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Dinoflagellates (Pfisteria piscicida) are unicellular micro-organisms that swim due to
the action of two eucaryotic flagella: a trailing, longitudinal flagellum that propagates
planar waves and a transverse flagellum that propagates helical waves. Motivated by
the wish to understand the role of the transverse flagellum in dinoflagellate motility,
we study the fundamental fluid dynamics of a waving cylindrical tube wrapped into
a closed helix. Given an imposed travelling wave on the structure, we determine that
the helical ring propels itself in the direction normal to the plane of the circular
axis of the helix. The magnitude of this translational velocity is proportional to the
square of the helix amplitude. Additionally, the helical ring exhibits rotational motion
tangential to its axis. These calculated swimming velocities are consistent when using
the method of regularized Stokeslets with prescribed wave kinematics, regularized
Stokeslets with dynamic forcing and Lighthill’s slender-body theory, except in cases
where the slenderness parameter is not small. The translational velocity results are
nearly indistinguishable using the three approaches, leading to the conjecture that the
main contribution to this velocity at a cross-section is the far-field flow generated
by the portion on the opposite side of the ring. The largest contribution to the
rotational velocity at a cross-section comes from the cross-section itself and others
nearby, thus the geometric details of the slender body have a larger effect on the
results.
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1. Introduction
Dinoflagellates (Pfisteria piscicida) are unicellular micro-organisms that are an

important part of the aquatic food chain. Algal blooms of a certain dinoflagellate
species give rise to ‘red tides’ and bioluminescent dinoflagellates light up some marine
bays (Latz et al. 2008). Dinoflagellates swim due to the action of two eucaryotic
flagella – a trailing, longitudinal flagellum that propagates planar waves and a
transverse flagellum that propagates helical waves (see figure 1). The swimming
trajectories of these cells are helical (Sheng et al. 2007), and each cell exhibits both
rotation about its longitudinal axis and translation along the same axis. The transverse
flagellum wraps around the cell like a belt in a plane perpendicular to the trailing
flagellum. An interesting aspect of the swimming motion of dinoflagellates is that
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Figure 1. (a) A micrograph of the dinoflagellate, Pfisteria piscicida (courtesy of the Aquatic
Botany Lab, NC State, USA). (b) A cylindrical ring that is helically wrapped around a baseline
circle of radius r . The amplitude of the helix is R.

there is no consensus in the literature about the principal roles of the two flagella.
The transverse flagellum had been thought to be responsible for the cell’s rotation,
whereas the longitudinal flagellum was thought to induce forward motion of the cell
(Gaines & Taylor 1985; Cachon et al. 1991; Fenchel 2001). Fenchel (2001) writes
‘In principle, the transversal flagellum should then only generate a net torque in a
direction perpendicular to the longitudinal axis of the cell’. However, it was observed
that when some cells lacked a longitudinal flagellum, they still exhibited forward
motion (Cachon et al. 1991). More recently, Miyasaka et al. (2004) used resistive
force theory to examine the functional role of the flagella of Prorocentrum minimum,
and asserted that ‘The transverse flagellum works as a propelling device that provides
the main driving force or thrust to move the cell along the longitudinal axis of its
helical swimming path’.

Motivated by the classical work by Taylor (1952), who examined the swimming of
a waving cylindrical tail in a Stokes fluid, we isolate the function of the dinoflagellate
transverse flagellum by addressing the simplified scenario of a helical tube wrapped
into a closed ring. We ask the question: if a travelling wave is imposed on the
closed helical ring, what propulsion does it generate? Our goal is to determine
the fundamental fluid dynamics of a waving cylindrical ring in a Stokes fluid
using various numerical approaches. For instantaneous fluid velocities generated
by an imposed travelling wave on the structure, we use the slender-body theory
of Lighthill (1976). Alternatively, we use the method of regularized Stokeslets
(Cortez 2001; Cortez, Fauci & Medovikov 2005) to compute the instantaneous
swimming velocities. Our results show that the ring exhibits both rotational motion
and translational progression in the direction perpendicular to the plane of the
ring.

A dynamic model of the helical ring is also presented by constructing the
elastic tube from nodes connected by springs whose forces are generated by time-
varying resting lengths. The resting lengths as functions of time come from the
idealized helical ring with a travelling wave passing through it. The nodes move
with the fluid velocity at their locations, which is computed with the method
of regularized Stokeslets. The simplified flagellum ring model is interesting on its
own and sheds light on the mechanics of dinoflagellate motility, even if the model
does not include all components of the organism. The results also provide a test
problem used to validate the use of regularized Stokeslets in the dynamic, elastic
computations.
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2. Mathematical model
The idealized flagellum centreline Γ is the closed circular helix described by
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(2.1)

where 0 � s � 2πr = L. The axis of this circular helix is a baseline circle of radius r

in the plane z =0. The helical amplitude is R and λ is the wavelength. The surface of
the helical ring is then formed by circular cross-sections of radius rh placed normal
to the above centreline. Figure 1(b) depicts the thick helical ring along with the
baseline circle around which the ring is wrapped. As time t progresses, a wave with
speed ws = ωλ/2π is imposed to travel around the ring. Without the fluid, a point on
the centreline would trace a circle of radius R. The temporal period of the wave is
T = 2π/ω. Our goal is to determine how the imposed undulatory wave around the
ring generates overall swimming of the ring in an unbounded, three-dimensional fluid.

We describe the fluid dynamics by the incompressible Stokes equations:

µ�u = ∇p − F, (2.2)

∇ · u = 0. (2.3)

Here, u is fluid velocity, p denotes pressure and µ is dynamic viscosity. The force of
the undulating ring on the surrounding fluid is given by F.

Dimensionless formulation. Choosing any characteristic scales for length � and
velocity U , we define dimensionless position x ′ = x/�, u′ = u/U , time t ′ = t(U/�),
pressure p′ = p(�/µU ) and force F′ = F(�2/µU ). This gives

�u′ = ∇p′ − F′, ∇ · u′ = 0, (2.4)

independent of the choice of � and U . We choose these based on the flagellum
parameters. Natural scales are � = 2r , the diameter of the baseline circle, and
U = �ω/2π (so that the time scale becomes the period T = �/U = 2π/ω).

On the basis of these definitions, we set s ′ = s/�, R′ = R/� and λ′ = λ/� to get the
dimensionless flagellum centreline
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(2.5)

so that the dimensionless wave speed is w′
s = λ′. We also define np = π/λ′ as the

integral number of pitches around the ring. For the remainder of the paper, we use
the dimensionless formulation of the problem and drop the primes on the variables.

We point out that when using slender-body theory (Lighthill 1976), these forces
are supported only along the one-dimensional centreline Γ of the helical ring (see



The action of waving cylindrical rings in a viscous fluid 577

Flagellum surface

Flagellum centreline

Figure 2. A schematic diagram of a section of the helical ring depicting its one-dimensional
centreline Γ and surface Σ .

figure 2); however, when using regularized Stokeslets (Cortez 2001; Cortez, Fauci &
Medovikov 2005), the forces are distributed on the surface Σ of the helical ring.
In either case, the Stokes equations imply that the distribution of forces is linearly
related to the distribution of velocities.

2.1. Instantaneous fluid velocity computations

In the static computations of instantaneous flows, we begin with an equation that
encodes the linear relationship between the fluid velocity and the forces exerted by
the flagellum. Generically,

u(x) = L(x)[ f ] (2.6)

represents a slender-body theory, the regularized Stokeslet, or some other formulation
where f represents a force density on the flagellum. Assuming the velocity distribution
on the helical ring implied by (2.5), we must compute the distribution f . However,
for instantaneous computations of the ring velocity, we ensure conservation of linear
and angular momentum by imposing∫

Γ

f (X(s)) ds = 0 and

∫
Γ

X(s) × f (X(s)) ds(x) = 0 (2.7)

in the case of slender-body theory, where the forces are concentrated along Γ , or∫∫
Σ

f (X(α, β)) dα dβ = 0 and

∫∫
Σ

X(α, β) × f (X(α, β)) dα dβ = 0 (2.8)

in the case of the method of regularized Stokeslets, where the forces are on the
flagellum surface Σ . The discretization of (2.6) with N points results in 3N equations
for the 3N unknown force components. Equation (2.7) (or (2.8)) represent six scalar
constraints on the forces, which can be met by introducing six more degrees of
freedom: an overall translational velocity U and an overall rotational velocity Ω of
the ring.

2.1.1. Slender-body framework

According to the theory in Lighthill (1976), (2.6) evaluated on the centreline is

8πu(X(s0)) = 2 f ⊥ +

∫
r0>h0

f (s)

r0

+
( f (s) · r0)r0

r3
0

ds, (2.9)

where r0 = X(s) − X(s0), r0 = ‖r0‖ and f ⊥ is the component of force perpendicular to
the flagellum centreline and is defined by f ⊥ = f − ( f · τ )τ (where τ = X ′(s)/‖X ′(s)‖
is the unit tangential vector). The integral is along the filament with the portion
[s0 − h0, s0 + h0] removed, where h0 = rh

√
e/2 with rh equal to the dimensionless

helical tube radius.
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2.1.2. Regularized Stokeslet framework

This formulation begins with the Stokes equations �u = ∇p − F, ∇ · u = 0, with the
surface representation of the forces at an arbitrary point x as

F(x) =

∫∫
Σ

f (α, β)φε(x − X(α, β)) dα dβ, (2.10)

where φε(x) is a cutoff function with the property that
∫∫∫

φε(x) dx = 1.
Taking the divergence of the Stokes equations in unbounded flows yields

�p = f · ∇φε . We define a regularized Green function Gε as the solution of �Gε = φε

and the auxiliary function Bε as the solution of �Bε = Gε . Using these functions, one
can write the solution

p(x) =

∫∫
Σ

f (α, β)) · ∇Gε(x − X(α, β)) dα dβ, (2.11)

u(x) =

∫∫
Σ

( f (α, β) · ∇)∇Bε(x − X(α, β)) − f (α, β)Gε(x − X(α, β)) dα dβ. (2.12)

The method of regularized Stokeslet is based on the following boundary-integral
formulation derived by Cortez et al. (2005):∫∫∫

�3

uj (x)φε(x − X(α, β)) dx =
1

8π

∫∫
Σ

Sε
ij (x, X(α, β))fi(α, β) dα dβ, (2.13)

where Sε
ij is the expression for a regularized Stokeslet. Using the particular cutoff

function of Cortez et al. (2005) leads to the following version of (2.6):

8πu(x) =

∫∫
Σ

(r2 + 2ε2) f (α, β) + ( f (α, β) · r)r
(r2 + ε2)3/2

dα dβ, (2.14)

where r = x − X(α, β), r = ‖r‖, and Σ is the surface of the helical ring. The
regularization parameter ε is typically chosen of the order of the surface discretization.

2.2. Dynamic, elastic calculations

Dynamic simulations of the helical ring using the method of regularized Stokeslets
can be computed through the use of an elasticity model that provides the forces on
the flagellum from its current geometry, and using those forces to compute the surface
velocity through (2.6). We discretize the surface of the helical tube with points along
circular cross-sections. Each point is connected by springs to several other nearby
points. Each spring is assigned a stiffness constant κSj and a resting length δj . The
simulation is accomplished by dynamically changing the resting lengths of all springs
in order to induce a travelling wave along the helix.

Assume that at time t = tn we know the location of all surface points Xk

(k =1, 2, . . . , Np) and the resting lengths δj (tn) (j =1, 2, . . . , Ns) of all springs. The
computation proceeds as follows:

(a) For k = 1, 2, . . . , Np , compute the force density f k at Xk by

f k =
∑

j

κSj

δj (tn)
(‖Xk − Xk(j )‖ − δj (tn))

Xk(j ) − Xk

‖Xk − Xk(j )‖
, (2.15)

where the sum is over all springs that connect Xk to other points Xk(j ).
(b) Given the force density f k , use a discretization of (2.14) to compute the

velocities u(Xk) and evolve the particles by dXk/dt = u(Xk) one time step.
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Figure 3. (Colour online) Instantaneous three-dimensional streamlines induced by the waving
cylindrical ring from different perspectives. The travelling wave is anticlockwise when viewed
from above.

We note that since all forces are derived from springs, the net force and net torque
are automatically zero. In all computations, we set all dimensionless spring stiffnesses
to one. We found these stiffnesses to be large enough so that the emergent waveform
was sufficiently close to the desired travelling wave.

3. Numerical results
3.1. Model problem

We begin our investigation of the fluid dynamics of waving cylindrical rings by
choosing one with three pitches np =3 and amplitude R =0.09 (see (2.1)). The cross-
sectional radius of the tube is rh = 0.035. Figure 3 shows instantaneous streamlines
induced by the waving cylindrical ring, upon which a travelling wave tangential to
the ring is imposed. This wave moves anticlockwise when viewed from above. Note
that there is significant upward flow in the centre of the ring that results from the
motion of each circular cross-section of the ring. Figure 4 shows snapshots of the
ring as the wave progresses within a period, along with velocity fields projected onto
the xz-plane (figure 4a) and the xy-plane (figure 4b). Although the ring is periodic,
we place a cut in it to demonstrate that there is tangential motion of material points
of the ring in the direction opposite of the wave. Even though these snapshots depict
a very short time interval, one can also note a slight shift upwards of the ring in the
xy-plane as the wave progresses.

The velocity fields shown in figures 3 and 4 were computed using the regularized
Stokeslet formulation with dynamic forcing. The ring was discretized using 110
circular cross-sections, with 6 points on each cross-sections (Np =660). As in Cortez
et al. (2005), we chose the regularization parameter ε to be proportional to the
average distance δ̂ between linked points on the discretized surface and found that
ε = (7/12)δ̂ gave us the closest agreement between velocities computed using slender-
body theory and those computed using the dynamic, elastic calculations. Convergence
was demonstrated by computations using finer discretizations of the ring surface and
regularization parameter.

It is important to note that the motion of this flexible, cylindrical ring is not a
rigid-body rotation. This is in contrast to the rigid rotation of a helical bacterial
flagellum about its centreline that generates a torque that must be balanced by the



580 H. Nguyen, R. Ortiz, R. Cortez and L. J. Fauci

(a)

(b)

Figure 4. (Colour online) Snapshots within one period of ring and velocity fields on (a) the
xz-plane and (b) the xy-plane of a waving cylindrical ring with three pitches. Time increases
from left to right. Note that a cut on the ring is included to demonstrate rotational motion
and a horizontal line in (a) elucidates translational motion.

Figure 5. Snapshots of ring taken 1/2 of a temporal period apart. The material patch on the
surface, visible in each frame, demonstrates that the motion is not a rigid-body rotation of
the helix about its axis. The force vectors are also depicted along the surface, with the colours
indicating magnitude.

rotation of a cell body. Figure 5 shows two snapshots in time of the model ring with
a material patch of the surface coloured. These two snapshots are 1/2 of a temporal
period apart. If the ring was undergoing a rigid rotation about the helical axis, the
coloured patch that is visible in the first frame, would, in the second frame, be facing
the interior of the ring and be out-of-view. In fact, the patch is clearly visible in both
frames. A supplementary movie, from which the frames of figure 5 were extracted,
is available at journals.cambridge.org/flm, so that the reader can easily visualize the
dynamics of the waving ring. Since the movie depicts only a short time course of the
propagating wave, one cannot detect the net rotational motion of the Lagrangian
patch nor its net translational motion. Figure 5 also depicts the force vectors applied
at each of the discrete points of the surface. As mentioned above, these forces result
from linear springs connecting points on the ring surface, which guarantees that the
net force and net torque applied at each instant are zero.

3.2. Effect of wave amplitude on velocities

Here, we examine the effect of the dimensionless wave amplitude R on the rotational
and translational velocities of the ring. We define the rotational velocity to be the
velocity tangential to the circular axis of the ring’s helical centreline, and denote
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Figure 6. Log–log plots of (a) normalized rotational velocity (−V T/ws) versus R/λ and
(b) normalized translational velocity (VB/ws) versus R/λ computed using slender-body theory
(SBT), regularized Stokeslets with prescribed wave kinematics (RS: prescribed), and regularized
Stokeslets with dynamic forcing (RS: dynamic).

this velocity by VT . Similarly, we define the translational velocity to be the velocity
perpendicular to the plane of this circular axis, and denote this velocity as VB . Recall
that the classical analysis of Taylor (1952) showed that for small amplitude R a
waving cylindrical ring whose axis was straight gave rise to velocities VT = O(R2)
in the direction tangential to the axis. Of course, the order must be even in the
amplitude, since the geometry is unchanged when R is replaced by −R. Using
the same geometric parameters as in the model problem above, we use slender-
body theory, regularized Stokeslet calculations with prescribed kinematics and a
regularized Stokeslet simulation with dynamic forcing to compute VT and VB for
different amplitudes R. We normalize the velocities by the non-dimensional wave
speed and the radius by the non-dimensional wavelength. Figure 6 shows a log–log
plot of −V T/ws and VB/ws versus R/λ. We also plot R2 for reference. We see
that both the rotational and translational velocities exhibit O(R2) behaviour, with
some deviation in the rotational velocity for larger amplitudes R. In comparing the
numerical approaches, we see that the calculated VT and VB using Stokeslets with
prescribed kinematics or Stokeslets with dynamic forcing are indistinguishable. Both
Stokeslet formulations discretize the surface of the cylindrical tube, while slender-
body theory relies only on a discretization of the helical centreline. While slender-
body theory slightly overestimates the rotational velocity, it captures translational
velocities that are also indistinguishable from the Stokeslet formulations. Note that
our Stokeslet formulations used a surface discretization as described above, and our
slender-body calculations discretize the centreline using 2500 points, with integrals
approximated by the trapezoidal rule. In the simulations with dynamic forcing, the
velocities reported were computed after a short transient time interval.

3.3. Effect of number of pitches around ring on velocities

We examine the effect of varying the number of pitches on a cylindrical ring, with
all other geometric parameters fixed (see figure 7 for examples of these geometries).
Note that a cylindrical tube with zero pitches around the circle is just a closed
torus, and no travelling wave can be imposed. Moreover, since the tube has finite
thickness, there is a maximal number of pitches that can actually be realized. As the
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Figure 8. (a) −V T/ws versus number of pitches np and (b) VB/ws versus np computed using
using slender-body theory (SBT), regularized Stokeslets with prescribed wave kinematics (RS:
prescribed) and regularized Stokeslets with dynamic forcing (RS: dynamic).

number of pitches reaches this maximal values, the profile that the ring presents to the
fluid would be nearly that of a torus again, and the propulsion would be inefficient.
We expect, therefore, that there will be an optimal number of pitches for a given
geometry of the ring that will maximize rotational velocity VT . (This property was
also observed for a straight helix by Cortez et al. 2005.) However, as will be discussed
below, each cross-section of the tube in this extreme case is still undergoing a periodic
orbit reminiscent of Purcell’s toroidal swimmer (Leshansky & Kenneth 2008) that will
result in translational motion. Figure 8 shows plots of the rotational and tangential
velocities normalized by the dimensionless wave speed ws (which depends upon the
number of pitches np) computed using slender-body theory, regularized Stokeslets
with prescribed wave kinematics, and regularized Stokeslets with dynamic forcing.
We see that both Stokeslet formulations capture the existence of an optimum pitch for
maximizing normalized rotational velocity, but the slender-body theory does not. We
also see that the translational velocities increase with the number of pitches and that
there is excellent agreement among all three numerical methods in the computation
of the translational velocity.

3.4. Effect of simultaneous change of slenderness and amplitude on velocities

Here we examine how rotational and translational velocities change as the
non-dimensional tube radius and non-dimensional helix amplitude are changed
simultaneously. In other words, we choose non-dimensional helix amplitude Rβ = R̂/β

and non-dimensional tube radius rβ = r̂/β , with the model problem parameters
R̂ =0.09 and r̂ =0.035, and examine how the velocities depend upon the parameter
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Figure 10. (a) −V T/ws versus scaling factor β and (b) V B/ws versus β computed using
slender-body theory (SBT), regularized Stokeslets with prescribed wave kinematics (RS:
prescribed) and regularized Stokeslets with dynamic forcing (RS: dynamic). Note that as
β increases, the tube thickness and the helix amplitude decrease at the same rate.

β . We note that, in dimensional variables, this is analogous to keeping the tube radius
and helix amplitude fixed, but varying the radius of the baseline circle. Figure 9
shows examples of these geometries for β = 1/3, 1/2 and 5/4, respectively. The
periodic cylindrical tail analysed by Taylor (1952) swims opposite to the direction
of the travelling wave, and by no means exhibits any swimming normal to that
direction. The translational velocity of the cylindrical ring, however, arises precisely
because of its circular shape and the collective stirring by cross-sections of the ring.
Considering the dimensional ring, as the radius of the baseline circle increases,
we expect the translational velocity to decrease and the rotational velocity to
converge to the swimming velocity of a straight, infinite helix. This behaviour is,
indeed, reflected in the calculations presented in figure 10, which shows −V T/ws

and VB/ws versus β computed using slender-body theory, regularized Stokeslets
with prescribed wave kinematics, and regularized Stokeslets with dynamic forcing.
Moreover, we see that for the largest helical amplitude and thickest rube, regularized
Stokeslet formulations show that the rotational velocity of the ring is in the same
direction of the wave. The first frame in figure 9 demonstrates the complexity of
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Figure 11. (a) Visualization of the helical tube inscribed in a torus. (b) VB/2πR versus
s0 computed for the helical ring. In addition, the scaled translational velocities for the
circumscribing torus predicted by the asymptotic (asym.) theory from Leshansky & Kenneth
(2008) are shown, along with regularized Stokeslet computations of these toroidal swimming
velocities.

the geometry of this case, and gives a visual indication that the assumptions of
slender-body theory are not appropriate. However, we see that as the ring geometry
meets more closely the assumptions of slender-body theory, the rotational velocities
computed using slender-body theory approach those arrived at by the Stokeslet
formulations.

3.5. Comparison with toroidal swimmer

In both Taylor (1952) and Purcell (1977), a drawing of a hypothetical simple swimmer
in the shape of a cylinder wrapped into a torus was presented. Would the twirling of
each of the circular cross-sections about the circular torus axis, at constant angular
velocity, cause the torus to swim in a Stokes fluid? Recently, Leshansky & Kenneth
(2008) analysed this toroidal swimming due to surface rotations and showed that the
swimmer is propelled against the direction of its outer surface. For the ratio s0 = b/a,
where b is the radius of the circular axis of the torus, a is the cross-section radius,
and us the surface speed of each cross-section, they compute a translational velocity
V ≈ (us/2s0)(log 8s0 − (1/2)) in the limit of large s0. Figure 11 allows us to visualize
the relationship between our waving cylindrical ring and the toroidal swimmer, by
inscribing the cylindrical ring in a torus whose radius is b = 0.5 and the cross-sectional
radius is a = R + rh. For the torus, each point on a circular cross-section rotates with a
constant angular velocity. On the other hand, only a segment of the helical tube, while
tracing out roughly the same cross-section of the circumscribing torus, contributes an
angular velocity. Figure 11 shows the comparison of the computed scaled translational
velocity versus the ratio s0 for the helical ring, along with the asymptotic results for the
circumscribing torus in Leshansky & Kenneth (2008). As expected, the translational
velocity of the torus is greater than that of the inscribed helical ring. In addition, we
computed the translational velocity of the toroidal swimmer using steady Stokeslet
calculations, and these values show good agreement with the asymptotic theory (see
figure 11).
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4. Discussion
In an effort to understand the function of the longitudinal flagellum of

dinoflagellates, we have formulated a simple fluid mechanical system of a waving
cylindrical ring moving in a Stokes fluid. We conclude that the travelling wave
imposed around the ring induces both rotational and translational motions. We
have also used this model system to compare regularized Stokeslet formulations
with slender-body theory, two popular numerical methods for Stokes flow. When
computing rotational velocities of the ring, slender-body theory calculations agree
very well with regularized Stokeslet calculations for thinner rings with small helix
amplitudes and rings supporting smaller number of helical pitches. In these cases,
the assumptions of slender-body theory are more closely met. What is striking is the
consistent, close agreement between the two numerical approaches when computing
translational velocities. We conjecture that the largest contribution to the rotational
velocity at a cross-section comes from the cross-section itself and others nearby. It is
a local process. On the other hand, the translational velocity at a cross-section is a
result of the far-field flow generated by the portion on the opposite side of the tube.
We conclude that the translational velocity is less sensitive to local changes in the
geometry than the rotational velocity, allowing slender-body approximations to still
give good approximations. We remark that we have chosen not to compute velocities
based upon resistive force theory, since it has been shown to give significant errors for
helical filaments with appreciable curvature (Jung et al. 2007; Yand, Wolgemuth &
Huber 2009).

Recently, the method of regularized Stokeslets has been used as a computational
framework for modelling low-Reynolds-number flows around cilia and flagella (e.g.
Gillies et al. 2009; Qian et al. 2009; Smith 2009). In the majority of these applications,
the flow is induced by prescribing the kinematics of the immersed structure. However,
the regularized Stokeslet formulation easily captures the coupling of flexible structure
with the surrounding fluid (e.g. Flores et al. 2005). In this case, forces due to
passive elasticity and active bending moments applied by the immersed structure
induce the flow, and the geometry of the structure emerges from the resulting velocity.
Here, we have solved the helical ring problem by prescribing kinematics as well as
by using an elastic model that achieves the desired kinematics by specifying time-
dependent rest lengths of stiff springs connecting points on the surface of the ring.
We believe that the simple model problem presented here provides a validation in
support of other Stokeslet models with dynamic forcing.

While we have now achieved an understanding of the motion of an isolated
waving cylindrical ring, more work remains in analysing the fluid dynamics of
dinoflagellate swimming. Future models will include the presence of a cell body
and a longitudinal flagellum, along with the study of fluid–dynamic interactions
between model dinoflagellates.

The work of H.N. and L.F. was partially funded by the NSF grant NSF-OCE
0724598. The work of R.O. and R.C. was partially funded by the NSF grants DMS-
0612625 and EPS-0701491.
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