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Abstract

The propagation of bend and shear waves through an elastic rod is investigated in the framework of geometrically

exact nonlinear elasticity. The model allows for shear, extension/compression, bend and twist thus enabling the study of

the dynamics of all types of elastic deformations. Numerical and analytical solutions demonstrate that the propagation

of planar bend or shear disturbances of finite wavelength require bend, shear and extension/compression waves. For the

case of an intrinsically straight, twisted rod an exact large amplitude solution for bend–shear waves is found. In this

case, the rod has a helical shape and it rotates in a clockwise or counterclockwise direction. An exact analytical solution

for the large amplitude shear oscillation of a straight, untwisted rod is derived. The same type of oscillation for a twisted

rod is demonstrated to exist numerically. For the case of an intrinsically straight, untwisted rod, asymptotic theory

predicts that the amplitude of the extension/compression wave is proportional to the square of the amplitude of the

bend or shear wave and the wavelength of the extension/compression wave is one-half the wavelength of the bend or

shear wave. The propagation of planar disturbances along an intrinsically straight, twisted rod is investigated nu-

merically and compared to an all-atom molecular dynamics simulation of DNA. The simulations are in good quali-

tative agreement and indicate that the chemical structure of DNA supports elastic wave propagation of the type

obtained from the rod model.
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1. Introduction

Our analysis of the dynamics of elastic rods is based on a Hamiltonian structure of nonlinear elasticity
[1]. The model may be regarded as an extension of the classic Kirchhoff–Love model (see [2,3]) that includes

shear and extension/compression. In the framework of this model we investigate the numerical and ana-

lytical dynamics of bend and shear deformations.

The static and dynamic properties of elastic rods, rings and helices have been studied for many years

using variants of the Kirchhoff model. Such an approach has proven successful for numerous applications

in structural mechanics, engineering, biochemistry and biology. Some applications include the analysis of

loop formation of sub-oceanic cables [4–7], the phenomenon of helix hand reversal in climbing plants [8],

and the dynamics of cracking whips [9]. Since the 1970s (see for example [10,11]) elastic rod models have
been employed to study the structure of DNA, and more recently, even the dynamics of DNA (see, for

example [12,13]).

Closed form expressions for the equilibrium conformations of a Kirchhoff rod [14] and an elastic rod

with shear and extension [15] have been obtained by Shi and Hearst and related to the observed folding of

DNA into extended and condensed chromatin [16–18]. Goriely and co-workers extended the mathematical

analysis by providing a classification of the equilibrium conformations [19] and a theoretical framework for

determining their dynamic stability [20].

Previous works on the dynamics of elastic rods have focused on planar motions [21] and traveling waves
[22], including the time evolution of planar, twist-free motion of an inextensible and unshearable elastic rod

[23]. Many investigations assume the rod is inextensible and/or unshearable. Such restrictions are not

necessary, and do not allow for types of motion presented here. Our focus is on the dynamics of elastic rods

that excite bend, shear, and extension/compression deformations and that possess an intrinsic shape

(straight or twisted).

One of the long-term goals of the study of elastic rod models is to determine to what extent they can be

used to simulate the dynamics of long polymer chains, such as DNA, when the number of atoms is too large

for an all-atom simulation to be feasible. The elastic rod model addressed here requires the choice of
constants that represent physical dimensions of the phenomenon under consideration and elastic properties

of the material. The constants used throughout this article are roughly those corresponding to DNA, which

are comparable to those of soft materials like polyethylene or rubber. For such materials consideration of

all types of motion (bend, shear, twist, and extension) is warranted. We also assume that the length of any

excitation is much greater than the atomic length scales characteristic of DNA (i.e. the distance between

atoms or base-pairs). Such assumptions are typical in the description of solids, liquids and gases [24,25].

Thus, for our purposes an infinitesimally small volume element means small compared to the wavelength or

radius of curvature under consideration, but large compared with the distance between the base-pairs in
DNA.

Section 2 presents a description of the system of equations, our choice of elastic constants used

throughout the paper and the dimensionless form of the equations used in the computations. In Section 3

we present an exact solution of the equations for the case when the intrinsic shape of the rod is straight and

twisted. We show that the propagation of waves along this rod results in nonplanar (helical) motion. We

also present the exact solution for a special case of pure shear oscillations. In Section 4 we discuss the case

of an intrinsically straight, untwisted rod. The propagation of bend–shear waves through this rod requires

the presence of a small amplitude extension/compression wave. This is shown through an approximate
solution. Section 5 describes the numerical methods utilized and presents numerical solutions of several

examples. We conclude with a comparison of the planar bend–shear motion of an elastic rod to an all-atom

molecular dynamics simulation of 158 base-pairs of DNA with similar initial conditions. The purpose of the

comparison is to verify that under similar conditions, the elastic rod model yields results that agree well

with simulations based on traditional molecular mechanics.
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2. System of equations for elastic rod dynamics

Our model is based on a system of equations describing a geometrically exact model of an elastic rod [1].
As seen in the laboratory frame, the centerline of the rod is represented by~rrðs; tÞ 2 R3, where s is the fiducial
arclength [26] and t is time. Fiducial arclength is the arclength parameter of the uncompressed or un-

stretched rod; however, during dynamics, the rod�s arclength may not coincide with fiducial arclength. At

each point on the rod, its cross-section is conceived as a disk that lies in a plane but not necessarily per-

pendicular to the centerline tangent vector. In order to describe its orientation, an internal coordinate

system, f~dd1;~dd2;~dd3g, is attached to each cross-section. In this internal coordinate system,~dd3 is perpendicular

to the cross-section which is spanned by vectors ~dd1 and ~dd2. The relative orientation of each vector in ad-

jacent cross-sections describes the local bend and twist in the rod. The rod centerline~rrðs; tÞ and the directors
f~dd1;~dd2;~dd3g are represented in the (global) laboratory frame.

The equations of motion of the rod involve four vector functions ~XX, ~CC, ~xx and ~cc that describe the

conformation and dynamics of the rod. These functions are represented in the internal coordinate system,

so that ~XX ¼ ðX1;X2;X3Þ means ~XX ¼ X1
~dd1 þ X2

~dd2 þ X3
~dd3.

The vector ~CC describes the relative translation of the centers of the cross-sections while~cc describes the

centerline translational velocity

~cc ¼ o~rr
ot

; ~CC ¼ o~rr
os

: ð1Þ

Notice that ~CC is tangent to the rod centerline. Since its three components ~CC ¼ ðC1;C2;C3Þ are given in the

internal coordinate system, this implies that whenever C1 ¼ C2 ¼ 0, then ~CC ¼ C3
~dd3 and therefore ~dd3 must

align with the centerline tangent vector. In this way, C3 is related to the extension (compression) of the rod,

while the components C1 and C2 are related to the shear in the rod (the parallel translation of contiguous

cross-sections).

The vector ~XX describes the relative rotation of the cross-sections at a fixed time t, while ~xx is the angular
velocity of the cross-section at a fixed position s

o~ddk

ot
¼ ~xx�~ddk;

o~ddk

os
¼ ~XX�~ddk: ð2Þ

The directors must remain of unit length so any change in space or time must be orthogonal to the

corresponding local axis of rotation; Eq. (2) preserve director length. Notice that X3 ¼ ~XX �~dd3 represents the

twist in the rod. If X1 ¼ X2 ¼ 0, then the cross-sections are all parallel to each other. If X1 or X2 is nonzero

the cross-sectional planes are not parallel and the rod is bent. In biological terminology the components of
~CC and ~XX are the six DNA helical parameters [27] describing translation ~CC ¼ ðshift; slide; riseÞ and rotation
~XX ¼ ðtilt; roll; twistÞ.

At times it will be necessary to transform a vector from internal coordinates to laboratory coordinates

using the change of basis matrix

T̂T ¼
d1;X d2;X d3;X
d1;Y d2;Y d3;Y
d1;Z d2;Z d3;Z

0
@

1
A:

For example, in order to use the second equation in (1) componentwise, we solve

ðT̂T~CCÞk ¼
ork
os

for k ¼ 1; 2; 3:

The ground state of the rod, or intrinsic shape, is specified by the vectors ~CC0 and ~XX0. They represent the

conformation of the rod with zero potential energy. In general, these vectors depend on s and t and allow the
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rod to have an intrinsic shear and extension, ~CC0, or intrinsic bend and twist, ~XX0. The simplest case is a rod

with no intrinsic bend or twist, ~XX0 ¼ ð0; 0; 0Þ, and no intrinsic shear but with unit extension, ~CC0 ¼ ð0; 0; 1Þ.
A geometrically exact model of an elastic rod with all variables corresponding to an internal coordinate

representation [1] and with linear constitutive relations [26] is as follows:

q
o~cc
ot

 
þ ~xx�~cc

!
¼ ĈC � oð

~CC�~CC0Þ
os

þ ~XX� ĈC � ~CC
��

�~CC0

��
; ð3Þ
ÎI � o~xx
ot

þ ~xx� ÎI � ~xx
� �

¼ D̂D � oð
~XX� ~XX0Þ
os

þ ~XX� D̂D � ~XX
��

� ~XX0

��
þ~CC� ĈC � ~CC

��
�~CC0

��
; ð4Þ
o~CC
ot

þ ~xx�~CC ¼ o~cc
os

þ ~XX�~cc; ð5Þ
o~XX
ot

þ ~xx� ~XX ¼ o~xx
os

: ð6Þ

In this system, Eq. (3) represents the balance of force while Eq. (4) represents the balance of torque in
internal coordinates. Eqs. (5) and (6) are simply continuity relations expressed in the same frame.

The dynamics are computed in two phases. Eqs. (3)–(6) are solved first for the internal variables; then,

Eqs. (1) and (2) are solved to obtain the directors f~dd1;~dd2;~dd3g and the centerline~rr. These vectors are also

necessary for visualization of results.

We will restrict our analysis to diagonal matrices ÎI , ĈC and D̂D. Matrix ÎI is the linear density of the moment

of inertia tensor. Matrices ĈC and D̂D represent the elastic properties of the rod according to Hooke�s Law (C3

is the stretch modulus, C1 and C2 are shear moduli, D3 is the torsional rigidity, D1 and D2 are bend stiff-

nesses). In the remainder of this paper we consider only isotropic shear C1 ¼ C2 ¼ C and isotropic bend
D1 ¼ D2 ¼ D. The linear mass density of the rod is q.

2.1. Choice of constants

For a homogeneous body of given Young, Y , and shear, l, moduli the torsion rigidity and bend stiffness

are related to the geometry of the object. For circular cross-sections of radius R, D3 ¼ 1
2
lpR4 and

D ¼ 1
4
Y pR4 [41]. For DNA, the elastic properties are often determined in such a way that one of the elastic

constants is measured and another is calculated based on some additional assumption. For example, the
ratio of the torsional rigidity to bending stiffness, denoted e and equivalent to 2l=Y , is often reported along

with Y . Many experiments and theoretical estimates place e in the interval 0:76 e6 1:7 (see [42–46]). In this

study we use the representative value of 1087 pN for the stretch modulus of DNA [36], corresponding to a

Young modulus of 3:46� 108 Pa, and a ratio D3 ¼ 1:67D.
In this case the elastic constants have the values I ¼ 8:05� 10�34½KM �, C ¼ 9:08� 10�10½KM=S2�, and

D ¼ 2:75� 10�28½KM3=S2�. We will also use the value q ¼ 3:22� 10�15½K=M �. This results in the matrices

ÎI ¼ 8:05� 10�34

1 0 0

0 1 0

0 0 2

0
@

1
A½KM �; ð7Þ
ĈC ¼ 9:08� 10�10

1 0 0

0 1 0

0 0 1:19

0
@

1
A KM

S2

� �
; ð8Þ
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D̂D ¼ 2:75� 10�28

1 0 0

0 1 0

0 0 1:67

0
@

1
A KM 3

S2

� �
: ð9Þ
Thus the elastic properties of DNA are similar to that of polyethylene (2–7� 108 Pa) or rubber

(1–10� 107 Pa). By comparison an iron (Young�s modulus of 2:0� 1011 Pa) nanowire (radius 1 nm) will

have a stretch modulus of 628000 pN, approximately 600 times greater than that of DNA.
2.2. Dimensionless form of the equations

For the numerical analysis of Eqs. (3)–(6) it is convenient to introduce time and length scales (s and ‘).
Then relations between dimensional and dimensionless variables (denoted by an asterisk) will be:
t ¼ st�; s ¼ ‘s�; x ¼ 1

s
x�;

X ¼ 1

‘
X�; c ¼ ‘

s
c�; C ¼ C�:

ð10Þ
Substitution of expressions (10) into (3)–(6) yields:
o~cc�

ot�
þ ~xx� �~cc� ¼ ĈC� � oð

~CC� �~CC�
0Þ

os�
þ ~XX� � ĈC� � ~CC�

��
�~CC�

0

��
; ð11Þ
ÎI� � o~xx
�

ot�
þ ~xx� � ÎI� � ~xx�

� �
¼ D̂D� � oð

~XX� � ~XX�
0Þ

os�
þ ~XX� � D̂D� � ~XX�

��
� ~XX�

0

��
þ~CC� � ĈC� � ~CC�

��
�~CC�

0

��
; ð12Þ
o~CC�

ot�
þ ~xx� �~CC� ¼ o~cc�

os�
þ ~XX� �~cc�; ð13Þ
o~XX�

ot�
þ ~xx� � ~XX� ¼ o~xx�

os�
; ð14Þ
where
ĈC� ¼ ĈC
q

s
‘

� �2
; D̂D� ¼ D̂D

I
s
‘

� �2
; ÎI� ¼ ÎI

I
: ð15Þ
A simple choice for these scales is s ¼
ffiffiffiffiffiffiffiffi
I=C

p
¼ 9:4� 10�13½S� and ‘ ¼

ffiffiffiffiffiffiffiffi
I=q

p
¼ 5:0� 10�10½M �. This

yields ĈC� ¼ ĈC=C and D̂D� ¼ Dq
IC ðD̂D=DÞ, where Dq=IC ¼ 1:21 is equivalent to the square of the ratio of bend to

shear velocities. From this point on, the asterisk will be omitted.

From (15) we can see that Eqs. (11)–(14) depend only on the ratio s=‘. Thus, for example, the simulation
results obtained for the rod length 0.5 nm and final time 0.94 ps will be the same as for the length 50 nm and

final time 94 ps.
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3. Bend and shear waves: exact analytical solutions

3.1. Intrinsically straight, twisted rod

In this section we consider an intrinsically straight, twisted rod with ~CC0 ¼ ð0; 0;C03Þ and ~XX0 ¼ ð0; 0;X03Þ.
In this case we can separate the variables into transverse variables ~cc? � ðc1; c2; 0Þ, ~CC? � ðC1;C2; 0Þ,
~xx? � ðx1;x2; 0Þ, ~XX? � ðX1;X2; 0Þ and longitudinal variables c3, C3 ¼ C03 þ dC3, x3, X3 ¼ X0 þ dX3. We

obtain an exact solution of the fully nonlinear system in which the longitudinal variables do not appear:

c3 ¼ x3 ¼ dC3 ¼ dX3 ¼ 0. With this restriction, the nonlinear system (11)–(14) reduces to:

o~cc?
ot

¼ o~CC?

os
þ ~XX0

h
�~CC?

i
; ð16Þ
o~xx?

ot
¼ D1

o~XX?

os
þ D1

~XX0

h
� ~XX?

i
þ ~CC0

h
�~CC?

i
; ð17Þ
o~CC?

ot
¼ o~cc?

os
þ ~CC0

h
� ~xx?

i
þ ~XX0

h
�~cc?

i
; ð18Þ
o~XX?

ot
¼ o~xx?

os
þ ~XX0

h
� ~xx?

i
ð19Þ

plus the three algebraic constraints:

~xx? �~cc? ¼ ~XX? �~CC?; ð20Þ
~xx? �~CC? ¼ ~XX? �~cc?; ð21Þ
~xx? � ~XX? ¼ 0: ð22Þ

We may look for a solution of the form

C1 ¼ CA
1 cosðxt � ksÞ; C2 ¼ CA

2 sinðxt � ksÞ;
c1 ¼ cA1 cosðxt � ksÞ; c2 ¼ cA2 sinðxt � ksÞ;
x1 ¼ xA

1 cosðxt � ksÞ; x2 ¼ xA
2 sinðxt � ksÞ;

X1 ¼ XA
1 cosðxt � ksÞ; X2 ¼ XA

2 sinðxt � ksÞ

leading to a system of equations for the wave amplitudes given by

xcA1;2 ¼ �kCA
1;2 þ X03C

A
2;1;

xxA
1;2 ¼ �kD1X

A
1;2 þ D1X03X

A
2;1 þ C03C

A
2;1;

xCA
1;2 ¼ �kcA1;2 þ C03x

A
2;1 þ X03c

A
2;1;

xXA
1;2 ¼ �kxA

1;2 þ X03x
A
2;1:

Since the equations with the second subscript are exactly the same as the equations with the first

subscript, we conclude that the solution will satisfy
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cA2
xA

2

CA
2

XA
2

0
BB@

1
CCA ¼ �

cA1
xA

1

CA
1

XA
1

0
BB@

1
CCA

and use this to solve the smaller system

x 0 ðk � X03Þ 0

0 x �C03 D1ðk � X03Þ
ðk � X03Þ �C03 x 0

0 ðk � X03Þ 0 x

0
BB@

1
CCA

cA1
xA

1

CA
1

XA
1

0
BB@

1
CCA ¼ 0; ð23Þ

where we have defined jp;m ¼ ðk � X03Þ.
A nontrivial solution of the system (16)–(19) takes the form

C1 ¼ CA
1 cosðxt � ksÞ;

C2 ¼ �CA
1 sinðxt � ksÞ;

x1 ¼ � xC03

x2 � D1j2
p;m

CA
1 cosðxt � ksÞ;

x2 ¼
xC03

x2 � D1j2
p;m

CA
1 sinðxt � ksÞ;

c1 ¼ � jp;m

x
CA

1 cosðxt � ksÞ;

c2 ¼ � jp;m

x
CA

1 sinðxt � ksÞ;

X1 ¼ � jp;mC03

x2 � D1j2
p;m

CA
1 cosðxt � ksÞ;

X2 ¼ � jp;mC03

x2 � D1j2
p;m

CA
1 sinðxt � ksÞ;

ð24Þ

where it is clear that the coefficients depend on the frequency, wave number, intrinsic shape and elastic

constants. Although there are no more degrees of freedom, it turns out that the algebraic constraints

(20)–(22) are identically satisfied provided the frequency x solves the dispersion relation

x2
�

� j2
p;mD1

�
x2
�

� j2
p;m

�
¼ x2C2

03: ð25Þ

Here jp;m are ‘‘modified’’ wave numbers jp ¼ k þ X03 and jm ¼ k � X03 which take into account the

intrinsic twist and its handedness. For this discussion we assume that X03 P 0 although this is not a re-

striction. It is worth pointing out that since there has been no linearization of the system of equations, the

solution in Eq. (24) is exact for any value of the amplitude CA
1 .

The last equation gives four possible frequencies:
xp;m
� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
p;m

ffiffiffiffiffiffi
D1

p
þ 1

� �2 þ C2
03

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2
p;m

ffiffiffiffiffiffi
D1

p
� 1

� �2 þ C2
03

q 	
; ð26Þ
since for each choice of sign there are also two choices of modified wave numbers jp and jm. The four

branches of dispersion in an intrinsically twisted rod are graphed in Fig. 1. We note that when X03 ¼ 0 the

modified wave numbers satisfy jm ¼ jp ¼ k and so the four branches reduce to only two branches. This



Fig. 1. Dispersion of large amplitude bend–shear waves in an intrinsically-twisted rod. The intrinsic twist was set to X03 ¼ 1.
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case will be discussed in the next section. The wave type, predominantly bend or predominantly shear,

depends on the frequency and the wave number.
For the case k 	 X03 (i.e. jm ! 0), we have the parabolic relations xm

� 	 j2
m

ffiffiffiffiffiffi
D1

p
=C03 and

xm
þ 	 C03 þ j2

mðD1 þ 1Þ=2C03. These cases are indicated by the two solid dots in Fig. 1.

The association of the limiting behavior of xp;m
� with different wave types can also be verified by using

expressions (24) to compute the ratio of shear energy to bend energy (see Appendix A)

C2
?

D1X
2
?
¼

ðxp;m
� Þ2 � j2

p;mD1

h i2
D1j2

p;mC
2
03

: ð27Þ

Fig. 2 shows this ratio for all four branches and a range of wave numbers. When this ratio is large, the

waves are dominated by shear and when the ratio is small, the waves are dominated by bend. We point out

that when k tends to X03, the energy ratio tends to zero in the case of xm
� (indicating predominantly bend

motion) and to infinity for xm
þ (indicating predominantly shear motion).

For X03 6¼ 0, the short wavelength limit, k ! 1, yields xp;m
þ 	 jp;m

ffiffiffiffiffiffi
D1

p
and corresponds to bend waves.

Similarly, xp;m
� 	 jp;m and therefore corresponds to shear waves. In the long wavelength limit, k ! 0, the

solution is generally a combination of shear and bend waves.

Although, in general, the solution in Eq. (24) is a combination of bend and shear waves, it is interesting

to see what happens to this solution in the limit jm ! 0. The parabolic profile in Fig. 1 corresponding to xm
þ

is characterized by x ! C03 and k ! X03 so that the solution becomes

~xxðs; tÞ ¼ CA
1 ðcosðC03t � X03sÞ; sinðC03t � X03sÞ; 0Þ;

~CCðs; tÞ ¼ ðCA
1 cosðC03t � X03sÞ;CA

1 sinðC03t � X03sÞ;C03Þ;
~ccðs; tÞ ¼ ð0; 0; 0Þ;
~XXðs; tÞ ¼ ð0; 0;X03Þ;



Fig. 2. Ratio of shear/bend energies for xp;m
þ and xp;m

� . The intrinsic twist was set to X03 ¼ 1.
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which is an extension-free pure shear solution. This is consistent with the corresponding curve in Fig. 2

where the shear-to-bend ratio increases without bound. On the other hand, the parabolic profile in Fig. 1

corresponding to xm
� is characterized by xm

� 	 j2
m

ffiffiffiffiffiffi
D1

p
=C03 and k ! X03. We find this limit by holding the

amplitude of the bend waves fixed to get the time-independent pure bend solution

~xxðs; tÞ ¼ ð0; 0; 0Þ;
~CCðs; tÞ ¼ ð0; 0;C03Þ;
~ccðs; tÞ ¼ XA

ffiffiffiffiffiffi
D1

p
ðcosðX03sÞ;� sinðX03sÞ; 0Þ;

~XXðs; tÞ ¼ ð�XA cosðX03sÞ;XA sinðX03sÞ;X03Þ:

This is consistent with the corresponding curve in Fig. 2 where the shear-to-bend ratio is zero for
k ¼ X03. It turns out that these solutions are translating twisted rings.

To visualize the dynamics, a numerical solution of the nonlinear system of Eqs. (11)–(14) was computed

using Eq. (24) as initial conditions, with shear amplitude CA
1 ¼ 0:5, k ¼ 2, X03 ¼ 1, C03 ¼ 1 and xp

þ. Fig. 3

shows five snapshots representing one period (t ¼ 1:25) of this bend–shear wave.
By simple inspection of Eq. (24) one can see that ~xx is a scalar multiple of ~XX, and thus one can verify that

~ddkðs; tÞ has the form of a traveling wave with speed x=jp;m. With this in mind, one can also deduce that the

centerline~rrðs; tÞ is a superposition of traveling waves. This is supported by the numerical solution, which

indicates that the main motion of the rod is that of a rotating helix. We point out that due to the form of
~ddkðs; tÞ, the rotation of the helix is affected by the intrinsic twist. In the case of jm ¼ k � X03, the rotation

may change direction depending on the sign of jm (see Fig. 1).

3.1.1. Pure shear oscillation of a twisted rod

A twisted rod admits a particular but interesting type of pure shear oscillation. To obtain this solution

we first consider a straight rod with no intrinsic twist, X03 ¼ 0, and find a solution of system (11)–(14) that is



Fig. 3. Wave dynamics with bend and shear displacement for a helical rod.
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independent of s so that the centerline of the rod is a straight line. This corresponds to ~cc ¼ ~XX ¼ 0,

x1 ¼ x3 ¼ C2 ¼ 0 and nonzero variables x2ðtÞ, C1ðtÞ, C3ðtÞ. In this case the system (11)–(14) reduces to

ox2

ot
¼ �C3C1ðC3 � C03Þ þ C1C3; ð28Þ
oC1

ot
þ x2C3 ¼ 0; ð29Þ
oC3

ot
� x2C1 ¼ 0: ð30Þ

After integrating once we find the two identities

C2
1 þ C2

3 ¼ P2; x2
2 þ C3ðC3 � C03Þ2 þ C2

1 ¼ 2E; ð31Þ

where P and E are constants. Substitution of (31) into the reduced system (28)–(30) yields

dC3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P2 � C2

3

� �
2E �P2 � C3ðC3 � C0Þ2 þ C2

3

� �r ¼ dt:

The last integration leads to elliptic functions.

The solution represents a simple physical motion in which all of the local frames rotate in the same

direction simultaneously. The excitation has infinite phase velocity and zero group velocity, thus it is not a
wave but an oscillation of the entire rod. A qualitative picture of the motion can be easily obtained in the

small amplitude limit directly from the system (28)–(30). The approximate solution is
x2 ¼ A cosðC0tÞ þ B sinðC0tÞ; C1 ¼ �A sinðC0tÞ þ B cosðC0tÞ; C3 ¼ C0;
where A and B are small arbitrary constants.

To observe pure shear oscillation in a numerical simulation, we specify an initial state that is strongly

sheared. The initial shape is such that ~dd3 is aligned, not along the axis of the rod, but rather normal to it,

and the initial conditions are chosen to be consistent with Eqs. (28)–(30). For the simulation in Fig. 4, a

constant intrinsic twist was also included in the initial conditions. One can see that every cross-section of
the rod possesses angular velocity but the rod never bends. Instead, as all the cross-sections rotate in

unison, the angular momentum is converted completely into shear.



Fig. 4. Snapshots of pure shear oscillations of a twisted rod. The cross-sections remain circular for all times although the shear motion

rotates them so that they appear to be deformed.
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4. Bend and shear waves: approximate analytical solutions

4.1. Intrinsically straight, untwisted rod

In this section we consider rods that have an intrinsic shape defined by ~XX0 ¼ ð0; 0; 0Þ and ~CC0 ¼ ð0; 0;C03Þ,
where C03 is a constant. We then use a perturbation method to derive a planar approximate solution

consisting of bend and shear.

The base (trivial) solution is given by all variables equal to zero except C3 ¼ C03. For convenience we

define the variable dC3 ¼ C3 � C03. If one tries to find a solution consisting of pure shear with no extension/

compression (i.e. only c1 and C1 nonzero), one finds that the only possibility is the straight rod translating at
a constant speed. A similar situation arises if one attempts to find a pure bend solution (i.e. only x1 and X1

nonzero). Thus bend and shear motions are required for even a simple solution.

The simplest motion of the rod that involves bend and shear has two polarizations: either c1, C1, x2, and

X2 as nonzero variables or c2, C2, x1, and X1 as nonzero variables. It is also necessary to have nonzero

values for c3 and dC3, otherwise the system of equations reduces to wave equations for each variable and

additional algebraic conditions that are generally inconsistent.

Since the bend and shear are restricted by the chosen polarization and since there is no twist in the rod,

either ~dd1 or ~dd2 (depending on the polarization) will be constant and the solution describes a combined
bend–shear motion in a plane that is orthogonal to the constant director.

We develop a perturbation scheme for each variable as follows:

Gk ¼
X
i¼1

�iGðiÞ
k ¼ �Gð1Þ

k þ �2Gð2Þ
k þ � � � ; ð32Þ

here GðiÞ
k designates the ith order term for the kth variable of the polarization c1, C1, x2, X2, c3, dC3, and � is

a small parameter (perturbation amplitude). The first order terms cð1Þ3 and dCð1Þ
3 correspond to extension/

compression (sound) waves that can propagate entirely independent of bend–shear in the linear approxi-

mation. Thus, we assume that cð1Þ3 ¼ dCð1Þ
3 ¼ 0 in the expansion (32).

Our perturbation scheme yields the linear system for the first order variables (with superscripts omitted):

oc1
ot

¼ oC1

os
; ð33Þ
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ox2

ot
¼ D1

oX2

os
þ C1C03; ð34Þ
oC1

ot
þ x2C03 ¼

oc1
os

; ð35Þ
oX2

ot
¼ ox2

os
ð36Þ

and for the second order variables cð2Þ3 and dCð2Þ
3 (superscripts omitted):

oc3
ot

� x2c1 ¼ C3

odC3

os
� C1X2; ð37Þ
odC3

ot
� x2C1 ¼

oc3
os

� X2c1: ð38Þ

Under the given assumptions, the second order variables cð2Þ1 , Cð2Þ
1 , xð2Þ

2 and Xð2Þ
2 yield four more equa-

tions that coincide with (33)–(36). So the second order solutions for cð2Þ1 , Cð2Þ
1 , xð2Þ

2 and Xð2Þ
2 have the same

form as the first order solutions. We point out that setting c3 ¼ 0 and dC3 ¼ 0, leads to four differential

equations (33)–(36) for the four remaining unknowns plus two additional algebraic constraints, Eqs. (37)

and (38), resulting in an overdetermined system which in general is inconsistent. Therefore, bend–shear

waves require small amplitude extension/compression waves. At the end of this section, we describe a

limiting case in which these constraints are satisfied.

The solution of the linear system (33)–(36) can be found assuming that each variable is proportional to
expð�ixt þ iksÞ where x is a frequency and k is a wavenumber. A simple calculation yields the consistency

condition ðx2 � D1k2Þðx2 � k2Þ ¼ x2C2
03. The frequencies are

x� ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

ffiffiffiffiffiffi
D1

p
þ 1

� �2 þ C2
03

q�
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

ffiffiffiffiffiffi
D1

p
� 1

� �2 þ C2
03

q 	
: ð39Þ

In this formula we take into account only one sign of the frequency because the opposite sign corre-

sponds only to propagation in the opposite direction.

Up to second order in �, the solution for bend–shear waves in an intrinsically straight untwisted rod is

x2 ¼ �ð1þ �Þ sinðxt � ksÞ; ð40Þ
X2 ¼ � k
x
�ð1þ �Þ sinðxt � ksÞ; ð41Þ
c1 ¼
k
x

x2 � D1k2

xC03

�ð1þ �Þ cosðxt � ksÞ; ð42Þ
C1 ¼ �x2 � D1k2

xC03

�ð1þ �Þ cosðxt � ksÞ; ð43Þ
c3 ¼
kC3

4x
C03�

2

ðx2 � k2C2
3Þ

cosð2xt � 2ksÞ; ð44Þ
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dC3 ¼ � C03�
2

4ðx2 � k2C2
3Þ

cosð2xt � 2ksÞ; ð45Þ

where x is either xþ or x�. Notice that the wavelength of the extension/compression wave is half the

wavelength of the shear or bend waves.

Below we show that the wave can be characterized as predominantly bend or predominantly shear

depending on frequency (xþ or x�) and the wave number. Numerical simulation of the nonlinear system

(11)–(14) and estimations based on (39)–(43) support this characterization.

In the short wavelength limit, k ! 1, we obtain two branches: xþ 	
ffiffiffiffiffiffi
D1

p
k and x� 	 k, corresponding

to the usual dispersion relations for bend and shear (x 	 k
ffiffiffiffiffiffiffiffi
D=I

p
and x 	 k

ffiffiffiffiffiffiffiffiffi
C=q

p
, respectively, in di-

mensional variables).

In the long wavelength limit, k ! 0, we obtain xþ ¼ C03 for shear waves and x� 	 k2
ffiffiffiffiffiffi
D1

p
=C03 for bend

waves. The last one corresponds to the well-known parabolic relation for flexural waves

(x ¼ k2R
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y =qvolume

p
=2C03 in dimensional variables) [2].

To characterize the wave motion, we use the asymptotic solutions in Eqs. (40)–(43) to estimate the ratio

of shear to bend jC1j=jX2j for both branches (xþ and x�) as presented in Fig. 5. When this ratio is very

small, we conclude that the dynamics consist of mostly bend and little shear. On the other hand, when this
ratio is large, we conclude that the dynamics consist of mostly shear and little bend. Using (40)–(43) and the

dispersion relation for large values of k, we find that jC1j 
 jX2j for xþ and jC1j � jX2j for x�. For small

values of k these relations reverse direction, so that for moderate values of k there is a combination of shear

and bend waves.

We also determine the maximum displacement of the rod centerline due to bend–shear deformations. It

can be determined by integration of (1) and (2) and is equivalent to

kC03�

x�ðx2
� � k2Þ :
 

Fig. 5. Ratio of jC1j=jX2j versus wavenumber for different eigenvalues xþ and x�.
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The analysis of this section shows that there are two separate bend–shear wave polarizations for an

intrinsically untwisted rod. Each polarization corresponds to a planar motion of the rod. The waves in both

cases are physically identical and posses the same wave velocity, dispersion and all other properties; the
only difference is that they propagate in planes that are perpendicular to each other. However, for the

intrinsically twisted rod discussed in Section 3.1, these polarizations cannot be excited separately. Instead

the two polarization are combined with a phase shift of one-fourth of the twist period. This leads to the

helix presented in that section.

A similar wave propagation phenomenon exists for the propagation of polarized light in birefringent

crystals. In free space, light has two electromagnetic wave polarizations which are physically identical. But

when the light propagates through an inhomogeneous medium, i.e. a birefringent crystal, the two polar-

izations become distinguishable as ordinary and extraordinary waves with different properties. Each wave is
circularly polarized with the electric or magnetic vectors rotating in different directions. It is only because

the medium is inhomogeneous that the waves propagate differently.

Finally, we mention that it is possible to obtain a shear wave with small bend deformation and no

extension-compression. From (40)–(43) we find that if we set c3 ¼ 0 and dC3 ¼ 0, the constraint in Eq. (37)

is satisfied identically and the constraint in Eq. (38) is satisfied only when x2 � k2 ¼ 0. Since x� 	 k as

k ! 1, the expressions for x2, X2, c1, and C1 in (40)–(43) are, up to second order in �, the solution of the

system with zero extension/compression. From Fig. 5, one can see that this limiting case corresponds to a

predominantly shear wave.
5. Bend and shear waves: numerical simulations

5.1. Numerical implementation and testing

The system (11)–(14) is solved numerically with periodic boundary conditions using the method of lines.

It is possible to use other types of boundary conditions such as free-end, but for the purposes of investi-
gating relationships between bend, shear and extension/compression waves, we will restrict this analysis to

periodic boundary conditions.

The spatial derivative of a function f ðs; tÞ at locations s ¼ kh for k ¼ 0; 1; . . . ;N is approximated using

the finite-difference ratio

of
os

ðs; tÞ 	 1

12h
f ðs½ � 2h; tÞ � 8f ðs� h; tÞ þ 8f ðsþ h; tÞ � f ðsþ 2h; tÞ�

resulting in a coupled system of ODEs in time. This system is solved by a 4th order Runge–Kutta method

with time-step control (see [47, p. 711]).

Our program is written in C++. We verified that the program possesses appropriate accuracy as a

function of space and time discretization (e.g. reducing time step by a factor of two increases accuracy by

factor of 24). For further validation, two conserved quantities are monitored during all simulations.

Throughout the simulation, the energy (see Appendix A) does not vary from its initial value by more than

10�13. The magnitude of each director differs from unity by less than 10�13.
In addition to the above accuracy test, we conducted numerous physically motivated tests to validate the

proper behavior. For an elastic rod with a given intrinsic shape ~CC0, ~XX0 we obtain a static solution when all

initial velocities are zero and the initial shape coincides with the intrinsic one. Such tests were conducted for

rods that are intrinsically straight, circular and helical in conformation. We also obtained uniform longi-

tudinal and transverse translations of each of these conformations of the rod for appropriately chosen

initial velocities.
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For a rod that is bent into a ring, we conducted two additional test cases: (1) rotation in the plane of the

ring and (2) twist about the axis of the rod. For the first test, only a uniform longitudinal velocity,
~cc ¼ ð0; 0; c3Þ, was assigned. In this case, the ring begins to rotate and expand. As it expands, the rotational
velocity decreases up to the point when the centrifugal force causing the expansion is balanced by the elastic

extension of the rod. Then the ring begins to contract and the rotational velocity increases. The system

continues to oscillate in this manner.

As a separate test of case (1), we set up initial conditions such that the centrifugal force and extension of

the rod were balanced. In this case the radius remains constant and the ring rotates with constant velocity.

For the rotation of an intrinsically straight rod bent into a ring, i.e. ~XX0 ¼ ð0; 0; 0Þ and ~CC0 ¼ ð0; 0; 1Þ, the
only nonzero variables in the system (11)–(14) are c3, x1, C3, and X1 (variables c3, x2, C3, and X2 can be

used instead). A simple calculation leads to the force balance c23=C3 ¼ C3ðC3 � C03Þ. Here, the left side is
proportional to the centrifugal force and the right side proportional to the extension force in the rod. Since

the radius of the ring is R ¼ 1=X1, and its circumference is LC3, where L is the fiducial arclength, we can

determine X1 and x1.

For case (2) we analyzed two types of uniform twist motion for a rod that is bent into a closed circle. The

behavior of each type depends on the intrinsic shape. If the circular rod has no intrinsic bend or twist, then

the corresponding solution is a rotation around the longitudinal axis with constant angular velocity

(x3 ¼ const). Such solution was found by Tobias et al. [48] for the Kirchhoff rod. If the circular rod is

intrinsically circular (X02 ¼ const) then the solution is a rotation around the longitudinal axis with peri-
odically changing angular velocity x3. In any case both types of uniform twist can be found from the

reduced system:

ox3

ot
¼ �D1X02X1;

oX1

ot
¼ x3X2;

oX2

ot
¼ �x3X1:

ð46Þ

If there is no intrinsic bend (i.e. X02 ¼ 0) then x3 ¼ const and the ring rotates about its centerline with

uniform angular velocity expressed by X1 ¼ A sinx3t, X2 ¼ A cosx3t. For the circular rod which has in-

trinsic bend (i.e. X02 ¼ const 6¼ 0) the solutions are elliptic functions.

5.2. Simulation of an untwisted rod

In this section we perform numerical simulations of the solution of the nonlinear system of Eqs. (11)–

(14) for the case of the intrinsically straight, untwisted rod. We used as initial conditions the approximate

solutions derived in Section 4.1, Eqs. (40)–(45), and periodic boundary conditions.

To quantify the agreement between the nonlinear numerical solutions and our approximate analytic

solutions the energy in the rod as a function of time is evaluated both numerically and analytically using the
approximate solutions. The total energy is obtained from the integral

E ¼ 1

2

Z L

0

j~ccj2
n

þ ~xx � ð̂II~xxÞ þ ð~CC�~CC0Þ � ðĈCð~CC�~CC0ÞÞ þ ð~XX� ~XX0Þ � ðD̂Dð~XX� ~XX0ÞÞ
o
ds

(see Appendix A for more details).

The characterization of a bend–shear wave as predominantly bend or shear can also be quantified by

computing the dot product ~dd3 �~CC=j~CCj ¼ C3=j~CCj, since ~CC is tangent to the rod centerline and ~dd3 is perpen-

dicular to the cross-sections. When this dot product is near 1 then ~CC 	 C3
~dd3, and there is very little shear.
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However, bend, twist and extension/compression may be large. The type of wave, predominantly bend or

predominantly shear, is observed to be determined by the choice of sign in (39) in agreement with the

analysis based on the approximate solutions.
Snapshots from a simulation using the full nonlinear system of equations, with the choice of xþ and

parameter values k ¼ 2, � ¼ 0:5 and C03 ¼ 1, are presented in Fig. 6. The five snapshots correspond to the

times t ¼ 0:0, t ¼ 0:9, t ¼ 1:8, t ¼ 2:7 and t ¼ 3:6 from top to bottom and show the change in the shape of

the rod over one period of oscillation in time. Adjacent cross-sections are not parallel as they would be if

the motion is predominantly shear.

Since the numerical simulation is based on the solution of the nonlinear system of equations, the value of

� is completely arbitrary. In the asymptotic solution obtained in Section 4.1, � is the small parameter and

should therefore be chosen accordingly. The value used here, � ¼ 0:5, is somewhat large in order to visualize
the solution more easily. We point out that although the approximate solutions shown in Eqs. (42)–(45),

which are used as initial conditions for the numerical simulation, contain only simple trigonometric

functions, the integration of Eqs. (1) and (2) results in expressions involving the composition of trigono-

metric functions. This leads to the complex behavior shown in Fig. 6.

Each component of the total energy is computed during the nonlinear simulations and compared to the

corresponding value obtained by integrating the first-order approximate solutions (40)–(45). For

the simulation presented in Fig. 6, the numerical and approximate values differed by less than 1% over the

duration of the simulation.
Fig. 7 shows C3=j~CCj as a function of s at a fixed time for large wave number k ¼ 8 and two different

initial conditions: one with x� and one with xþ in (40)–(45). The value of � was chosen for each set of

initial conditions so as to yield the same total energy. The dotted line in Fig. 7 corresponds to the

choice x ¼ x� and is consistent with a predominantly shear displacement. The choice of initial con-

ditions based on x ¼ xþ, the solid line in Fig. 7, produces very little shear; in fact, the elastic energy

due to bend in this simulation is about seven times larger than the elastic energy due to shear. For

small wave number (k < 1) a similar picture is obtained (data not shown) but x� corresponds to the

small oscillations of C3=j~CCj and xþ to the large oscillations, consistent with the analytic results
presented in Fig. 5.
Fig. 6. Bend–shear wave with predominantly bend displacement. Five snapshots from a simulation with predominantly bend dis-

placement represent one period of oscillation of the rod in time. The initial perturbation amplitude, �, is 0.5. The bold thick lines on the

top of the tubes indicate that the rod is untwisted. Cross-sections indicate that the motion is predominantly bend not shear

(X2 > C1 > 0).



 

Fig. 7. Dot product for bend and shear waves versus fiducial arclength. Dotted line corresponds to x� and solid line corresponds to xþ.
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6. Application: dynamics of DNA

There has been much interest recently in using various elastic rod models to describe the structure of
DNA. Here we make a direct comparison between dynamics of elastic rod as determined by Eqs. (11)–(14)

and results obtained from an all atom molecular dynamics simulation of DNA. Since molecular dynamics

simulations utilize an atom based energy function that represents chemical bonds, van der Waals and

electrostatic interactions and no explicit inclusion of elastic energy terms, then there is no a prior re-

quirement that the two models produce similar results. Our goal is to determine if such an atomic based

physicochemical description of DNA supports elastic rod type motions.

For this purpose we have constructed a three dimensional all-atom model of 158 base-pairs of DNA,

corresponding to approximately one persistence length of DNA. For this length of DNA we expect the
elastic rod approximation to be valid. Full details of both simulations are presented below.

6.1. Elastic rod simulation

While the physical dimensions and intrinsic shape of DNA and nucleosomes [28] have been determined

at atomic resolution by X-ray crystallography, the elastic properties of DNA are not so well defined despite

numerous efforts. Experimental determination of the elastic constants of DNA includes the traditional

measurement of the speed of sound through bulk DNA [29,30] as well as single molecule techniques uti-
lizing scanning tunneling microscopy [31], fluorescence microscopy [32], fluorescence correlation spec-

troscopy [33], optical tweezers [34,35], magnetic beads [36,37], optical micro-fibers [38], low energy electron

point sources (electron holography) [39] and atomic force microscopy (AFM) [40]. Since each method

differs in the molecular properties being probed, the spatial and temporal resolution achieved, the mo-

lecular environment, and sample preparation techniques, each method yields similar but not exactly the

same value for the elastic constants. The constants used here are as described in Section 2.1.
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The intrinsic shape is that of a straight rod with constant twist density, X03, and length LC03, thus
~CC0 ¼ ð0; 0;C03Þ and ~XX0 ¼ ð0; 0;X03Þ, corresponding to idealized B from DNA. We orient the rod in the

laboratory frame along the Y -axis and choose to orient the internal frame at s ¼ 0 such that~dd1 is parallel to
the Z-axis and ~dd2 is parallel to the X -axis (these choices are arbitrary). The initial deformation of the rod

centerline is a sinusoidal displacement of amplitude A along the Z-axis given by~rrðs; 0Þ ¼ ð0;C03s;A cosð2ps=
LÞÞ. We further specify that this displacement be entirely due to shear, i.e. there is no initial bend or ex-

tension/compression in the rod. This implies that the initial bend is ~XXðs; 0Þ ¼ ~XX0. It also means that ~dd3 is

initially constant and given by ~dd3 ¼ ð0; 1; 0Þ. The other two directors, ~dd1 and ~dd2 rotate in the XZ-plane to

accommodate the twist. The initial condition for the shear is then given by

~CCðs; 0Þ ¼ T̂T�1 d~rr
ds

ðs; 0Þ;

where T̂T is the transformation matrix from the internal frame to the laboratory frame. In this case

T̂T�1 ¼
sinðX03sÞ 0 cosðX03sÞ
cosðX03sÞ 0 � sinðX03sÞ

0 1 0

0
@

1
A: ð47Þ

We also assign an initial velocity which in the laboratory frame has the form ~vvðs; 0Þ ¼
ð0; 0;Av sinð2ps=LÞÞ, i.e. the initial velocity is purely translational, with amplitude corresponding to 1 �AA/ps.
These initial conditions produce a motion of the elastic rod that remains planar for all time. Table 1

provides the exact functional forms of the initial conditions used in the elastic rod simulation.

6.2. All-atom simulation

For the molecular dynamics simulations the compute engine NAMD [50] was used to integrate Newton�s
equations of motion. The bonded, van der Waals and electrostatic energy functions are as described in the

CHARMM22 all-atom force field for nucleic acids [51]. The simulation of DNA was thus a typical mo-
lecular dynamics simulation of DNA with the following two exceptions. First, periodic boundary condi-

tions were enforced only along the long axis of the DNA and the ends of each strand of the DNA were not

free but rather chemically bond to one another, i.e. the 50 and 30 ends of each strand were ligated. Thus, the

DNA was topologically equivalent to a circle, so it was necessary to have an integer number of helical turns

of the DNA. The unit cell was chosen so that the periodic boundaries passed through these two bonds at

t ¼ 0, but no such restriction was imposed by NAMD. Periodicity of the physical dimensions and chemical

structure of the DNA was required so that the all-atom and elastic rod simulations would have the same

boundary conditions. Periodicity of the chemical structure had the added benefit of removing end effects,
such as unwinding of the DNA helix, that occurs in molecular dynamic simulations with the usual free end

boundary conditions.

Second, no water or counterions were included in the simulation and an electrostatics cut-off at 10 �AA was

used. Thus the DNA could not dissipate energy to the environment, and long range electrostatic interac-
Table 1

Initial conditions for planar bend–shear simulations

Function Initial value (internal frame)

~cc ðAv � sinð2ps=LÞ � cosðX03sÞ;�Av � sinð2ps=LÞ � sinðX03sÞ; 0Þ
~xx ð0; 0; 0Þ
~CC ðA � sinð2ps=LÞ � cosðX03sÞ;�A � sinð2ps=LÞ � sinðX03sÞ;C03Þ
~XX ð0; 0;X03Þ
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tions were not included in the all-atom simulations. Our focus is on whether the atomic structure of DNA

supports elastic rod type motions so for comparison with the elastic rod model, which is a Hamiltonian

system, it is important to remove interaction with the environment in the all-atom simulation. In regards to
electrostatics, it has been demonstrated that simulations of DNA in the gas phase with no modification of

the long range electrostatic interactions do not yield biologically observed structures of DNA on the time

scale of 100�s of nanoseconds [52]. However, [52] also demonstrates that on the sub-nanosecond timescale,

as investigated here, that the structure of DNA in the gas phase is largely stable.

Since all energy terms and corresponding parameters are determined by the CHARMM22 force field we

were only free to specify initial conditions in the molecular dynamics simulation. In order to compare the

elastic rod and all-atom models, the same internal coordinate functions used to specify the elastic rod initial

conditions were also used to initiate the molecular dynamics simulation. Note that the elastic rod simu-
lation uses dimensionless variables while the model of DNA must be specified in dimensional variables.

To convert the internal coordinate description in Table 1 to an all-atom representation of DNA, a

random sequence of 158 base-pairs of DNA was generated and the internal coordinates were assumed to

have a one-to-one correspondence to the DNA helical parameters [27] as follows: X ¼ ðroll; tilt; twistÞ and
C ¼ ðshift; slide; riseÞ. With this assumption X and C were converted to an all-atom model of DNA using

the DNA analysis software 3DNA [49]. To obtain initial velocities for the molecular dynamics simulation

consistent with the elastic rod model, random initial velocities representing a temperature of 300 K were

first assigned, as is typical in molecular dynamics simulations and then the desired sinusoidal velocity along
the length of the rod, as listed in Table 1 was added to the thermal velocities. Thus the molecular dynamics

simulation included thermal motion which is not defined in the elastic rod model. Note that even with zero

thermal motion the initial conditions specified in Table 1 may produce a motion in the DNA that becomes

nonplanar.

Fig. 8 presents snapshots of the dynamics of an intrinsically twisted rod while Fig. 9 presents the dy-

namics of 158 base-pairs of DNA from the molecular dynamics simulation. Remarkably, in the all-atom

model the initial sinusoidal disturbance is observed to propagate along the structure with a constant ve-

locity. For the elastic rod model, the wave speed was estimated from the numerical results to be 1.4 �AA/ps
using the scalings in Eq. (15) and are based on the rod�s mechanical properties. For the molecular dynamics

simulation, the wave speed was estimated to be 2.2 �AA/ps based on graphical observations. This is a result of

the choice of force field which has no elastic energy term. This molecular dynamics simulation was run for a

total of 600 ps and no significant deviations from planarity or dissipation of the wave into thermal motion

was observed.

A total of three molecular dynamics simulations with different initial velocities, Av ¼ 0; 1, and 5 �AA/ps,

were conducted. In the simulation with zero initial velocity the DNA began to oscillate, indicating that the
Fig. 8. Planar bend wave dynamics from the elastic rod model. The dark solid line indicates twist.



Fig. 9. Planar dynamics of 158 base-pairs of DNA from the Molecular Dynamics simulation.
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intrinsic shape of the 158 base-pairs of DNA tends to be a straight twisted rod, even though the intrinsic

shape is defined only as a sum of molecular mechanics potential terms. In the simulation with initial velocity

amplitude of 5.0 �AA/ps, the DNA developed nonplanar motions and rather severe distortions from ideal base

stacking. The distortions from ideal base stacking can be expected when DNA is assigned such a large

momentum. The deviations from planarity are an indication that the chemical linkage in DNA produces

coupling between modes that are not captured by our simple elastic rod model in which the matrices ĈC and
D̂D are diagonal and not base-pair specific.
7. Conclusion

We have analyzed the propagation of bend and shear deformations in a geometrically exact elastic rod

model. Our analysis applies to any long thin fiber that can be treated as a homogeneous rod, e.g. bio-

polymers such as DNA and filamentous proteins. We have investigated the large amplitude dynamics of
intrinsically twisted and untwisted rods and have found numerical and analytical solutions that contain

bend/shear waves. In some cases, we have been able to provide exact solutions of the nonlinear system of

equations and in other cases we have developed asymptotic solutions based on perturbations of known

steady states. The solutions and the numerical simulations focused on the role of shear and bend waves and

on the amount of extension/compression required in the solutions. The main reason for this is that previous

investigations often include the assumptions of rod inextensibility and zero shear, leading to a lesser un-

derstanding of the role of these excitations.

It was shown that each of the two branches of the dispersion relation corresponding to the intrinsically
untwisted rod can be treated as bend or shear wave only in the limits k ! 0 or k ! 1. But in general the

rod dynamics include a combination of shear and bend waves. For the intrinsically twisted rod, each branch

mentioned above splits into two branches. The behavior of these four branches can be determined as bend

(shear) only in the limit k ! 1. In the long wavelength limit k ! 0, they have a combination of bend and

shear displacement. When k ! X03, one of the branches in Fig. 2 indicates pure shear and a second brach

indicates pure bend.

We have compared the results from an all-atom molecular dynamics simulation of 158 base-pairs of

DNA to those obtained from the elastic rod model. Although the two models are completely different, the
results are in very good agreement. The molecular dynamics simulation demonstrates that, in the absence of

a surrounding medium, the chemical structure of DNA supports elastic wave propagation and that the
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gross properties of DNA, on the scale of one persistence length, dominate over known inhomogeneities at

the scale of base-pairs. In order for the continuum model to be more directly applicable to DNA simu-

lations, the elastic rod model must be modified to include the interaction of the rod with an environment to
which energy can dissipate. In addition, further analysis of the molecular dynamics simulations will enable

identification of the contribution that each component of the molecular mechanics force field makes to the

elastic properties of DNA.
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Appendix A. Conservation law for the general case

Let us take the dot product of Eq. (3) with~cc and Eq. (4) on the ~xx. Also we multiply Eq. (5) on the left by

the matrix ĈC and then take the dot product with ~CC�~CC0. We multiply Eq. (6) on the left by the matrix D̂D and

then take the dot product with ~XX� ~XX0. The equations become

q~cc � o~cc
ot

¼~cc � oĈCð
~CC�~CC0ðsÞÞ

os
þ~cc � ~XX

�
� ĈC ~CC

��
�~CC0

���
; ðA:1Þ
~xx � ôII~xx
ot

¼ ~xx � oD̂Dð
~XX� ~XX0ðsÞÞ

os
þ ~xx � ~XX

�
� D̂D ~XX

��
� ~XX0

���
þ ~xx � ~CC

�
� ĈC ~CC

��
�~CC0

���
; ðA:2Þ
ð~CC�~CC0ðsÞÞ �
oĈCð~CC�~CC0ðsÞÞ

ot
þ ð~CC�~CC0ðsÞÞ � ĈC ~xx

��
�~CC

��

¼ ð~CC�~CC0ðsÞÞ �
oĈC~cc
os

þ ð~CC�~CC0ðsÞÞ � ĈC ~XX
��

�~cc
��

; ðA:3Þ
ð~XX� ~XX0ðsÞÞ �
oD̂D~XX
ot

þ ð~XX� ~XX0ðsÞÞ � D̂D ~xx
��

� ~XX
��

¼ ð~XX� ~XX0ðsÞÞ �
oD̂D~xx
os

: ðA:4Þ

This yields:

1

2

o

ot
qj~ccj2
n

þ ~xx � ð̂II~xxÞ þ ð~CC�~CC0Þ � ðĈCð~CC�~CC0ÞÞ þ ð~XX� ~XX0Þ � ðD̂Dð~XX� ~XX0ÞÞ
o

¼ o

os
~cc � ðĈCð~CC
n

�~CC0ÞÞ þ ~xx � ðD̂Dð~XX� ~XX0ÞÞ
o
þ~cc � ð~XX� ðĈCð~CC�~CC0ÞÞÞ

þ ð~CC�~CC0Þ � ĈCð~XX�~ccÞ þ ~xx � ð~XX� ðD̂Dð~XX� ~XX0ÞÞÞ � ð~XX� ~XX0Þ � D̂Dð~xx� ~XXÞ
þ ~xx � ð~CC� ðĈCð~CC�~CC ÞÞÞ � ð~CC�~CC Þ � ĈCð~xx�~CCÞ: ðA:5Þ
0 0
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It is easy to show that the sum of the last six term is equal to zero. For example, with the use of vector

identities, the third and the fourth terms can be written as

ðĈCð~CC�~CC0ÞÞð~cc� ~XXÞ þ ð~CC�~CC0ÞĈCð~XX�~ccÞ; ðA:6Þ

which is zero since ĈC is diagonal. The same applies to other terms in the equation, leaving only the con-

servation law

oE

ot
¼ oP

os
; ðA:7Þ

where the following definitions are used:

E ¼ 1

2
qj~ccj2
n

þ ~xx � ð̂II~xxÞ þ ð~CC�~CC0Þ � ðĈCð~CC�~CC0ÞÞ þ ð~XX� ~XX0Þ � ðD̂Dð~XX� ~XX0ÞÞ
o
;

P ¼ ~cc � ðĈCð~CC
n

�~CC0ÞÞ þ ~xx � ðD̂Dð~XX� ~XX0ÞÞ
o
:

ðA:8Þ

Here, E corresponds to the energy density (kinetic and potential) in the rod at any time t and location s, and
P corresponds to the momentum density (linear and angular) in the rod at any time t and location s.

Integrating Eq. (A.7) in space yields

dE
dt

� d

dt

Z L

0

Eðs; tÞds ¼ PðL; tÞ �Pð0; tÞ;

which equals zero for periodic boundary conditions used here. Therefore we obtain the associated integral
of the motion

E ¼ 1

2

Z L

0

j~ccj2
n

þ ~xx � ð̂II~xxÞ þ ð~CC�~CC0Þ � ðĈCð~CC�~CC0ÞÞ þ ð~XX� ~XX0Þ � ðD̂Dð~XX� ~XX0ÞÞ
o
ds:
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