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We derive a general system of images for regularized sources, Stokeslets, and other related 
elements starting from an arbitrary regularization kernel (blob) used in the simulation 
of Stokes flows in three dimensions bounded by a plane. This generalizes previous work 
in which the image system for a Stokeslet had been derived for one specific blob. The 
significance of this generalization is that recent work on regularization methods requires 
the use of blobs designed to satisfy certain properties, such as zero moment conditions 
and fast decay, and thus it is absolutely necessary to have the system of images starting 
from an arbitrary blob. The system of images for a regularized element consists of a set of 
several elements, usually of higher order, that produce a flow that is zero at the bounding 
plane. In order for the resultant flow to vanish analytically at the wall, two different but 
related blobs must be used. For any given blob, we provide the formula for the companion 
blob that accomplishes the cancellation and we derive a systematic way to compute the 
image system of regularized Stokeslets, sources and dipoles. Other elements can be derived 
from these. By taking the limit as the regularization parameter approaches zero, the system 
of images for the corresponding singular elements is found.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

There are many fluid flow problems in the sciences and engineering that are solved through the use of singularity solu-
tions distributed along the surface of bodies interacting with the fluid. In biological flows, for example, the forces imparted 
on the fluid by flagella, cilia, cell bodies, and other objects are often modeled as Stokeslet distributions on the surfaces af-
fecting the fluid motion. This approach relies on the fact that a surface distribution of Stokeslets is integrable. The Stokeslet 
can be differentiated to produce additional singularity solutions of Stokes equations such as the rotlet, stresslet, dipole, 
quadrupole, etc. Among them, the rotlet has been used substantially since it represents the fluid motion due to a point-
torque and is needed to balance the angular momentum in propulsive mechanisms of microorganisms [8]. In applications 
such as the swimming motion of self-propelled organisms [17,9,27,10,29] and the conical rotation of nodal cilia [35], the 
stresslet flow is known to appear.

Unlike the Stokeslet, the singularities that come from its derivatives are generally no longer integrable when distributed 
over surfaces. Similarly, Stokeslets distributed along curves or scattered points produce infinite velocities, so the singulari-
ties must be removed by computing the principal value of the integrals, for example. The method of regularized Stokeslet 
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[14,15] was developed to remove the Stokeslet singularity by smoothing the kernels. Since its introduction in 2001, this 
method has been very useful for small-scale biological flow applications such as the swimming motions of microorganisms, 
cell growth, and other microscopic phenomena. It has been used for biofilm/fluid interactions [12,11], for microfiltration 
as a method for removing particulate matter [13], for spirochete motility studies [15] and the simulation of bundling flag-
ella [18], to model swimming flagella [26], to understand forces of self-propelled microswimmers [23], to model a human 
sperm motility [21], to study asymmetric peristaltic pumping in three dimensions [2], to determine the rotational velocity 
of superhelical bodies being towed through a very viscous fluid [22], and to study hydrodynamic interactions that cause 
synchronization between rotating paddles in a viscous fluid [31]. Improvements on the implementation of the method have 
also been proposed [7,34,3].

The regularized Stokeslet is the velocity field that solves the incompressible Stokes equations with external forcing

∇p = �u + f, ∇ · u = 0 (1)

with forcing of the form

f(x) =
N∑

k=1

fk φδ(x − xk) (2)

where φδ(x) is concentrated in a small neighborhood of the origin whose size is determined by the parameter δ. The 
blob φδ is assumed to be a radially-symmetric, smooth approximation to a delta-distribution, so we require at a minimum 
that its total volume integral be one. The exact solution of the Stokes equations (1) with forcing term in Eq. (2) can be 
found analytically, leading to a regularized Stokeslet, which is bounded everywhere. It also has the property that as the 
regularization parameter δ approaches zero, the expression converges to the well-known singular counterpart [14]. Once 
the regularized Stokeslet is known, other solutions can be derived by differentiation, leading to regularized dipoles, rotlets, 
stresslets, etc.

Interesting problems involve flows in the vicinity of a plane wall. Observations of microorganisms swimming in solutions 
are often made near the bottom glass plate of a container [10], where the flows generated by the organism’s flagella are 
affected by the presence of the wall. Similarly, cilia beat next to a boundary that affects the overall flow. In order to include 
the zero-velocity boundary condition on a plane, a system of images for regularized Stokeslets was presented in [1]. Given 
the forces in Eq. (2), the image of xk is its reflection about the plane wall. By placing a set of regularized elements at the 
image point, it is possible to cancel analytically the flow on the wall. Early work on the image system of singular Stokeslets 
appears in [5,6] where Fourier transforms were used for the derivation of the images for a Stokeslet, rotlet, source, and 
(Stokeslet) doublet. By differentiating with respect to the pole, Pozrikidis [30, p. 197] also derived the image systems for the 
Stokeslet, source and dipole.

The image system for regularized Stokeslets presented in [1] was derived specifically for the algebraic blob

φδ(x) = 15δ4

8π(|x|2 + δ2)7/2
. (3)

This image system included a regularized Stokeslet, doublet, dipole and rotlets. It turned out that some of those element 
had to be derived from a “companion” blob in order to achieve the necessary cancellation of terms. While the regularized 
image system has been useful in many applications of microorganism motility, nano motors, sperm motility, cilia dynamics, 
and more [34,10,9,21,20,35,24,33], it is clear that a more general theory is needed to allow the use of specialized blobs in 
the regularized Stokeslet.

For example, higher accuracy in computing the Stokeslet flow due to a moving object may be achieved if the blobs 
used to regularize the surface forces satisfy certain moment conditions of the form 

∫ ∞
0 rm+2φδ(r)dr = 0 for integers m ≥ 1

(see [4,28]). Recent work on periodic arrays of regularized Stokeslets [25] considers a force f applied at x0 in a box domain 
[0, L]3 and the solution of Eq. (1) written as u(x) = Sδ(x, x0)f +∑

n �=0 Sδ(x, x0 + nL)f, where n is a triple index representing 
the periodic copies of the force. This can be written as

u(x) = Sδ(x,x0)f +
∑
n�=0

[
Sδ(x,x0 + nL) − S0(x,x0 + nL)

]
f +

∑
n�=0

S0(x,x0 + nL)f

where S0 represents the singular Stokeslet. Since the last term can be treated using an Ewald splitting technique; the 
efficiency of the computation depends on the fast approximation of the first sum on the right side. This requires the use of 
Gaussian blobs so that the first sum is local in space. The blob in Eq. (3) cannot be used in these situations. This technique 
has been extended to doubly-periodic arrays of forces (in x and y) and unbounded space in the z-direction [16]. The further 
extension of the doubly-periodic case to include the plane wall z = z0 can be accomplished with Gaussian blobs.

Here, we generalize the Stokeslet image system by deriving it for an arbitrary blob. A formula for the “companion” blob, 
which is used in some of the image elements, is derived. We also derive the image system for a regularized source (or sink) 
so that the image systems for other elements (e.g. doublets and dipoles) can be obtained by differentiation with respect to 
the pole [30].
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2. The regularized elements in free space

Let φ(r) be any blob and define the corresponding regularized Green’s function G(r) as a smooth solution of �G = φ

in R3 subject to the condition G(r) → 0 as r → ∞. Also define the corresponding regularized biharmonic function B(r)
as a smooth solution of �B = G . Note that since the blob is radially symmetric, this implies that (r2G ′(r))′ = r2φ(r) and 
(r2 B ′(r))′ = r2G(r).

2.1. Regularized source

We consider the Stokes equations (1) with no external forcing but with divergence ∇ ·u = mφ(|x|). Taking the divergence 
of the Stokes equation we have that

�p = m �φ ⇒ p(x) = m φ
(|x|).

Other solutions differ from this one by a harmonic function but by requiring that the pressure be bounded as |x| → ∞, all 
solutions differ by a constant that can be taken to be zero. Then the velocity satisfies

�u = ∇p = m∇φ ⇒ u(x) = m∇G(x).

Since G is radially symmetric, the velocity can be written as

u(x) = m Σ(r) x, where Σ(r) = G ′(r)
r

(4)

and r = |x|.

2.2. Regularized Stokeslet

Taking the divergence of Eq. (1) with forcing fφ(|x|) we have that

�p = f · ∇φ ⇒ p(x) = (f · ∇)G
(|x|).

Then the velocity satisfies

�u = ∇p − fφ = (f · ∇)∇G − fφ ⇒ u(x) = (f · ∇)∇B(r) − fG(r)

where r = |x|. Using the radial symmetry of G and B , the velocity can be written as

u(x) = f H1(r) + (f · x)x H2(r)

where

H1 = B ′(r)
r

− G(r) and H2 = rB ′′(r) − B ′(r)
r3

(5)

2.3. Regularized doublet

Let the Stokeslet velocity components be given in component form by

ui ≡ Sij f j = [
H1(r)δi j + xix j H2(r)

]
f j

then the doublet kernel �i jk is defined as

�i jk = ∂

∂xk
Si j = H ′

1

r
xkδi j + H2(δikx j + δ jkxi) + H ′

2

r
xi x jxk

The expression for the doublet can be split into a part that is symmetric with respect to the subscripts j and k, and the 
antisymmetric part. These are related to a stresslet and rotlet, respectively. We write the above expression as

�i jk =
{

H2δ jkxi + H ′
2

r
xi x jxk + 1

2

(
H2 + H ′

1

r

)
(δikx j + δi jxk)

}
+ 1

2

(
H2 − H ′

1

r

)
(δikx j − δi j xk)

The terms in curly braces is symmetric and the last term is antisymmetric. From the definitions of H1 and H2 in the 
previous subsection, we simplify the antisymmetric term to get

�i jk =
{

H2δ jkxi + H ′
2

r
xi x jxk + 1

2

(
H2 + H ′

1

r

)
(δikx j + δi jxk)

}
+ 1

2

G ′

r
(δikx j − δi j xk)
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2.3.1. Regularized rotlet
The rotlet comes from applying the regularized doublet to an antisymmetric matrix, A jk . Based on the decomposition of 

the doublet, this is

ui = �i jk A jk = 1

2

G ′

r
(δikx j − δi jxk)A jk = − G ′

r
xk Aik.

Since the matrix has only 3 independent elements, we may exploit its symmetry to write Aik = −εi jk L j for some vector �L. 
Then the rotlet velocity is

ui ≡ Ri j L j =
[

G ′

r
εi j	x	

]
L j

where �L is the rotlet strength. This result is also found in [18].

2.3.2. Regularized stresslet
If we apply the regularized doublet to a symmetric matrix, Z jk , the result is

�i jk Z jk =
{

H2δ jkxi + H ′
2

r
xi x jxk + 1

2

(
H2 + H ′

1

r

)
(δikx j + δi jxk)

}
Z jk

= H2 xi (δ jk Z jk) + H ′
2

r
xi x jxk Z jk +

(
H2 + H ′

1

r

)
x j Zi j. (6)

In Section 4 we discuss how the first term can be interpreted as a regularized source, so we define the stresslet velocity as

ui ≡ Tijk Zik = H ′
2

r
xi x jxk Z jk +

(
H2 + H ′

1

r

)
xk Zik.

We point out that the regularization introduces terms in the derived expressions that are not present in the well-known 
singular versions. For example, the term H2(r) + H ′

1(r)/r vanishes identically in the singular case but not in the regularized 
case.

2.4. Regularized dipole

The regularized dipole velocity is derived as the negative Laplacian of the regularized Stokeslet. The result is u(x) =
fφ(|x|) − (f · ∇)∇G(x) which we write as

ui ≡ Dij f j = [
D1(r)δi j + xix j D2(r)

]
f j

where

D1 = φ(r) − G ′(r)
r

and D2 = −1

r

(
G ′(r)

r

)′
. (7)

2.5. Other elements

We mention three more elements that will be needed in some of the image systems.
Regularized quadrupole: The quadrupole kernel Q ijk is defined as a derivative of the dipole

Q ijk = ∂

∂xk
Dij = D ′

1

r
xkδi j + D2(δikx j + δ jkxi) + D ′

2

r
xi x jxk.

Regularized rotlet double: The rotlet double kernel Θi jk is defined as the derivative of a rotlet

Θi jk = ∂

∂xk
Ri j = R′

r
εi j	 x	 xk +R εi jk.

Regularized Stokeslet quadrupole: The Stokeslet quadrupole kernel S Q
ijk	

is defined as

S Q
ijk	

= ∂

∂x	

�i jk.
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Fig. 1. Schematic of the geometry and notation near the wall. The original element is centered at the point above the wall; the image point is below the 
wall.

Table 1
Examples of algebraic, exponential and Gaussian blob pairs φd and φs . The top row corre-
sponds to the blobs used in [1].

Dipole/source blob Stokeslet blob

φd(r) = 3δ2

4π(r2 + δ2)5/2
φs(r) = 15δ4

8π(r2 + δ2)7/2

φd(r) = (r + δ)exp(−r/δ)

32πδ4
φs(r) = (5δ2 + 5δr − r2)exp(−r/δ)

64πδ4

φd(r) = exp(−r2/δ2)

π3/2δ3
φs(r) = (5δ2 − 2r2)exp(−r2/δ2)

2π3/2δ5

3. Motivation for using two different blobs

From now on, we will consider an infinite plane wall parallel to the xy-plane at z = z0. Let x∗ represent the vector from 
the location of the regularized Stokeslet to an evaluation point and let x be the vector from the image point to the same 
evaluation point. We define h to be the distance from the regularized Stokeslet to the wall (see Fig. 1).

The components of the vectors x and x∗ satisfy

x∗
i = xi − 2hδi3 (8)

x∗
i x∗

j = (xi − 2hδi3)(x j − 2hδ j3)

= xix j − 2h(xiδ j3 + x jδi3) + 4h2δi3δ j3. (9)

These relations will be used in the remaining sections.
In [1] it was shown that the system of images for the regularized Stokeslet required the use of two different but related 

regularization functions. The reason is that while expressions such as D1(r) + 2H2(r) ≡ 0 in the singular case, this cancel-
lation does not happen automatically with the regularization. However, the cancellation can be obtained by using one blob 
for the Stokeslet (H1 and H2) and a different blob for the dipole (D1 and D2). While this was done in [1] for two specific 
blobs, we extend that work here by starting from an arbitrary blob and providing a formula for the companion blob.

4. Companion blobs and regularized Green’s functions

Consider a regularized Stokeslet with blob φs . All dipoles and sources will use the companion blob φd . The remaining 
elements are derived from these; for example, the doublet is derived from the Stokeslet and therefore also comes from φs . 
Once the blob φs is chosen, the corresponding functions Gs and Bs are derived from it using �Gs = φs and �Bs = Gs . 
Similar formulas hold for the triplet (φd, Gd, Bd). Assume that (φd, Gd, Bd) are known. We define the blob φs using the 
formula

φs = 1

2

(
rφ′

d + 5φd
)

which will ensure the appropriate cancellation formulas needed for the images (see Appendix A). In particular, the following 
proposition, proven in Appendix A, holds:

Proposition 1. Let the dipole and source be derived from φd and the Stokeslet from φs. Then 2H ′
1/r + 4H2 + D1 = 0 and D2 +

2H ′
2/r = 0.

Examples of blobs φd(r) and φs(r) are shown in Table 1.

4.1. Relations between the doublet and the dipole kernels

Using Proposition 1, the doublet expression can be simplified
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�i jk = ∂

∂xk
[H1δi j + xix j H2]

= H ′
1

r
xkδi j + H2(δikx j + δ jkxi) + H ′

2

r
xi x jxk

= −1

2
(D1 + 4H2)xkδi j + H2(δikx j + δ jkxi) − 1

2
xkxi x j D2

which leads to the useful identity

�i jk + 1

2
xk Dij = −2H2xkδi j + H2(δikx j + δ jkxi). (10)

5. The image system for regularized elements

5.1. The images for a regularized Stokeslet

Consider a Stokeslet of strength f derived from a blob φs . From the notation in Fig. 1 and Eqs. (8)–(9), we note that when 
the evaluation point is on the wall, we have |x∗| = |x|. The fluid velocity evaluated on the wall due to the original Stokeslet 
and its negative at the image point is(

S∗
i j − Sij

)
f j = (−2hH2(xiδ j3 + x jδi3) + 4h2 H2δi3δ j3

)
f j

= −2hH2 f3(x1δi1 + x2δi2) − 2hH2(x1 f1 + x2 f2)δi3, (11)

where H1 and H2 are defined in Eq. (5).
We now define a dipole from φd . The operator (�i3 j + (h/2)Dij) applied to 2hq j gives

2h

(
�i3 j + h

2
Dij

)
q j = h2(2H2 + D1)qi + 2hH2xiq3 − h(D1 + 4H2)(x1q1 + x2q2 + hq3)δi3

= h2(2H2 + D1)(q1δi1 + q2δi2) + 2hH2q3(x1δi1 + x2δi2)

− h(D1 + 4H2)(x1q1 + x2q2)δi3.

A linear combination of the last equation and Eq. (11) is not enough to cancel the velocity at the wall as it is in the 
singular case. As in [1] we consider the difference of two rotlets

Rd −Rs = G ′
d

r
− G ′

s

r
= −1

2
D1 − H2 (12)

where we used the results of Proposition 1 and Theorem 1 (see Appendix A).
If we define the rotlet strength be L j = εkj3qk , then from Eq. (12) we have that

2h(Rd −Rs)i j L j = −h(D1 + 2H2)εi j	x	εkj3qk

= −h(D1 + 2H2)ε ji	ε jk3 x	qk

= −h(D1 + 2H2)(δikδ	3 − δi3δ	k)x	qk

= −h(D1 + 2H2)(qiδ	3 − δi3q	)x	

= h(D1 + 2H2)δi3(q1x1 + q2x2) − h2(D1 + 2H2)(q1δi1 + q2δi2).

Therefore,

2h

(
�i3 j + h

2
Dij

)
q j + 2h(Rd −Rs)i j L j = 2hH2q3(x1δi1 + x2δi2) − 2hH2(x1q1 + x2q2)δi3 (13)

Adding Eq. (11) and Eq. (13) we conclude that the velocity field at the wall will vanish when q1 = − f1, q2 = − f2 and 
q3 = f3, or equivalently, when q j = −(δ jk − 2δ j3δk3) fk .

In summary, the image system for a Stokeslet is ui = S I M
ij f j where

S I M
ij = (

S∗
i j − Sij

) − 2hρmj

(
�i3m + h

2
Dim

)
− 2h(Rd −Rs)imε jm3

where we have defined ρmj = (δmj − 2δm3δ j3).
We note that in the singular case, taking the limit as the regularization vanishes, the rotlets cancel each other and the 

image system for a Stokeslet reduces to
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Fig. 2. Flow field due to a Stokeslet near the wall z = 0 (left) and in free space (right). The blob used is the exponential function in Table 1 and δ = 0.014.

S I M
ij = (

S∗
i j − Sij

) − 2hρmj

8π

(
(x3 − h)δim + xiδm3 − xmδi3

r3
− 3xmxi(x3 − h)

r5

)

= (
S∗

i j − Sij
) + 2hρmj

8π

∂

∂xm

(
hxi

r3
− δi3

r
− xix3

r3

)

where the last expression is identical to that in [6].
Fig. 2 shows a comparison of the Stokeslet flow with (left) and without (right) images. For the purpose of illustration, 

the flows in the figures were computed using the exponential blob in Table 1.

5.2. The images for a regularized source

Consider a regularized source (or sink) given in Eq. (4) using the blob φd(r). Using Proposition 1 we find that the fluid 
velocity at a point on the wall due to the original source of strength 1 and a source at its image is

σ ∗
i + σi = Σ

(
x∗

i + xi
) = 2

G ′
d

r
(xi − hδi3) = 4H2(xi − hδi3)

where H2 comes from a Stokeslet blob φs(r) as given in Eq. (5). Also, from Eq. (10), the operator �i j3 + (h/2)Dij applied to 
−4δ j3 gives

−4

(
�i j3 + h

2
Dij

)
δ j3 = 8H2hδi3 − 4H2(hδi3 + xi) = −4H2(xi − hδi3)

from which we conclude that the images of a source of strength m are ui = m σ I M
i where

σ I M
i = σ ∗

i + σi − 4

(
�i33 + h

2
Di3

)
= 0

at every point on the wall.
From this expression one can deduce the singular case by taking the limit as the regularization vanishes. In that case, 

the image system for a source reduces to

σ I M
i = σ ∗

i + σi − 4

8π

(−hδi3 + xi

r3
− 3x3xi(x3 − h)

r5

)

= σ ∗
i + σi + 2h

4π

(
δi3

r3
− 3x3xi

r5

)
− 2

4π

(
xi

r3
− 3x3x3xi

r5

)

which is the expression derived in [6]. See also [30, p. 197]. Fig. 3 shows a comparison of the source flow with (left) and 
without (right) images. For this illustration, the flows were computed using the algebraic blob in Table 1.

6. The image systems for other elements

It is known that given the images of a generic element Eij(x −x0, δ), the corresponding image system for the derivative of 
that element can be found by differentiating the image system with respect to the pole x0. Here, we will use an equivalent 
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Fig. 3. Flow field due to a source near a wall at z = 0 (left) and in free space (right). The blob used is the algebraic function in Table 1 and 
δ = 0.025.

formula in terms of derivatives with respect to x. If the image system for Eij(x − x0, δ) is hp Fij(x − y0, δ), then the image 
system for ∂ Eij/∂xk is

(δnk − 2δn3δk3)

[
∂

∂xn
+ δn3

∂

∂h

](
hp Fij

)
, (14)

which can be shown by considering the limiting process of two elements Eij approaching each other. We use this formula 
in the sections below.

6.1. The images for a regularized dipole

It is easy to check from Eq. (4) and Eq. (7) that the dipole and source are related by Dik = φdδik − ∂σi/∂xk , so that in 
order to derive the image system for a dipole we need to differentiate the image system for the source:

σi − 4

(
�i33 + h

2
Di3

)
.

For notational purposes, we recall that ρnk = (δnk − 2δn3δk3), so we have that the image system of D∗
ik is

−φdδik − ρnk

[
∂

∂xn
+ δn3

∂

∂h

](
σi − 4

(
�i33 + h

2
Di3

))

= −φdδik − ρnk
∂σi

∂xn
+ 4ρnk

∂

∂xn

(
�i33 + h

2
Di3

)
+ 2ρnkδn3 Di3

= −φdδik − ρnk
∂σi

∂xn
+ 4ρnk

(
S Q

i33n + h

2
Q i3n

)
+ 2ρnkδn3 Di3

= −φdδik + ρnk

{
− ∂σi

∂xn
+ 4

(
S Q

i33n + h

2
Q i3n + 1

2
δn3 Di3

)}
.

Now we simplify the last term to get that the image system of a dipole is ui = D I M
ik fk , where

D I M
ik = D∗

ik + ρnk

{
Din + 4

(
S Q

i33n + h

2
Q i3n

)}
− 2δk3 Di3 − (ρik + δik)φd,

where we have used the quadrupole Q and Stokes quadrupole S Q defined in Section 2.
As δ → 0, this agrees with the known image system in the singular case [30], except for the last term, which approaches 

a delta distribution. This term has no effect on the fluid motion since it is centered at the image point (outside the fluid 
domain). We also point out that the image system can be written using different combinations of elements that give the 
same result. For example, one can verify that the following is an equivalent representation of the image system for the 
dipole

D I M
ik = (

D∗
ik − Dik

) + 4

(
S Q

in33 + h
Q in3 + 1

Din

)
ρnk + 4Θd

i	3 εk	3,
2 2
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Fig. 4. Flow field due to a dipole near a wall at z = 0 (left) and in free space (right). The blob used is the exponential function in Table 1
and δ = 0.017.

which uses also a rotlet double Θd derived from φd . Fig. 4 shows a comparison of the dipole flow with (left) and without 
(right) images. For this illustration, the flows were computed using the exponential blob in Table 1.

6.2. The images for a regularized doublet

Following the derivation of the dipole system of images, the corresponding system for a doublet can be obtained by 
differentiating the Stokeslet. We start with the Stokeslet image system

−Sij − 2ρmj

(
h�i3m + h2

2
Dim + h(Rd −Rs)ipεmp3

)

and since the doublet is �i jk = ∂ Sij/∂xk , we have that the image system for �∗
i jk is

−ρkn�i jn − 2ρknρmj

[
∂

∂xn
+ δn3

∂

∂h

](
h�i3m + h2

2
Dim + h(Rd −Rs)ipεmp3

)

= −ρkn�i jn − 2ρknρmj

(
hS Q

i3mn + h2

2
Q imn + h(Θd − Θs)ipnεmp3

)

+ 2ρmjδk3
(
�i3m + hDim + (Rd −Rs)ipεmp3

)
so that the system of images for the doublet is

�I M
i jk = �∗

i jk − �i jk − 2ρknρmj

(
hS Q

i3mn + h2

2
Q imn

)
+ 2δk3�i j3 + 2ρmjδk3(�i3m + hDim)

+ 2ε jp3
[
δk3(Rd −Rs)ip − hρkn(Θd − Θs)ipn

]

6.2.1. The images for a regularized rotlet
To find the system of images for a rotlet L, we just need to determine the antisymmetric part of the doublet image 

system. The result is

RI M
i j = (

R∗
s −Rs

)
i j L j − 2(�i j3 + �i3 j + hDij)p j − 2(Rd −Rs)i jq j

− 2h(Θd − Θs)i j3L j − h2

2
(Q ijk − Q ikj)Akj

where Akj = εkj	L	 , p j = ε jk3Lk = A3 j and q j = ε j3k pk . Fig. 5 shows a comparison of the rotlet flow with (left) and without 
(right) images. For this illustration, the flows were computed using the algebraic blob in Table 1.

6.2.2. The images for a regularized stresslet
Given the image system of a full doublet and those of a rotlet and source, the system for a stresslet of strength Z jk

(symmetric) is obtained simply by subtracting the appropriate pieces. The result is ui = T I M Z jk where
i jk
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Fig. 5. Flow field due to a rotlet near a wall at z = 0 (left) and in free space (right). The blob used is the algebraic function in Table 1 and 
δ = 0.1.

T I M
ijk = (

T ∗
i jk − Tijk

) − 2H2δ jkxi − 2ρknρmj

(
hS Q

i3mn + h2

2
Q imn

)

+ 2δk3�i j3 + 2δk3ρ jm(�i3m + hDim) + 2δ jk

(
�i33 + h

2
Di3

)

− 2hρnk(Θd − Θs)ipnε jp3 + 2δk3(Rd −Rs)ipε jp3

We make the following definitions: (a) Tr(Z) = δ jk Z jk , (b) p j = xk Z jk , and (c) q j = Z j3 = Z3 j and note that x · q = p3. 
Using this notation, we have that

T I M
ijk Z jk = (

T ∗
i jk − Tijk

)
Z jk − 2H2xiTr(Z) − 2h

(
S Q

i3mn + h

2
Q imn

)
Zmn

+ 8h
(

S Q
i3m3qm − S Q

i333q3
) + 4h2

(
1

2
(Q im3 + Q i3m)qm − Q i33q3

)

+ 2�i j3q j + 2(�i3mqm − 2�i33q3) + 2h(Dimqm − 2Di3q3)

+ 2

(
�i33 + h

2
Di3

)
Tr(Z) − 2hρnk(Θd − Θs)ipnε jp3 Z jk + 2(Rd −Rs)ipε jp3q j .

7. Application to cilia motion

We use the method of images for regularized Stokeslets to compute the flow generated by three cilia beating in the same 
plane at different phases of their motion. This problem has been studied by several investigators (see for example [36] and 
the references therein). Our goal is not to study this problem in depth but to illustrate the use of regularized images.

The time-dependent shape of a cilium has been approximated by a curve ξ(s, t) in three dimensions given by

ξ(s, t) = 1

2
a0(s) +

6∑
n=1

an(s) cos(nσ t) + bn(s) sin(nσ t)

where s is the arc length parameter and t is time. The coefficients an and bn are provided in [32,19]. Here, we scale the 
cilium to have unit length and set the frequency σ = 1. The velocity at any point on the cilium at time t can be computed 
as v(s, t) = ∂ξ(s, t)/∂t . The flow field everywhere is computed as follows:

1. Discretize the cilium at time t with ξk = ξ(sk, t) for k = 1, 2, . . . , N and compute their corresponding velocities vk =
v(sk, t).

2. If we consider applying a force fk at ξk , then the fluid velocity vi is

vi =
N∑

k=1

S I M(ξi, ξk)fk (15)
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Fig. 6. Example of the use of the image system for regularized Stokeslets in the simulation of three cilia in close proximity to one another. 
The top row shows streamlines (left) and flow field (right) generated by the cilia at different times during the power stroke. The bottom 
row shows streamlines (left) and flow field (right) generated by the cilia at different times during the recovery stroke. In all cases, the 
arrows attached to the cilia represent the imposed velocity. The panels on the right column use the same scale of the velocity field on 
the plane of the cilia beat for comparison.

where S I M(ξi, ξk) is a 3 ×3 matrix representing the image system for the Stokeslets. Enforcing Eq. (15) for i = 1, 2, . . . , N
leads to a linear system of 3N equations that is solved for the cilium forces.

3. Once the forces are found, the fluid velocity at an arbitrary point x is computed using u(x) = ∑N
k=1 S I M(x, ξk)fk .

In Fig. 6 we have followed this procedure for three cilia simultaneously 0.2 dimensionless units apart at the wall, which 
is at z = 0. The top row of the figure shows cilia whose shape and velocity were computed using t = 2π/13 (left), t = 4π/13
(middle) and t = 6π/13 (right), which are during the power stroke. The bottom row of the figure shows cilia whose shape 
and velocity were computed using t = 14π/13 (left), t = 20π/13 (middle) and t = 2π (right), which are during the recovery 
stroke.

The entire beat of the cilia is in the plane y = 0 and the fluid velocity in that plane is also shown in Fig. 6 as streamlines 
(left column) and as vectors (right column). The arrows attached to the cilia represent the imposed cilium velocity. The 
Gaussian blob in Table 1 was used in this example.

8. Conclusions

The systematic derivation of the Stokes velocity field due to regularized forces or torques has been useful in modeling 
biological flows such as those around flagella, spirochetes, and cilia. In order to use these techniques in cases when the 
flow is bounded by a plane wall, a system of images for each type of singularity must be developed. This had been done 
previously for the regularized Stokeslet but limited to a specific blob. We have extended that work by deriving the Stokeslet 
image system for any blob so that it can be used in applications known to require specialized blobs with particular decay 
properties. We have also extended previous work by presenting the derivation of the system of images for regularized 
sources, dipoles, rotlets, and stresslets, starting with arbitrary blobs. The image systems have the property that the resulting 
velocity field is zero analytically at the wall. A feature in the image systems is that two different but related blobs are 
necessary in the regularization of Stokeslets and dipoles/sources, respectively. We have given explicit formulas that relate 
the two companion blobs. A direct consequence of this work is the image system for the corresponding standard (singular) 
elements which are obtained by taking the limit as the regularization parameter δ approaches zero.
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Appendix A

Given the triplet (φδd, Gd, Bd), consider the definition of Bs as the solution of

1

r

dBs

dr
= 1

2
Gd. (16)

This will imply that

Gs = d2 Bs

dr2
+ 2

r

dBs

dr
= 1

2

(
r

dGd

dr
+ 3Gd

)
. (17)

The dipoles and sources derived from φd are

D1 = φd − 1

r

dGd

dr
= d2Gd

dr2
+ 1

r

dGd

dr

D2 = −1

r

d

dr

[
1

r

dGd

dr

]

Σ = 1

r

dGd

dr

and the Stokeslets are derived from φs are

H1 = 1

r

dBs

dr
− Gs

H2 = 1

r

d

dr

[
1

r

dBs

dr

]
.

Using Eqs. (16)–(17) one can prove the following proposition.

Proposition 1. Let the dipole and source be derived from φd and the Stokeslet from φs. Then

(a) 2H ′
1/r + 4H2 + D1 = 0

(b) D2 + 2H ′
2/r = 0

Proof. To prove (b) we see that from Eq. (16) we have

H2 = 1

r

d

dr

[
1

r

dBs

dr

]
= 1

2r

dGd

dr
= 1

2

G ′
d

r
⇒ 2H2 = G ′

d

r
.

This implies that

D2 = −1

r

d

dr

[
1

r

dGd

dr

]
= −2

H ′
2

r
.

To prove (a) we see that

H1 = 1

2
Gd − Gs ⇒ H ′

1

r
= 1

2

G ′
d

r
− G ′

s

r

and using Eq. (17) we can verify that 2H ′
1/r + 4H2 + D1 = 0. �

The proof of Proposition 1 shows that H2(r) = 1
2

G ′
d(r)
r = 1

2 Σ(r). This is why the first term on the right side of the 
stresslet velocity in Eq. (6), H2(r)(δ jk Z jk)x, is equivalent to a regularized source. The same is true without regularization. 
What remains now is to find the triple (φs, Gs, Bs) from the known functions (φd, Gd, Bd) and Eq. (16). The result is

Theorem 1. Given differentiable functions (φd, Gd, Bd), assume the blob decays fast enough that limr→∞ r3φd(r) = 0. Let Bs =
1 (rB ′ (r) + Bd). Then, the companion functions satisfy
2 d
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1

r
B ′

s(r) = 1

2
Gd (18)

φs = 1

2

(
rφ′

d(r) + 5φd
)

(19)

Gs = 1

2

(
rG ′

d(r) + 3Gd
)

(20)

Proof. Given the formula for Bs one can see that

B ′
s = 1

2

(
rB ′′

d + 2B ′
d

) = 1

2
rGd

so that Eq. (18) is satisfied. To establish Eq. (19), note that

B ′′
s = 1

2

(
rG ′

d + Gd
)

so that

Gs = B ′′
s + 2

r
B ′

s = 1

2

(
rG ′

d + 3Gd
)
. �

Similarly, one can prove the validity of the formula for φs . To verify that φs is a valid blob, we define the nth moment of 
φ as

Mn(φ) = 4π

∞∫
0

rn+2φ(r)dr

and compute (assuming the integrals converge)

Mn(φs) = 4π

∞∫
0

rn+2φs(r)dr = 2π

∞∫
0

rn+3φ′
ddr + 10π

∞∫
0

rn+2φd(r)dr

= 2π(2 − n)

∞∫
0

rn+2φd(r)dr + 2π lim
r→∞ rn+3φd(r)

= 2π(2 − n)

∞∫
0

rn+2φd(r)dr = 2 − n

2
Mn(φd)

as long as the functions decay fast enough as r → ∞. This formula shows that the total integral of φs is equal to the total 
integral of φd (i.e. M0(φs) =M0(φd) = 1) so that φs is a valid blob. We note that as long as M2(φd) < ∞, the formula also 
shows that M2(φs) = 0 automatically, regardless of the corresponding value for φd and that higher moments of the two 
functions are proportional to each other. The relationships of Theorem 1 can be inverted to give the following result.

Corollary 1. Given (φs, Gs, Bs) the companion functions are given by

φd(r) = 2

r5

r∫
0

q4φs(q)dq, Gd(r) = 2

r3

r∫
0

q2Gs(q)dq, Bd(r) = 2

r

r∫
0

Bs(q)dq
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