field at a point (x, y, z).

μu(x) =
N∑

n=1

fn

8π |x − xn| + [fn · (x − xn)](x − xn)

8π |x − xn|3 . (2)

We note that the fluid velocity in Eq. (2) is singular at the locations x = xn as a result of the force delta distribution. This
velocity can also be written as

μu(x) =
N∑

n=1

(
(fn · ∇)∇ − fn�

)
B(rn), (3)

where rn = |x − xn| and the Green’s function B(r) = −r/8π is the fundamental solution to the biharmonic operator �2, i.e.

�G(r) = δ(r),

�B(r) = G(r), (4)

where G(r) = −1/8πr.
Turning now to solving this problem in a doubly-periodic domain, we consider point forces fn that lie in the main domain

[0, L] × [0, L] ×R and are distributed periodically in x and y with period L. In order to compute the velocity corresponding
to the doubly-periodic array of forces, we can consider the velocity contributions of all forces and of their periodic copies.
This yields an infinite double-sum for each of the forces in the main domain. In the case of zero net force,

∑N
n=1 fn = 0, the

infinite double sums converge but slowly and the velocity singularities remain. A standard approach to evaluate efficiently
the infinite series is to employ an Ewald splitting [2], where the series is split into a smooth part that can be computed
efficiently in Fourier space and a fast-decaying local part (containing the singularity) to be computed in physical space. This
approach is not straight forward for doubly-periodic domains in three dimensions, as explained in [2].

Our goal is to develop a general method that can be applied to problems with doubly-periodic flows in three dimensions
for any given configuration of forces. To remove the singularity from the solution, we use a regularized force field obtained
by replacing the delta functions in Eq. (1) with a narrow Gaussian function Φε(r), where ε is a numerical parameter that
controls the width of the function. The analytic solution of Eq. (1) with regularized forces is known as a regularized Stokeslet
and it approximates the singular Stokeslet away from the singularities while remaining smooth throughout the domain [3].

Besides using regularized forces, the method presented here differs from the standard Ewald splitting technique in the
way the smooth part of the flow is computed. Instead of approximating an infinite sum in spectral space, we derive analytic
expressions for the Green’s function in Fourier space (corresponding to the variables x and y only). In other words, we find
an expression for the Fourier space version of the regularized Green’s function, B̂Φε (k,m, z), where k and m are the wave
numbers corresponding to x and y, respectively. Given the exact expression for B̂Φε (k,m, z), the Fourier space form of the
velocity field is easily found from the Fourier space form of Eq. (3). In order to compute the fluid velocity in the physical
domain, we fix a value of z and create a two-dimensional grid of wave numbers (k,m), each from 0 to a maximum integer,
where we evaluate the transform of the velocity. We then use an inverse fast Fourier transform (inverse FFT) to get the fluid
velocity on an (x, y) grid at the fixed value of z. Fig. 1 shows a schematic of this set up.

It might seem unnecessary to use an Ewald splitting in the case of regularized forces since the fluid velocity is smooth in
this case. The smoothness of the velocity should translate into fast-decaying Fourier coefficients without needing to isolate a
non-smooth local term to be computed in physical space. However, in the method of regularized Stokeslets [3], the function
Φε(x) converges as a distribution to a delta function in the limit as ε → 0. For this reason, in practice, the regularization
parameter ε should be small. Consequently, the force fΦε(x), although smooth, is spiky. In particular, if ε is small compared
to the FFT grid spacing, the regularized force is not properly resolved on the grid. As a result, taking the inverse FFT of the
regularized Stokeslet leads to an oscillatory solution. For this reason we provide a way to use Ewald splitting where the
traditional Fourier space sum is replaced by an FFT on the grid, which guarantees fast computation, and a local velocity

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 3
Table 1
Diagram showing the proposed method for solving Stokes equation in Fourier
space driven by one point force f centered at the origin. The solution for a general
distribution of point forces follows readily from the linearity of Stokes equation.
Here, k and m are the wave numbers in the x and y directions, and the gradi-
ent and Laplace operators in Fourier space are defined by ∇̂ = (ik, im, ∂

∂z) and

�̂ = (−k2 − m2 + ∂2

∂z2).

�2 BΦε (|x|) = Φε(|x|)
Fourier transform

in x and y
↓

(k2 + m2)2 B̂Φε (k,m, z) − 2(k2 + m2)B̂ ′′
Φε

(k,m, z) + B̂ ′′′′
Φε

(k,m, z) = Φ̂ε(k,m, z)

Solve ODEs in z
↓

Green’s function B̂Φε (k,m, z)

apply operator
1
μ ((f · ∇̂)∇̂ − f�̂)

↓
û(k,m, z)

inverse FFT
in k and m

↓
u(x)

computation is done in physical space. We show numerically that the splitting parameter can be chosen as small as a few
multiples of the FFT grid spacing, which makes the physical space sum converge extremely fast. We also show that if the
FFT grid is sufficiently fine compared to the regularization parameter ε, there is no need for the Ewald splitting and the
entire process can be done as described in this section and depicted in Table 1.

The rest of the paper is organized as follows. In Section 2 we derive all formulas for the doubly periodic regularized
Stokeslet in Fourier space. In Section 3 we detail how the Ewald splitting works for our method. Section 4 contains numerical
examples that show the accuracy of the method for various choices of the numerical parameters. To better judge the quality
of our method, we also present an approach that allows us to create a reference solution that is independent of our method.

2. FFT-based method for regularized forces

In this section we concentrate on the case of a single regularized force, which leads to the solution for a general dis-
tribution of point forces by the linearity of Stokes equation. Physically, those external point forces could either come from
approximating a force distribution along a surface, a curve, or exist on a discrete set of points. Consider the incompressible
Stokes equation for periodic flows driven by a regularized force

0 = μ�u − ∇p + f0Φε(x − xn),

0 = ∇ · u.

We assume that the force f0 is exerted at x0 ∈ [0, L] × [0, L] × R and is distributed periodically in x and y with period L.
Extensions to a rectangular box are straightforward.

Analogously to the singular case, the velocity field can be written as

μu(x) = (
(f0 · ∇)∇ − f0�

)
BΦε (r),

where r = |x − x0| and the Green’s function BΦε is the fundamental solution to the biharmonic operator �2, i.e.

�GΦε (r) = Φε(r), (5)

�BΦε (r) = GΦε (r). (6)

We choose the Gaussian blob function

Φε(r) = 1

ε3π
3
2

(
5

2
− r2

ε2

)
exp

(
− r2

ε2

)
, (7)

with total integral equal to 1 and which has been used previously by other authors [4,5]. This function is a good choice
for two reasons. First, for any smooth function f the difference (f ∗ Φε) − f , where ∗ stands for the convolution operator,
is of order ε4. In other words, the error introduced by the regularization of the forces decays with forth order as the

4 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
regularization parameter ε goes to zero [6]. Second, the form of the blob allows a separation of variables where Φε(r) can
be written as a sum of two terms of the form F1(x, y)F2(z). Consequently, its two-dimensional Fourier transform Φ̂ε can
be written as a sum of terms of the form F̂1(k,m)F2(z).

For an infinite array of forces distributed periodically in x and y with period L, we incorporate periodicity by using the
two-dimensional Fourier transform in x and y, which for an integrable function g(x) is defined as

ĝ(k,m, z) =
∞∫

−∞

∞∫
−∞

g(x)exp
(
i(kx + my)2π/L

)
dx dy.

We note that when (k,m) = (0,0), the Fourier transform gives a one-dimensional blob in the variable z. When this equation
is used to compute the Fourier transform of a function on an Ng × Ng grid of wave numbers between 0 and Ng/2, the
values of g on a grid are found using the inverse FFT

g(p�x,q�x, z) = 1

L2

Ng−1∑
k=0

Ng−1∑
m=0

ĝ(k,m, z)exp
(
2π i(kp + mq)/Ng

)

for p,q = 0,1, . . . , Ng − 1 and �x = L/Ng .
Taking the two-dimensional Fourier transform of (5) and (6) in the case of one point force f0 centered at x0 = (x0, y0, z0),

yields the system of ordinary differential equations

Ĝ ′′
Φε

(z̃) − c2ĜΦε (z̃) = Φ̂ε(z̃), (8)

B̂ ′′
Φε

(z̃) − c2 B̂Φε (z̃) = ĜΦε (z̃), (9)

where z̃ = z − z0, c = 2π
L

√
k2 + m2 where the integers k and m range from 0 to a maximum positive integer. We have

omitted the dependence of the functions on (k,m) for notational simplicity and the indicated derivatives are with respect
to z̃.

Using the blob function Φε defined in Eq. (7) leads to

Φ̂ε(z̃) = δ̂ε
x0 y0

[
1

4
√

π

(
6

ε
+ εc2

)
− z̃2

√
πε3

]
exp

(
− z̃2

ε2

)

where the factor δ̂ε
x0 y0

= exp(− 1
4 ε2c2)exp(− 2π i

L (kx0 + my0)) contains the dependence on x0 and y0.

The goal is to solve Eqs. (8)–(9) exactly for B̂Φε (z̃) and determine û(z̃) from the Fourier space analog of (3), which is

μû(z̃) = (
(f0 · ∇̂)∇̂ − f0�̂

)
B̂Φε (z̃)

=

⎛
⎜⎜⎝

4π2

L2 (− f1k2 − f2km)B̂Φε (z̃) + 2π i
L f3kB̂ ′

Φε
(z̃) − f1ĜΦε (z̃)

4π2

L2 (− f1km − f2m2)B̂Φε (z̃) + 2π i
L f3mB̂ ′

Φε
(z̃) − f2ĜΦε (z̃)

4π2

L2 f3(k2 + m2)B̂Φε (z̃) + 2π i
L (f1k + f2m)B̂ ′

Φε
(z̃)

⎞
⎟⎟⎠ , (10)

where ∇̂ = (ik, im, ∂
∂z), �̂ = (−k2 − m2 + ∂2

∂z2), and f0 = (f1, f2, f3).
In practice, we solve Eqs. (8)–(9) exactly using a symbolic software package such as Mathematica. Although the wave

number pair (k,m) is a parameter in the differential equations, their solutions are all of the same type except when (k,m) =
(0,0), or equivalently when c = 0. We will treat this case separately. For the case c
= 0, it follows that

ĜΦε (z̃) = − δ̂ε
x0 y0

4c
exp

(
ε2c2

4

)[
exp(−cz̃)erfc

(
cε

2
− z̃

ε

)
+ exp(cz̃)erfc

(
cε

2
+ z̃

ε

)]
− δ̂ε

x0 y0
ε

4
√

π
exp

(
− z̃2

ε2

)
,

and

B̂Φε (z̃) = δ̂ε
x0 y0

8c3
exp

(
c2ε2

4

)[
(1 + cz̃)exp(−cz̃)erfc

(
cε

2
− z̃

ε

)
+ (1 − cz̃)exp(cz̃)erfc

(
cε

2
+ z̃

ε

)]

+ δ̂ε
x0 y0

ε

4
√

πc2
exp

(
− z̃2

ε2

)
.

The constants of integrations are chosen so that ĜΦε and B̂Φε approach 0 as |z| → ∞. Otherwise at least one of the functions
ĜΦε or B̂Φε would grow exponentially in z and this growth would also translate into the velocity. It also follows that

B̂ ′
Φε

(z̃) = − δ̂ε
x0 y0 exp

(
c2ε2)[

z̃ exp(−cz̃)erfc

(
cε − z̃

)
+ z̃ exp(cz̃)erfc

(
cε + z̃

)]
.

8c 4 2 ε 2 ε

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 5
It is straightforward to verify that sending ε → 0 produces

Ĝ(z̃) = − δ̂x0 y0

2c
exp

(−c|z̃|) (11)

and

B̂(z̃) = δ̂x0 y0

4c2

(
|z̃| + 1

c

)
exp

(−c|z̃|), (12)

which solve the singular versions of Eqs. (8)–(9).
For the case c = 0, Eq. (10) simplifies to

μû(z̃) =
⎛
⎝ − f1

− f2
0

⎞
⎠ Ĝ0,Φε (z̃), (13)

and the equation for Ĝ0,Φε simplifies to

Ĝ ′′
0,Φε

(z̃) =
[

3

2
√

πε
− z2

√
πε3

]
exp

(
− z2

ε2

)
,

with solution

Ĝ0,Φε (z̃) = 1

4

[
ε√
π

exp

(
− z̃2

ε2

)
+ 2z̃ erf

(
z̃

ε

)]
.

We chose the constants of integration so that sending ε → 0 yields

Ĝ0(z̃) = |z̃|
2

, (14)

which solves the singular version of Eq. (8) when c = 0. The function B̂0,Φε is not needed in this case.
Up to here, all computations can be done analytically. In particular, the divergence of (10) is zero exactly. To complete

the evaluation of the velocity field, we fix z̃, evaluate û(z̃) on a grid of wave numbers, and take the inverse FFT. This yields a
doubly-periodic velocity field on a two-dimensional grid for the given fixed value of z̃. We emphasize that since all analytic
expressions have been found in Fourier space, there is no need to interpolate the forces onto a grid. The only interpolation
required is to evaluate the fluid velocity at any point that might not fall onto the grid. Since the velocity is smooth, no
special interpolation procedure is needed.

3. Ewald splitting

One approach to solving the doubly-periodic Stokes problem in three dimensions is to begin with Eq. (3), which provides
the fluid velocity only due to the N forces exerted in the main domain. To this velocity, we could add the contribution of all
the periodic copies of the forces. The result is a double infinite sum that converges slowly in either the physical domain or
in the Fourier domain. One way to evaluate the sum efficiently is to separate the velocity formula into a smooth part and a
rapidly-decaying part, which can be approximated well and computed fast in the Fourier and physical domains, respectively.
The decomposition requires the selection of a splitting parameter ξ that balances the work required to approximate the
sums.

Hasimoto [7] was the first to use the splitting into a Fourier space sum and a physical space sum when he computed
Stokes flow past periodic arrays of spheres and cylinders. Work by Sierou and Brady [8] and Saintillan et al. [9] uses FFTs to
compute the Fourier space sum in an Ewald splitting for triply-periodic domains. They first interpolate the force field onto
a regular mesh, take the FFT of the forces, and then compute the velocities using inverse FFTs. Other fast modern numerical
methods for triply-periodic arrays of forces include general geometry Ewald-like methods (GGEM) [10] and spectrally ac-
curate methods [11]. Methods dealing with planar periodicity are usually derived from methods solving the triply-periodic
problem [2,12]. There the Fourier space sum is evaluated by computing the Fourier integrals exactly. Bleibel [13] develops a
formula for doubly-periodic flows in three dimensions for the special case when all interacting particles are within a single
plane parallel to the xy-plane.

In the approach presented here, the infinite sum in the Fourier domain has been replaced by an FFT on a grid and the
singularity has been removed so that all expressions are smooth. However, the regularization parameter ε is required to be
small for numerical accuracy, so that if the grid size �x is large relative to ε, the FFT may be inaccurate because the grid is
not fine enough to capture the smoothness introduced by the right-hand side of Eq. (8). The two obvious remedies, refining
the grid or increasing ε, come either at the price of higher computational cost (smaller �x) or a loss in accuracy (larger ε).
Also, if the point forces in Eq. (1) come from approximating a force distribution along a slender body and ε has a physical
interpretation such as the thickness of the slender body, ε cannot be chosen freely.

6 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
In those cases, we consider the Ewald splitting of the form

BΦε (r) = B(r)erf

(
r

ξ

)
︸ ︷︷ ︸

regular

+ BΦε (r) − B(r)erf

(
r

ξ

)
︸ ︷︷ ︸

regular and fast decaying

, (15)

where B(r) = −r/8π is the Green’s function corresponding to the singular problem in (3).
The first term on the right side of Eq. (15) we compute in Fourier space with FFTs as described in Section 2. This

procedure requires the splitting parameter ξ to be large enough compared to the grid size in order for the regularization
to be resolved on the grid. Note that necessarily ξ � ε since otherwise the splitting would not introduce any regularity
additional to the one coming from regularizing the forces. In order to compute the velocity field in Fourier space, similar
to Section 2 we have to compute the regularized Green’s function in Fourier space. The only difference is that in physical
space we now start with the Green’s function BΨξ = B(r)erf(r

ξ
). It turns out that computing the two-dimensional Fourier

transform of BΨξ directly from its definition is not easily done since the term erf(r) does not allow us to separate the
variable z as before. What we do instead is to find twice the Laplacian of BΨξ to give the corresponding blob function

Ψξ (r) = �2
(

B(r)erf

(
r

ξ

))
= 1

ξ3π
3
2

(
10 − 11

r2

ξ2
+ 2

r4

ξ4

)
exp

(
− r2

ξ2

)
. (16)

The blob function Ψξ is quite similar to blob (7) and also has the first three moments equal to zero, which is good for
accuracy. The Fourier transform Ψξ (r) is also easy to compute. Once we compute the Fourier transform of Ψξ , we can solve
for the corresponding Green’s function analytically in Fourier space.

The last two terms on the right side of (15) together we compute directly as a sum of regularized Stokeslets in physical
space. We incorporate periodicity by placing copies of forces in the x and y direction. In order to keep computational costs
to a minimum, we require the two terms to decay fast, demanding ξ to be as small as possible.

There are two opposing requirements for the splitting parameter ξ . On the one hand we need ξ to be large enough
to guarantee enough smoothness for the FFT to be accurate. On the other hand we want ξ to be as small as possible in
order to ensure fast decay of the terms in real space. This trade-off is similar to the classical approach where the regular
term of the Ewald splitting is computed using infinite series in spectral space. In that approach the splitting parameter ξ

is a compromise between a large value, which is desired for the spectral sum to converge fast, and a small value, which is
desired for the fast-decaying term to converge fast. Results from [14] indicate that the splitting parameter is best chosen
on the order of the period L. In the method presented here, since the regular term is computed with FFTs on a grid, the
splitting parameter ξ needs to be only slightly larger than the grid size �x in order to resolve the blob function on the
grid. Therefore, in our method, ξ is typically a small multiple of the grid size. This makes the infinite sum in the last terms
in (15) (including the periodic copies of the forces) decay extremely fast. Additionally, the last two terms on the right side
of (15) together decay like a Gaussian, which is a consequence of the fact that Φε and Ψξ have second moment zero [15].
The result is that only forces within a cutoff radius of a few ξ need to be considered, as shown in the section of numerical
results.

For our method, the splitting in (15) has two advantages over an Ewald splitting of the type used in [2], which has the
form

BΦε (r) = BΦε (r)erf

(
r

ξ

)
︸ ︷︷ ︸

regular

+ BΦε (r)erfc

(
r

ξ

)
︸ ︷︷ ︸

regular and fast decaying

. (17)

One reason is that the regular piece in (15) is independent of the blob function Φε and does not need to be recomputed
when a different blob is used. In particular, the regular piece is the same even when no blob is used. However, in that case
of course the fast-decaying piece would exhibit a singularity. A more practical reason for why we choose the splitting (15)
over (17) is that the Fourier transform of the regular piece in (17) is difficult to determine analytically, even when Gaussian
blobs are used. This is mainly due to our inability to compute the Fourier transform of erf(r) in (x, y) only. When we ran
into the same problem with splitting (15), we found a remedy in taking two Laplacians. In fact, Eq. (16) eliminates the need
to compute the two-dimensional Fourier transform of erf(r). For splitting (17) even this trick does not work and we are
therefore unable to proceed with the FFT-method.

3.1. The formulas in Fourier space

The regular term in (15) can be treated with the methods developed in Section 2, using the expression for velocity in
Eq. (10). The only difference is that we use blob (16) instead of (7). To complete the description of this piece, the expressions
for ĜΨξ and B̂Ψξ need to be derived. Replacing the right-hand side in (8) with the Fourier transform of (16) gives

Ĝ ′′
Ψξ

(z̃) − c2ĜΨξ (z̃) = δ̂
ξ
x0 y0

5
√ [

16z̃4 − 56ξ2 z̃2 − 8ξ4(−3 + c2 z̃2) + 6ξ6c2 + ξ8c4] exp

(
− z̃2

2

)
,

8ξ π ξ

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 7
where again z̃ = z − z0, c = 2π
L

√
k2 + m2 and δ̂

ξ
x0 y0 = exp(− 1

4 ξ2c2)exp(− 2π i
L (kx0 + my0)). This can be solved exactly to

produce for c
= 0

ĜΨξ (z̃) = − δ̂
ξ
x0 y0

4c
exp

(
ξ2c2

4

)[
exp(−cz̃)erfc

(
cξ

2
− z̃

ξ

)
+ exp(cz̃)erfc

(
cξ

2
+ z̃

ξ

)]

− δ̂
ξ
x0 y0

4ξ
√

π

(
2ξ2 + 1

2
ξ4c2 − 2z̃2

)
exp

(
− z̃2

ξ2

)
,

and subsequently

B̂Ψξ (z̃) = δ̂
ξ
x0 y0

8c3
exp

(
c2ξ2

4

)[
(1 + cz̃)exp(−cz̃)erfc

(
cξ

2
− z̃

ξ

)
+ (1 − cz̃)exp(cz̃)erfc

(
cξ

2
+ z̃

ξ

)]

+ δ̂
ξ
x0 y0ξ

4
√

πc2

(
1 + ξ2c2

2

)
exp

(
− z̃2

ξ2

)
,

as well as

B̂ ′
Ψξ

(z̃) = − δ̂
ξ
x0 y0

8c
exp

(
c2ξ2

4

)[
z̃ exp(−cz̃)erfc

(
cξ

2
− z̃

ξ

)
+ z̃ exp(cz̃)erfc

(
cξ

2
+ z̃

ξ

)]
− δ̂

ξ
x0 y0ξ

4
√

π
z̃ exp

(
− z̃2

ξ2

)
.

The constants of integration are again chosen so that ĜΨξ (z̃) and B̂Ψξ (z̃) approach 0 as |z| → ∞ since otherwise the Green’s
function and the resulting velocity would grow exponentially in z. It is straightforward to verify that taking the limit ξ → 0
produces the singular formulas (11) and (12). If c = 0, the solution takes the form

Ĝ0,Ψξ (z̃) = z̃

2
erf

(
z̃

ξ

)
+ z̃2

2
√

πξ
exp

(
− z̃2

ξ2

)
,

where again we chose the constants of integration so that Ĝ0,Ψξ is a regularized version of (14). The Green’s functions can
now be readily plugged into (10) and (13), respectively.

3.2. Local sum in physical space

The fast-decaying piece in (15), which can be written as BΦε − BΨξ , is treated in infinite space where periodicity is being
accounted for by placing periodic copies of the forces in the main domain in the x and y direction. As mentioned before, it
suffices to place only copies of forces that fall within a few multiples of ξ from the boundaries of the main domain in each
direction because of the Gaussian decay. In detail, solving (5) in spherical coordinates

(rGΦε)
′′ = rΦε(r),

where Φε is as in (7), yields the radially symmetric Green’s function

GΦε (r) = −erf(r
ε)

4πr
− exp

(− r2

ε2

)
4επ

3
2

.

In the limit ε → 0, this produces G(r) = − 1
4πr as expected. Similarly, from (4) we obtain

BΦε (r) = − r erf(r
ε)

8π
− ε exp

(− r2

ε2

)
8π

3
2

= −1

8π

∫
erf

(
r

ε

)
dr, (18)

which as ε → 0 has the limit

B(r) = − r

8π
. (19)

Using (18) and (19), the fast-decaying piece in (15) can be represented as

BΦε (r) − B(r)erf

(
r

ξ

)
= r erf(r

ξ
) − r erf(r

ε)

8π
− ε exp

(− r2

ε2

)
8π

3
2

.

The velocity field produced by this combination is

(
(f0 · ∇)∇ − f0�

)(
BΦε (r) − B(r)erf

(
r
))

= 1
(

f0
Cε,ξ (r) + (f0 · x̃)x̃

3
Dε,ξ (r)

)
, (20)
ξ 8πμ r r

8 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
where x̃ = x − x0 and

Cε,ξ (r) = r√
π

[(
−6

ξ
+ 4r2

ξ3

)
exp

(
− r2

ξ2

)
+ 2

ε
exp

(
− r2

ε2

)]
−

[
erf

(
r

ξ

)
− erf

(
r

ε

)]
, (21)

Dε,ξ (r) = r√
π

[(
2

ξ
− 4r2

ξ3

)
exp

(
− r2

ξ2

)
− 2

ε
exp

(
− r2

ε2

)]
−

[
erf

(
r

ξ

)
− erf

(
r

ε

)]
. (22)

3.3. Summary of the method

The proposed numerical method using FFTs and Ewald splitting can be summarized as follows. Given N forces fk at
locations xk , evaluate the velocity at a point x = (x, y, z) with the algorithm

1. Evaluate the Fourier transform of the smooth part of the velocity using Eq. (10) for the wavelengths represented on the
grid but with BΦε replaced by BΨε and GΦε replaced by GΨε . This requires the formulas for GΨε and BΨε derived in
Section 3.1.

2. Evaluate the smooth part of the velocity via inverse FFT.
3. Add the contribution on the grid from the local velocity using Eqs. (20)–(22). Note that it may be necessary to place a

periodic copy of points close to the boundary of the main domain.
4. Interpolate from the grid to the point (x, y, z) if necessary.

A version of the method without the Ewald splitting is:

1. Evaluate the Fourier transform of the entire velocity field using Eq. (10) for the wavelengths represented on the grid.
This requires the formulas for GΦε and BΦε derived in Section 2.

2. Evaluate the velocity via inverse FFT.
3. Interpolate from the grid to the point (x, y, z) if necessary.

We note that the algorithm above computes the velocity field on a two-dimensional grid in xy at a height z. The same
algorithm must be followed at different values of z where the velocity is needed (see Fig. 1).

4. Numerical results

Consider the case when N regularized forces in random directions are located at random points within the main domain.
In order to judge the accuracy of our numerical method developed in the previous two sections, we need a reference
solution to compare. We are interested in the error incurred by using FFTs and truncating the sum in physical space, not
in the error due to regularizing the forces. In the next section we describe how we compute a reference solution for the
regularized force problem that is independent of the method.

4.1. A reference solution

A straightforward way of finding the velocity due to regularized forces is to directly sum the velocity contributions due
to the forces and their periodic copies located at xk + n, where n = (nL,mL,0), i.e.

μu(x) =
∞∑

n,m=−∞

N∑
k=1

(
(fk · ∇)∇ − fk�

)
BΦε

(|x − xk − n|).
By absorbing the net force into the pressure term of Eq. (1), we can assume a zero net force

∑N
k=1 fk = 0 without loss of

generality. However, it is inefficient to evaluate the series directly since it converges slowly and only conditionally. Splitting
it into a partial sum and a remainder, and using the equivalence of Eqs. (2) and (3) gives

μu(x) =
M∑

n,m=−M

N∑
k=1

(
(fk · ∇)∇ − fk�

)
BΦε

(|x − xk − n|)

+ 1

8π

∑
max{|n|,|m|}>M

N∑
k=1

fk

|x − xk − n| + [fk · (x − xk − n)](x − xk − n)

|x − xk − n|3

+
∑ N∑(

(fk · ∇)∇ − fk�
)
(BΦε − B)

(|x − xk − n|). (23)

max{|n|,|m|}>M k=1

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 9
Fig. 2. Relative difference between split (ξ = 8�x) and unsplit method on a 64 × 64 × 10 grid (i.e. �x = 1
64). The flow field was generated by 1000 random

forces at random locations inside the cube [0,1]3.

The last term is negligible because for a blob function Φε(r) with zero second moment, the velocity due to BΦε − B decays
like a Gaussian [15]. We ignore this last term from now on. The first term on the right side of (23) containing the partial
sums is computed directly using the formula

(
(fk · ∇)∇ − fk�

)
BΦε (r) = 1

8π

(
fk

r
Cε(r) + (fk · x̃)x̃

r3
Dε(r)

)
,

where x̃ = x − xk − n, r = |x̃|, and BΦε as defined in Eq. (18) yields

Cε(r) = 2r

ε
√

π
exp

(
− r2

ε2

)
+ erf

(
r

ε

)
,

Dε(r) = − 2r

ε
√

π
exp

(
− r2

ε2

)
+ erf

(
r

ε

)
.

It remains to estimate the second term on the right side of (23), which represents the error in the truncated sums. It
turns out that the leading order terms in this error are linear in x̃ and can be estimated fairly well. The corresponding
formulas are worked out in the appendix. The result is that when M = 40, the reference solution is accurate to within 10−6.

4.2. Numerical example

4.2.1. Ewald splitting versus no splitting
We place 1000 random forces with zero net force at random locations inside the cube [0,1]3 and analyze the results

produced with and without splitting. We first compute the relative difference between the method implemented without
splitting and the method using Ewald splitting for a range of values of ε. For the Ewald splitting implementation, the
parameter ξ was fixed to ξ = 8�x. This experiment reveals the values of ε for which the Ewald splitting is necessary. The
results are in Fig. 2, which shows that the computations agree to within machine precision when ε � 4�x or so. Since the
splitting parameter ξ plays the role of a regularization parameter, the result also shows that we can choose ξ as small as
ξ = 4�x in general, and this provides sufficient smoothness for the FFT computation to be spectrally accurate.

Fig. 2 also shows that when ε is small compared to the grid size �x, the method without splitting gives solutions that
disagree with the Ewald splitting implementation. As ε decreases, the blobs become narrower to the point that they cannot
be represented well on the grid, resulting in larger errors. This is verified in Fig. 3 where the two implementations are
compared with the reference solution separately. We see that when ε is large enough, both implementations agree. When
ε is small relative to �x, the errors of the method without splitting are large, while the errors of the method with Ewald
splitting remain small. We emphasize that the reference solution is only accurate to within 10−6 when the series (23) is
truncated at M = 40. This is why the errors in Fig. 3 saturate around that value. The accuracy of the reference solution is a
little better for smaller ε since the remainder term in Eq. (23) is smaller.

4.2.2. Decay of the local sum in an Ewald splitting
In an Ewald splitting, we incorporate periodicity of the local piece in physical space by placing copies of the forces in the

main domain in the x and y direction. Since the local piece has fast decay, it contributes to the velocity field only within a

10 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
Fig. 3. Relative maximum errors of the velocity field without splitting and with Ewald splitting (ξ = 4�x) on a 64 × 64 × 10 grid (i.e. �x = 1
64). The flow

field was generated by 1000 random forces at random locations inside the cube [0,1]3. For the reference solution we truncated series (23) at M = 40
yielding an accuracy of about 10−6.

Table 2
Performance of the split method where the local piece is computed using periodic copies of forces
that lie within the cutoff radius of the main domain boundary. The parameters used were ε = 4�x
and ξ = 6�x. The results are compared to the reference solution and the solution produced by only
using FFTs. For the reference solution we truncated series (23) at M = 40 yielding an accuracy of
about 10−6.

Cutoff radius Relative error in max norm

‖usplit − ureference‖∞ ‖usplit − uunsplit‖∞
ξ 1.83 × 10−1 1.83 × 10−1

2ξ 3.74 × 10−2 3.74 × 10−2

4ξ 3.79 × 10−6 1.32 × 10−6

6ξ 3.63 × 10−6 6.99 × 10−15

8ξ 3.63 × 10−6 7.88 × 10−16

certain cutoff radius rcutoff. In order to determine the size of that cutoff radius, we place 1000 random forces with zero net
force at random locations inside the cube [0,1]3. We compute the solution using the Ewald splitting implementation for
different values of rcutoff and compare it to the reference solution. The results from Table 2 show that rcutoff = 4ξ is enough
to give us the same accuracy as the reference solution. However, since the accuracy of the reference solution is only about
10−6, we chose the value of the regularization parameter to be ε = 4�x which is large enough for the FFT method alone
(without Ewald splitting) to give accurate results. The last column of Table 2 shows the difference between the methods
with and without splitting. We find that the two methods agree to within machine precision already for rcutoff = 8ξ .

4.2.3. Computational cost
We tested the run time of the computations for a range of values N = 1000–32,000 for both implementations of the

method, with Ewald splitting and without splitting. The results in Fig. 4 show that the run times of both implementations
are linear in N . The method without splitting involves only work to compute the velocity field using FFTs. The method
with Ewald splitting requires just as much work to compute the smooth velocity component with FFTs plus additional work
to compute the local velocity component, so that the computational cost of the Ewald splitting method will always be
larger. From the simulations, it appears that the Ewald splitting implementation takes roughly twice the time of the method
without splitting.

We emphasize that the reference solution should not be used as the method of choice when computing periodic Stokes
flow. In the FFT setting, it suffices to only consider the N forces in the main domain. If Ewald splitting is used, the com-
putational cost increases by the cost of computing the local piece. Since, in order to achieve machine accuracy, we need
to compute the local piece only inside a cutoff radius rcutoff = 8ξ and we can choose ξ = 4�x, usually we can choose a
cutoff radius as small as rcutoff = 32�x. In contrast, when computing the reference solution, the number M gives the num-
ber of periodic copies of the entire domain in each direction. Hence, for N forces in the main domain, we have to add up
(2M + 1)2N forces total.

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 11
Fig. 4. Run times to compute the velocity field without splitting and with Ewald splitting on a 64 × 64 × 1 grid (i.e. �x = 1
64). The parameters used were

ε = 3�x, ξ = 4�x and rcutoff = 8ξ . The number of point forces in the main domain ranges from N = 1000 to N = 32,000. The dashed line with slope 1
indicates linear scaling in N .

5. Conclusions

We have presented a numerical method for computing doubly periodic Stokes flow driven by regularized point forces
in three dimensions. The method is based on computing the smooth component of the flow using FFTs on a regular two-
dimensional grid. Ewald splitting is not needed when the forces are regularized with a regularization parameter ε that is
large enough compared to the grid size �x. If Ewald splitting is used in the case where ε is small compared to �x, there
are two advantages. One advantage is that the spectral sum is replaced by an FFT on a grid, which guarantees fast compu-
tation. Another advantage is that the FFT allows for the splitting parameter to be chosen as small as ξ = 4�x. This makes
the sum in physical space converge extremely fast. Numerical experiments have shown that the real space sum needs to be
evaluated only within a cutoff radius of rcutoff = 8ξ .

Acknowledgements

The authors thank Tewodros Amdeberhan for contributions to the exact summation in the Appendix and acknowledge
support by Louisiana Board of Regents grant LEQSF(2007-12)-ENH-PKSFI-PRS-01.

Appendix A

The goal is to find an approximation for

μuerr(x) = 1

8π

∑
max{|n|,|m|}>M

N∑
k=1

fk

|(x − xk) − n| + [fk · ((x − xk) − n)]((x − xk) − n)

|(x − xk) − n|3 ,

where n = (nL,mL,0). Using the notation n̂ = n
|n| , we find

∣∣(x − xk) − n
∣∣2 = [

(x − xk) − n
] · [(x − xk) − n

] = |x − xk|2︸ ︷︷ ︸
=:D0

−2
[
(x − xk) · n̂

]
︸ ︷︷ ︸

=:D1

|n| + |n|2,

and also[
fk · ((x − xk) − n

)](
(x − xk) − n

) = [
fk · (x − xk) − fk · n

][
(x − xk) − n

]
= [

fk · (x − xk)
]
(x − xk)︸ ︷︷ ︸

=:B0

− ([
fk · (x − xk)

]
n̂ + [fk · n̂](x − xk)

)
︸ ︷︷ ︸

=:B1

|n|

+ [fk · n̂]n̂︸ ︷︷ ︸ |n|2.

=:B2

12 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
Further defining A0 := fk , an asymptotic expansion of the Stokeslet in powers of s := |n| at ∞ is given by

1

8π

(
A0

(D0 + D1s + s2)
1
2

+ B0 + B1s + B2s2

(D0 + D1s + s2)
3
2

)

= A0 + B2

8π s
+ 2B1 − A0 D1 − 3B2 D1

16π s2
+ 8B0 − 4A0 D0 − 12B2 D0 − 12B1 D1 + 3A0 D2

1 + 15B2 D12

64π s3

+ −24B1 D0 − 24B0 D1 + 12A0 D0 D1 + 60B2 D0 D1 + 30B1 E2
1 − 5A0 E3

1 − 35B2 E3
1

128π s4
+O

(
1

s5

)
.

When we sum over k, m and n, a lot of these terms cancel. In detail, the 1
s term cancels because of the zero net force.

Further, note that the subindices of A, B and D represent the order of n̂. In particular, the coefficients of 1
s2 and 1

s4 are odd
in n̂. So when we sum over positive and negative m as well as positive and negative n symmetrically, these terms cancel as
well. What is left is

uerr(x) = 1

8π

∑
max{|n|,|m|}>M

N∑
k=1

8B0 − 4A0 D0 − 12B2 D0 − 12B1 D1 + 3A0 D2
1 + 15B2 D12

8s3
+O

(
1

s5

)
.

The coefficient of 1
s3 is quadratic in x. However, ultimately the quadratic terms in x cancel because of the zero net force.

Hence, uerr is linear in x up to O(1
s5). We find

uerr(x) ≈
(

S M+
1 S M+

2 S M+
3 S M+

4

)
⎛
⎜⎜⎝

a11 a1x a1y a1z

a21 a2x a2y a2z

a31 a3x a3y a3z

a41 a4x a4y a4z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
x
y
z

⎞
⎟⎟⎠ ,

where

a11 =
⎛
⎜⎝

xk(f1xk + f2 yk + f3zk) − 1
2 f1(x2

k + y2
k + z2

k)

yk(f1xk + f2 yk + f3zk) − 1
2 f2(x2

k + y2
k + z2

k)

zk(f1xk + f2 yk + f3zk) − 1
2 f3(x2

k + y2
k + z2

k)

⎞
⎟⎠ ,

a21 =
⎛
⎜⎝

−6 f1x2
k − 6 f2xk yk − 3 f3xkzk − 3

2 f1z2
k

−6 f1xk yk − 6 f2 y2
k − 3 f3 ykzk − 3

2 f2z2
k

3
2 f3x2

k + 3
2 f3 y2

k − 3 f1xkzk − 3 f2 ykzk

⎞
⎟⎠ ,

a31 =
⎛
⎜⎝

15
2 f1x2

k
15
2 f2 y2

k

0

⎞
⎟⎠ , a41 =

⎛
⎜⎝

15 f2xk yk + 15
2 f1 y2

k

15 f1xk yk + 15
2 f2x2

k

0

⎞
⎟⎠ ,

a1x =
⎛
⎝ − f1xk − f2 yk − f3zk

f2xk − f1 yk
f3xk − f1zk

⎞
⎠ , a2x =

⎛
⎝ 12 f1xk + 6 f2 yk + 3 f3zk

6 f1 yk
−3 f3xk + 3 f1zk

⎞
⎠ ,

a3x =
⎛
⎝ −15 f1xk

0
0

⎞
⎠ , a4x =

⎛
⎝ −15 f2 yk

−15 f2xk − 15 f1 yk
0

⎞
⎠ ,

a1y =
⎛
⎝ − f2xk + f1 yk

− f1xk − f2 yk − f3zk
f3 yk − f2zk

⎞
⎠ , a2y =

⎛
⎝ 6 f2xk

6 f1xk + 12 f2 yk + 3 f3zk
−3 f3 yk + 3 f2zk

⎞
⎠ ,

a3y =
⎛
⎝ 0

−15 f2 yk
0

⎞
⎠ , a4y =

⎛
⎝ −15 f2xk − 15 f1 yk

−15 f1xk
0

⎞
⎠ ,

a1z =
⎛
⎝ − f3xk + f1zk

− f3 yk + f2zk
− f1xk − f2 yk − f3zk

⎞
⎠ , a2z =

⎛
⎝ 3 f3xk + 3 f1zk

3 f3 yk + 3 f2zk
3 f1xk + 3 f2 yk

⎞
⎠ ,

a3z =
⎛
⎝ 0

0
0

⎞
⎠ , a4z =

⎛
⎝ 0

0
0

⎞
⎠ ,

R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14 13
where f = (f1, f2, f3), x = (x, y, z), xk = (xk, yk, zk), and

S M+
1 = 1

8π L3
·

∑
max{|n|,|m|}>M

1

(n2 + m2)
3
2

,

S M+
2 = 1

8π L3
·

∑
max{|n|,|m|}>M

n2

(n2 + m2)
5
2

,

S M+
3 = 1

8π L3
·

∑
max{|n|,|m|}>M

n4

(n2 + m2)
7
2

,

S M+
4 = 1

8π L3
·

∑
max{|n|,|m|}>M

n2m2

(n2 + m2)
7
2

.

In order to compute the sums we write, for instance in the case of S M+
1 ,

∑
max{|n|,|m|}>M

1

(n2 + m2)
3
2

=
∞∑

(n,m)
=(0,0)
n,m=−∞

1

(n2 + m2)
3
2

−
M∑

(n,m)
=(0,0)
n,m=−M

1

(n2 + m2)
3
2

.

On the right-hand side, the partial sum can be computed during execution depending on what M is chosen while the
infinite series is independent of M and can be computed beforehand. The same argument applies to the three other sums.
We find

S1 :=
∑

(n,m)
=(0,0)

1

(n2 + m2)
3
2

= 9.033621683100950 . . . ,

S2 :=
∑

(n,m)
=(0,0)

n2

(n2 + m2)
5
2

= 4.516810841550475 . . . ,

S3 :=
∑

(n,m)
=(0,0)

n4

(n2 + m2)
7
2

= 3.745708094289508 . . . ,

S4 :=
∑

(n,m)
=(0,0)

n2m2

(n2 + m2)
7
2

= 0.771102747260967

These numerical estimates are hard to find through direct evaluation because of the slow convergence. We will show how
to find good estimates for S1 and S4, which by means of the relationship

S1 = 2S2 = 2(S3 + S4),

also give good estimates for the remaining two sums. S1 is know to be exactly equal to S1 = 4ζ(3
2)β(3

2), where ζ(t) =∑∞
k=1

1
kt is the classical Riemann zeta function and β(t) = ∑∞

k=0
(−1)k

(2k+1)t is the Dirichlet beta function. S4 is rewritten as an
infinite sum of Bessel functions of the second kind, which have exponential decay. Therefore the series is easy to evaluate
numerically.

Lemma. It holds true that

S4 = 4π2

45
− 32π3

15

∞∑
m,n=1

mn3(K1(2πmn) + K3(2πmn)
) + 32π2

5

∞∑
m,n=1

n2 K2(2πmn),

where Kν(t) is the modified Bessel function of the second kind of degree ν .

Proof. It follows from Hankel’s generalization of the Lipschitz integral that [16, Ch. 13.2]

2νΓ (ν + 1
2)mν

√
π(n2 + m2)(ν+ 1

2)
=

∞∫
0

e−|n|t Jν(mt)tν dt,

where Jν(t) is the Bessel function of the first kind of order ν . Setting ν = 2 and using Γ (5) = 3
√

π , gives
2 4

14 R. Cortez, F. Hoffmann / Journal of Computational Physics 258 (2014) 1–14
m2

(n2 + m2)
5
2

= 1

3

∞∫
0

e−|n|t J2(mt)t2 dt.

Writing the equation as

m2

(n2x + m2)
5
2

= 1

3

∞∫
0

e−|n|√xt J2(mt)t2 dt,

and differentiating with respect to x, gives

−5

2
· m2n2x

(n2x + m2)
7
2

= 1

3

∞∫
0

− |n|t
2
√

x
e−|n|√xt J2(mt)t2 dt.

Note that we can switch the order of differentiation and integration by the Lebesgue dominated convergence theorem for
n
= 0. Also note that since the new formula trivially holds for n = 0, in fact it holds for all real n. Setting x = 1 produces

m2n2

(n2 + m2)
7
2

= 1

15

∞∫
0

|n|e−|n|t J2(mt)t3 dt.

The rest of the proof is analogous to [17,18]. It follows that

S4 = 2
∞∑

m=1

∞∑
n=−∞

m2n2

(n2 + m2)
7
2

= 2

15

∞∑
m=1

∞∫
0

∞∑
n=−∞

|n|e−|n|t J2(mt)t3 dt = 4

15

∞∑
m=1

∞∫
0

J2(mt)
t3et

(−1 + et)2
dt.

Computing the residues of the function g(z) = H (1)
2 (mz) z3ez

(−1+ez)2 in the upper half plane [17], where H (1)
ν is the first Hankel

function of degree ν , completes the proof. �
References

[1] P. Lenz, A. Ryskin, Collective effects in ciliar arrays, Phys. Biol. 3 (2006) 285–294.
[2] C. Pozrikidis, Computation of periodic Green’s functions of Stokes flow, J. Eng. Math. 30 (1996) 79–96.
[3] R. Cortez, The method of regularized stokeslets, SIAM J. Sci. Comput. 23 (4) (2001) 1204–1225.
[4] J.P. Hernández-Ortiz, J.J. de Pablo, M.D. Graham, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry,

Phys. Rev. Lett. 98 (2007) 140602, http://dx.doi.org/10.1103/PhysRevLett.98.140602.
[5] A. Kumar, M.D. Graham, Accelerated boundary integral method for multiphase flow in non-periodic geometries, J. Comput. Phys. 231 (20) (2012)

6682–6713, http://dx.doi.org/10.1016/j.jcp.2012.05.035.
[6] R. Cortez, L. Fauci, A. Medovikov, The method of regularized Stokeslets in three dimensions: Analysis, validation, and application to helical swimming,

Phys. Fluids 17 (3) (2005) 031504.
[7] H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid

Mech. 5 (1959) 317–328.
[8] A. Sierou, J.F. Brady, Accelerated stokesian dynamics simulations, J. Fluid Mech. 448 (2001) 115–146, http://dx.doi.org/10.1017/S0022112001005912.
[9] D. Saintillan, E. Darve, E.S.G. Shaqfeh, A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: The sedimentation of fibers, Phys.

Fluids 17 (3) (2005) 033301, http://dx.doi.org/10.1063/1.1862262, http://link.aip.org/link/?PHF/17/033301/1.
[10] J.P. Hernàndez-Ortiz, J.J. de Pablo, M.D. Graham, Fast computation of many-particle hydrodynamic and electrostatic interactions in a confined geometry,

Phys. Rev. Lett. 98 (2007) 140602, 4 pp.
[11] D. Lindbo, A.-K. Tornberg, Spectrally accurate fast summation for periodic Stokes potentials, J. Comput. Phys. 229 (2010) 8994–9010.
[12] D. Lindbo, A.-K. Tornberg, Fast and spectrally accurate summation of 2-periodic Stokes potentials, arXiv:1111.1815v1 [physics.flu-dyn].
[13] J. Bleibel, Ewald sum for hydrodynamic interactions with periodicity in two dimensions, J. Phys. A, Math. Theor. 45 (22) (2012) 225002,

http://stacks.iop.org/1751-8121/45/i=22/a=225002.
[14] C.W.J. Beenakker, Ewald sum of the Rothe–Prager tensor, J. Chem. Phys. 85 (1986) 1581–1582.
[15] K. Leiderman, E.L. Bouzarth, R. Cortez, A.T. Layton, A regularization method for the numerical solution of periodic Stokes flow, J. Comput. Phys. 236

(2013) 187–202.
[16] G.N. Watson, A Treatise on the Theory of Bessel Functions, 2nd edition, Cambridge University Press, 1966.
[17] N. Liron, S. Mochon, Stokes flow for a stokeslet between two parallel flat plates, J. Eng. Math. 10 (4) (1976) 287–303.
[18] N. Liron, Stokes flow due to infinite arrays of stokeslets in three dimensions, J. Eng. Math. 30 (1995) 267–297.

http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C523036s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib506F7A3936s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib436F723031s1
http://dx.doi.org/10.1103/PhysRevLett.98.140602
http://dx.doi.org/10.1016/j.jcp.2012.05.035
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib436F7274657A3A32303035s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib436F7274657A3A32303035s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4861733539s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4861733539s1
http://dx.doi.org/10.1017/S0022112001005912
http://dx.doi.org/10.1063/1.1862262
http://link.aip.org/link/?PHF/17/033301/1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4850473037s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4850473037s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C543130s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C543131s1
http://stacks.iop.org/1751-8121/45/i=22/a=225002
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4265653836s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C65696465726D616E32303133s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C65696465726D616E32303133s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib576174s1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C4Ds1
http://refhub.elsevier.com/S0021-9991(13)00708-0/bib4C6972s1

	A fast numerical method for computing doubly-periodic regularized Stokes ﬂow in 3D
	1 Introduction
	2 FFT-based method for regularized forces
	3 Ewald splitting
	3.1 The formulas in Fourier space
	3.2 Local sum in physical space
	3.3 Summary of the method

	4 Numerical results
	4.1 A reference solution
	4.2 Numerical example
	4.2.1 Ewald splitting versus no splitting
	4.2.2 Decay of the local sum in an Ewald splitting
	4.2.3 Computational cost

	5 Conclusions
	Acknowledgements
	References

