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Abstract. The goal of this paper is to investigate the spectral element method (SEM), a
grid-based computational approach, and the grid-free particle strength exchange method (PSEM)
for solving the advection-diffusion-reaction equation in a microfluidic channel. We identify the di-
mensionless parameter regimes at which each algorithm provides a satisfactory solution in terms of
accuracy and computational time. We also compare the velocity field computed in microchannel ge-
ometries for nonzero and zero Reynolds numbers by solving the full Navier–Stokes equations with the
SEM and solving the inertia-free Stokes equations with the boundary element method, which does
not require an internal mesh. The methods discussed may be utilized in any appropriate combination
to solve high and low Péclet number and zero and nonzero Reynolds number transport problems to
allow fast, accurate evaluation of a binding reaction between two species. We show that the grid-free
particle and boundary element methods are suitable for solving the convection-dominated, irregular
geometry problems expected for microfluidic applications where the Reynolds number is near zero
and the Péclet number is very high. The SEM transport solver is appropriate for cases in which dif-
fusion plays a greater role and the concentration gradients are not as steep. These methods may be
applied to the design and optimization of microchannel geometries for mixing and other microfluidic
applications.
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1. Introduction. Computational modeling of the advection-diffusion-reaction
equation plays an important role in the design of microfluidic components and elucida-
tion of the underlying transport processes at microscale dimensions (100 nm–100μm).
A particular application for which modeling is useful is the design of a microfluidic
channel for a miniaturized antibody-based sensor. This type of sensor requires the
combination of an antibody solution and its corresponding analyte solution to facil-
itate a competitive-binding reaction within the microchannel as the solutions flow
through the device. The reaction product formation is transduced to a detectable
signal that indicates the concentration of an environmental contaminant, pathogen,
or molecule of clinical interest [30]. At microscale dimensions, the fluid dynamics and
transport are characterized by the vanishingly small Reynolds numbers (Re = ρUL/μ)
of the laminar flow regime and the high Péclet numbers (Pe = UL/D) of convection-
dominated mass transport due to the small diffusivities of the antibody and analyte.
For example, if we assume aqueous solutions with density ρ = 1 g/cm3 and viscosity
μ = 1 cP, a mean velocity U = 10−2cm/s, and length scale L = 10−2 cm, the Reynolds
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number for this system is Re = 10−2. Estimating the molecular diffusivities of an an-
tibody and analyte that may be used in a microfluidic sensor as D1 = 2× 10−8 cm2/s
and D2 = 2 × 10−7 cm2/s, respectively, the Péclet numbers are Pe1 = 5000 and
Pe2 = 500. Therefore, the combination of the two solutions occurs only by molecu-
lar diffusion between adjacent streams, requiring an impractical amount of time and
channel length for this application. To passively combine the antibody and analyte
solutions without moving parts or actuators [42], we consider geometric modifications
to the microchannel to increase transverse diffusion and advection, as well as a range
of transport parameter values, 0 ≤ Re ≤ 50 and 10 ≤ Pe ≤ 5000. Convection-
dominated behavior associated with Pe � 1 leads to steep concentration gradients,
and modeling these systems using grid-based techniques such as the finite element
method necessitates a fine and/or adaptive mesh and very small time steps to accu-
rately resolve the evolving concentration field [21]. Considering an irregular domain
as well, a grid-based computational model may be too computationally expensive to
complete.

In this paper, we evaluate two types of computational methods for simulating
the advection-diffusion-reaction equation to assess the reaction between two species
in a microfluidic channel: (1) the spectral element method (SEM), a grid-based ap-
proach, and (2) the grid-free particle strength exchange method (PSEM) coupled
with the boundary element method (BEM). Our goal is to identify the dimensionless
parameter regimes over which each algorithm provides a satisfactory solution of the
advection-diffusion-reaction equation. We provide a comparison of the velocity field
in microchannel geometries computed for nonzero and zero Re by solving the full
Navier–Stokes equations with the SEM and solving the inertia-free Stokes equations
with the BEM. We show that the methods discussed may be utilized in any appropri-
ate combination to solve high and low Pe and zero and nonzero Re transport problems
for microfluidic applications.

1.1. Spectral element method (SEM). The SEM is a high-order finite el-
ement method that was first introduced by Patera [35]. The SEM has been used
extensively to solve problems involving flow, such as the Navier–Stokes equations [13]
and the advection-diffusion equation [3, 31, 36, 46]. Compared to the traditional low-
order finite element method, the SEM often results in a more computationally efficient
approach because (1) fewer elements are needed because of the higher accuracy, and
(2) the number of unknowns can be reduced by applying a substructuring technique
to eliminate the unknowns in the interior of elements. The latter is important as
the number of unknowns can be reduced from ∼ h−dNd to ∼ h−dNd−1, where h is
the average element size, d is the space dimension, and N is the polynomial degree
used. In the SEM, the linear system resulting from the discretization of the differen-
tial equation is usually solved by a preconditioned iterative method, and a number of
preconditioners have been proposed in the literature [23, 32, 39]. For equations with
a time derivative, such as the advection-diffusion equation, we have found that the
Jacobi preconditioner usually works well. The computational code we used supports
preconditioned conjugate gradient with different preconditioners, including Jacobi,
overlapping Schwarz, and balancing domain decomposition methods by constraints
(BDDC). More details of these preconditioners can be found in [27].

1.2. Particle strength exchange method (PSEM). To simulate transport
processes, we also implement the PSEM, a grid-free Lagrangian method, in which a
system of ordinary differential equations (ODEs) is solved to simulate the evolution
of the concentration of each substance as particle trajectories follow the local flow
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field. A smooth “blob” function is associated with each particle, which overlaps to
neighboring particles to provide a smooth representation of the concentration field.
Particle methods have been extensively developed and improved for simulating the
Navier–Stokes equations [8, 10, 26, 29] and have been applied to advection-diffusion
systems [2, 9, 12, 40]. This grid-free approach is advantageous for our advection-
dominated application because it is better able to deal with the sharp gradients en-
countered and less likely to introduce artificial diffusion than with fixed-grid numerical
schemes. The PSEM benefits from relatively simple implementation, and recent work
has demonstrated execution with parallelization techniques for faster processing time
[6]. Because the particles advect to adapt to the flow map, the PSEM is capable
of handling complex geometries with irregular boundaries and obstacles. However,
this adaptability creates particle distortion in nonuniform flows or regions of high
shear such that the particle blob functions no longer overlap and the equations are
not solved to the expected degree of accuracy [25]. A redistribution step restores the
regular spacing of particles by interpolating the particle concentrations at the new
positions. An additional drawback of particle methods is the difficulty of enforcing
boundary conditions since boundaries do not exist in the particle calculation. As
discussed in section 3.2.2, we implement an image particle technique that reflects par-
ticles symmetrically about the boundary to impose a Neumann condition, such that
the concentration of the image particle is identical to its in-domain counterpart. In
the case when a Dirichlet condition is prescribed, the concentration associated with
these image particles may be computed by solving a linear system of equations that
enforces the appropriate concentration value at the boundary, as was done in [47].

1.3. Boundary element method (BEM). When Re � 1, which is typical in
microfluidic systems, we use the BEM based on the boundary integral representation
of Stokes flow derived by Ladyzhenskaya [28] to solve the Stokes equations for the
velocity field in microchannel domains. The BEM is advantageous particularly for
complicated domains because there is no internal mesh, reducing a two-dimensional
problem to one dimension. Our BEM implementation, which has been rigorously
validated and adapted from a version used extensively in simulations of pulmonary
airway reopening [14, 16, 41] and flow over cells in a channel [15], is solved efficiently
with parallelization for complicated geometries with fine resolution on the boundaries.
The approach for the two-dimensional formulation described in this paper is similar to
that of Higdon [18], wherein the boundary integrals are expressed in terms of traction
and velocity, as opposed to biharmonic formulations involving the stream function and
vorticity equation [22]. Disadvantages of our BEM approach include singularities in
the boundary integral solution and the formation of large dense matrices that require
significant computational memory. We overcome these difficulties by using special
quadrature rules and by implementing the method using multiple CPUs as described
in section 3.1.2.

The remaining sections of the paper are organized as follows. In section 2, we
review the governing equations and boundary conditions of the model system. We de-
scribe the implementation of the SEM and BEM to solve the Navier–Stokes and Stokes
equations, respectively, and the SEM and PSEM to solve the advection-diffusion-
reaction in section 3. The computational results are presented in section 4. In sec-
tion 4.1, we establish the accuracy of the transport algorithms by comparison to an
analytical solution of the Taylor dispersion problem and use this solution to profile the
computational efficiency of the SEM and PSEM for high and low Péclet numbers. In
section 4.2, we compare the velocity profiles computed in two example microchannel
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geometries with the Navier–Stokes (SEM) and Stokes (BEM) solvers. The advection-
diffusion-reaction solutions in the two geometries are computed with the SEM and
PSEM for a range of Péclet and Reynolds numbers in section 4.3, and we evaluate the
amount of reaction product formed in each case. We show that the grid-free particle
method coupled to the BEM works better for the convection-dominated, irregular
geometry problems expected for microfluidic applications where the Reynolds num-
ber is assumed zero and the Péclet number is high. We demonstrate that the SEM
transport solver is better suited for cases in which diffusion plays a greater role and
the concentration gradients are not as steep.

2. Governing equations and boundary conditions. The motion of the fluid
is governed by the incompressible Navier–Stokes equations

Re

(
∂u

∂t
+ (u · ∇)u

)
= ∇2u−∇P, ∇ · u = 0,(2.1)

where u = (u1, u2) and ∇P are the fluid velocity and pressure gradient nondimen-
sionalized according to the length L, velocity U , and pressure Π = μU/L scales, and
Re = ρLU/μ is the Reynolds number with ρ and μ the density and viscosity of the
fluid, respectively. The indices 1 and 2 refer to the x- and y-directions in Cartesian
coordinates. The Reynolds number is typically small in microfluidic systems, and the
Stokes flow approximation of Re → 0 may be appropriate. We will investigate the
accuracy of this approximation in model geometries in section 4.2, where we solve the
time-dependent (2.2) and steady-state (2.3) Stokes equations:

∂u

∂t
= ∇2u−∇P, ∇ · u = 0,(2.2)

∇2u = ∇P, ∇ · u = 0.(2.3)

The transport and reaction of each concentration ci is governed by the dimensionless
advection-diffusion-reaction equation:

∂ci
∂t

+ (u · ∇)ci =
1

Pei
∇2ci +Ri,(2.4)

where Pei = LU/Di is the Péclet number for concentration ci with diffusion coefficient
Di, and Ri is the term describing the reaction kinetics of the concentrations.

The domains ΩA and ΩB used for the computations in sections 4.2 and 4.3 are
shown in Figure 2.1. The boundary of the domain is composed of three inlets and one
outlet connected by solid channel walls: ∂Ω = Γin ∪ Γwall ∪ Γout. Unattached solid-
walled obstructions may also be included within the domain, but such geometries are
not discussed here. No slip and no penetration boundary conditions for velocity are
imposed on the channel walls, while the no-flux boundary condition is enforced for
the concentrations:

On Γwall : u = 0,(2.5)

On Γwall :
∂ci
∂n

= 0.(2.6)

A Dirichlet condition is prescribed for both the velocity and concentrations between
the lower and upper boundaries of each inlet Γin. We assume that the outlet is long
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Γin

Γout

Γwall

Γin

Γin

ΩA

ΩB

u1(x2)

u1(x2)

u1(x2)

c1 =C0

c1 =C0

c2 =½C0

Γin

Γin

Γin

Γwall

Γout

Fig. 2.1. Computational domains. The advection-diffusion-reaction equation is solved in
straight (ΩA) and serpentine (ΩB) domains of length 18 with three inlets (Γin) and one outlet (Γout)
of unit width. A parabolic velocity profile and Dirichlet concentration condition are prescribed at the
inlets.

enough such that there is no tangential velocity along Γout, and the normal component
of the velocity follows the Neumann boundary condition:

On Γout : u · t = 0,
∂u · n
∂n

= 0,(2.7)

where n is the unit outward normal vector and t is a unit vector tangential to the
boundary. Early on, when the concentration front is far away from the outlet, the
concentrations satisfy the homogeneous Dirichlet boundary condition. Otherwise, the
Neumann boundary condition is used:

On Γout : ci = 0 or
∂ci
∂n

= 0.(2.8)

For advection-dominant problems, the concentration at the latter part of the channel
is zero until the concentration front arrives. Hence, for grid-based methods, such as
SEM, one can save computational time by using a smaller domain at early times,
and extend the domain as time increases. In this case, the homogeneous Dirichlet
boundary condition can be used at the end of the domain, such that extending the
domain can be accomplished by simply setting the concentration to be zero in the
extended part. Similarly for the PSEM, particles with an initial zero concentration
always exist beyond the front so that diffusion may occur downstream.

3. Numerical formulation and implementation. In this section, we describe
the methods implemented to compute the transport of substances in microchannel ge-
ometries. We use both grid-based and grid-free formulations for solving the Navier–
Stokes (2.1) and advection-diffusion-reaction (2.4) equations. All methods are pro-
grammed in FORTRAN 90 language and compiled with the PGI 7.2 compiler (The
Portland Group, Inc., Lake Oswego, OR). The programs are executed on 2.4 GHz
AMD Opteron processors with 2GB memory per CPU. The methods executed in
parallel also use the MVAPICH2 MPI software (The Ohio State University).

3.1. Velocity calculations. We compute the velocity solution using the grid-
based SEM for cases when Re > 0. When it is appropriate to assume that Re → 0,
a parallelized version of the grid-free BEM is used. We also use the SEM for Re = 0
for comparison.
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3.1.1. Spectral element method. For this implementation, the Navier–Stokes
equations (2.1) are discretized in time by the second-order rotational pressure correc-
tion scheme [45]. In the first substep, we solve for an intermediate velocity ũk+1

from

3ũk+1 − 4uk + uk−1

2Δt
+ 2Nk −Nk−1 − 1

Re
∇2ũk+1 +

1

Re
∇pk = 0,(3.1)

with boundary conditions (2.5) and (2.7), where Nk = (uk · ∇)uk is the nonlinear
term. In the second substep, the incompressibility of the velocity field is enforced by
projecting ũk+1 onto an incompressible space:

ũk+1 = uk+1 +∇φk+1,

∇ · uk+1 = 0,(3.2)

uk+1 · n = ũk+1 · n on ∂Ω.

Finally, the pressure is updated through

pk+1 = pk +
3Re

2Δt
φk+1 −∇ · ũk+!.(3.3)

Note that this approach can be adopted to solve the Stokes equations. This
is accomplished by solving the steady-state solution of the time-dependent Stokes
equations (2.2). The pressure correction scheme results in a number of Poisson-type
equations to be solved in each time step. These equations are solved using an SEM.
Let T = {Ωi} be a triangulation of the domain Ω. Then the spectral element space is

VN (T ) := PN (T ) ∩ V,(3.4)

where

PN (T ) :=
{
u ∈ C0(Ω) : u|Ωi ∈ PN (Ωi) ∀Ωi ∈ T

}
(3.5)

is the space of continuous functions whose restriction in each subdomain Ωi is a poly-
nomial of degree at most N , and V is the solution space of the differential equation.
The resulting linear system can be solved by a direct method or a preconditioned iter-
ative method. For equations resulting from the discretization of a time derivative, the
Jacobi preconditioner works very well. Otherwise, one may use a more sophisticated
preconditioner, such as the overlapping Schwarz preconditioner [39]. After testing, we
found that for the purposes of this paper, conjugate gradient with Jacobi precondi-
tioner works best when solving the velocity, and a direct solver with substructuring
technique works best when solving the pressure.

3.1.2. Boundary element method. When Re → 0, (2.1) reduces to the Stokes
equations (2.3). We use the following formulation of the BEM described by Halpern
and Gaver [16]. Taking Fourier transforms of (2.3) and applying Green’s theorem
yields the integral equation

uk(x) =

∫
Γ

fik(x,y)ui(y) dΓy −
∫
Γ

gik(x,y)τi(y) dΓy ,(3.6)

where the traction vector τi is defined as τi = σijnj , the product of stress tensor σij

and the unit vector nj normal to the boundary Γ directing away from the fluid, with
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indices i and j equal to 1 (x-direction) or 2 (y-direction). The traction and velocity
kernels, fik and gik, derived from the free-space Green’s function are

fik = − 1

π

(
(xi − yi)(xj − yj)(xk − yk)nj(y)

|x− y|4
)
,

(3.7)

gik = − 1

4π

(
δik log |x− y| − (xi − yi)(xk − yk)

|x− y|2
)
.

The integrals are evaluated over the positions y that describe the boundary Γ; the so-
lution vector uk(x) describes the velocity at the points x within the bounded domain.
In the limit as x approaches a point on the boundary surface, singularities arise in
the kernels fik and gik. Thus, the integral solution (3.6) becomes

Ckiuk(x) =

∫
Γ

fik(x,y)ui(y) dΓy −
∫
Γ

gik(x,y)τi(y) dΓy ,(3.8)

where x ∈ Γ. The tensor Cki accounts for stress discontinuities at the surface. If the
boundary is smooth at x, Cki = 1/2 δki, but Cki has a more complicated structure if
the domain has corners [5].

Equation (3.8) is solved numerically by discretizing only the boundaries into Nelm

three-node quadratic elements and evaluating the discrete version of the equation at
each node, where the velocity u and stress τ vectors are approximated along each
element m using quadratic polynomials and expressed in terms of a local arc-length
coordinate. Numeric evaluation of the integrand in (3.8) for each element using stan-
dard Gaussian quadrature techniques yields the linear system of equations, Fw = Gv,
where the vectors w and v contain the velocity and stress components. F and G are
2Nb × 2Nb and 2Nb × 3Nb matrices, respectively, where Nb is the number of bound-
ary nodes. Matrix G is larger than F to allow the end-points of each node to have
two distinct stress values because of two possible orientations of the normal vector,
specifically at corner points. Both the velocity and stress must be specified in the
x1- and x2-directions to avoid stress discontinuities at corner points; only two of
the four degrees of freedom, u1, u2, τ1, and τ2, are applied on other node points
[16].

The elements of F and G are computed using a 10-point regular Gaussian quadra-
ture if x does not coincide with one of the points on Γm, while a 10-point logarithmic
quadrature is used to evaluate the portions of the integrals in (3.8) that contain the
logarithmic singularity from gik. The kernel fik also contains a singularity, which are
the diagonal coefficients of F. These components are computed indirectly by imposing
a uniform flow in both the x1- and x2-directions using rigid body considerations as
described in Brebbia and Dominguez [5]. The known velocity and stress boundary
conditions are then applied, and the system is rearranged so that Az = b. In this
equation, A is a 2Nb×2Nb matrix, z is a 2Nb vector containing the unknown velocities
and stresses, and b contains the known stress or velocity information. The matrices
F and G are dense and need a large memory space to store element data. We paral-
lelize the code with MPI (message passing interface) and utilize the two-dimensional
block-cyclic data layout scheme, as described in ScaLAPACK Users’ Guide [4], to
distribute the large matrices F and G across a CPU grid so that the memory require-
ments on each CPU are reduced. This allows the use of the parallel ScaLAPACK
routine PDGESV from the Netlib Repository (http://www.netlib.org) to solve the
linear system of equations for z.
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The velocity vector at any internal point is computed after obtaining the boundary
solution by evaluating the discrete form of the integral equation (3.6):

uk(x) =

Nelm∑
m=1

[∫
Sm

fik(x,y)ui(y) dSm −
∫
Sm

gik(x,y)τi(y) dSm

]
.(3.9)

The internal velocity solution uk at a given position x requires a numerical integration
over all boundary elements, which can be computationally expensive for large domains
with dense node spacing. We have parallelized this computation by dividing the
boundary elements into the number of CPUs (Nc); each CPU performs the integration
for one group of elements. The discrete formulation (3.9) is then the summation of
the integrals over Nc CPUs.

3.2. Advection-diffusion-reaction calculations. We compute the concentra-
tion profile of substances in microchannel geometries using the SEM and the grid-free
PSEM.

3.2.1. Spectral element method. In the first method to solve advection-
diffusion-reaction, (2.4) is discretized in time by the second-order scheme

3ck+1
i − 4cki + ck−1

i

2Δt
+
(
u(tk+1) · ∇)

c∗,k+1
i =

1

Pei
∇2ck+1

i +R∗,k+1
i ,(3.10)

with boundary conditions (2.6) and (2.8) for the walls and outlet and a Dirichlet
condition at the inlet. The second-order approximations to the concentrations and
reaction terms at the current time step are

c∗,k+1
i = 2cki − ck−1

i , R∗,k+1
i = 2Rk

i −Rk−1
i ,(3.11)

which are solved with the SEM.
For an advection-dominant system, i.e., Pe � 1, the resultant linear system can

be solved efficiently using the Jacobi preconditioner. In this case, the work per time
step is proportional to the number of unknowns. Hence,

CPU time ∝ (h−1N)dΔt−1,(3.12)

where h is the typical size of an element, N is the polynomial degree, and d = 2 is
the space dimension. Moreover, the element size h is proportional to the slope of the
concentration front, Pe1/2, and the time step Δt is proportional to the element size h
due to the CFL condition. We note that the CFL condition is relevant here because
the advection part is treated explicitly. Hence, (3.12) becomes

CPU time ∝ NdPe(d+1)/2.(3.13)

3.2.2. Particle strength exchange. In the second method to solve (2.4), the
concentration field is discretized as a group of “particles,” a pointwise distribution
of the concentration continuum. Each of these particles is associated with a concen-
tration value for each of the reactants in the system and initialized in the domain
with uniform spacing h. Diffusion of the reagents is simulated by the exchange of
concentrations, or strengths, with neighboring particles as the particles are advected
through the domain by the prescribed flow condition.

D
ow

nl
oa

de
d 

03
/3

0/
15

 to
 1

29
.8

1.
21

7.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B854 HAMLINGTON, KWAN, FUJIOKA, CORTEZ, AND GAVER

The method is mathematically formulated by approximating the Laplacian term
∇2ci of the transport equation (2.4) with an integral operator Q (Q ∼ ∇2),

Qci(x) =
1

δ2

∫ [
ci(y)− ci(x)

]
Λδ(x− y) dy,(3.14)

which contains the diffusion kernel Λδ(x) = δ−2Λ(|x|/δ). This two-dimensional kernel
satisfies the moment condition

δ−2

∫∫
R2

x2
iΛδ(x) dx = 2(3.15)

to ensure that the integral operator approximates the Laplacian. There are many
choices for the diffusion kernel [12]; for the simulations described in section 4 we use
the fourth-order kernel derived by Cortez [9]:

Λδ(x) =
4

πδ2
(3 − r2) exp(−r2), r =

|x|
δ
.(3.16)

The parameter δ defines the size of the Gaussian-shaped function (3.16) and is chosen
relative to the initial particle spacing parameter h. The value of δ must be sufficiently
large so that the solution spreads between the particles; however, δ much greater
than the interparticle distance will artificially smooth the concentration. For the
simulations in this study we simply use δ = h. For precise conditions that ensure
convergence of the method, see [9].

Using the approximation (3.14), equation (2.4) is decoupled into a set of dis-
cretized ODEs that describe the convection and diffusion-reaction of each particle
p:

d

dt
xp(t) = u(xp(t)),(3.17)

d

dt
ci(xp, t) =

1

Pei

h2

δ2

Np∑
j=1

[
ci(xj , t)− ci(xp, t)

]
Λδ

(
xp(t)− xj(t)

)
+Ri.(3.18)

The ODEs are solved numerically with the Livermore Solver for Ordinary Differential
Equations (LSODE; available from Netlib), which utilizes Adams methods (predictor-
corrector) for nonstiff cases and backward differentiation methods in the stiff case [38].
Although LSODE is a serial solver, we have parallelized a portion of the calculation
using MPI. Because the computation of the right-hand side of (3.18) for each particle
is independent and requires only information from the previous time step, the particles
are divided among CPUs to perform this computation. The result from each CPU is
then broadcast to the other CPUs, and the set of ODEs is solved for the current time
step. The particle velocity is computed from either the steady-state BEM solution
or the time-dependent Navier–Stokes solution solved with the SEM. In the case of
a steady-state velocity field or if the velocity reaches steady state quickly, the SEM
or BEM velocity is computed beforehand on a grid and interpolated at each particle
location at subsequent time steps.

A Neumann boundary condition (2.6) is imposed on the domain walls to create an
insulated boundary. This condition is enforced by reflecting particles located within
a specified distance of the walls symmetrically about the boundary to the outside of
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the domain. The concentration values of the new particles equal those of the reflected
ones and are included in the sum of (3.18). The inclusion of the additional “image”
particles increases the number of operations required, but their use decreases the error
such that a larger spacing parameter h may be used, thus reducing the total number
of particles in the simulation and computational time required overall.

For the simulations carried out with this method, particles are regularly spaced
at distance h initially, with fluid flowing from left to right. Particles continually
advect into the domain following (3.17) from upstream with the prescribed initial
concentration held constant until entering the PSEM computation at x1 = 0. Particles
with zero concentration are added directly downstream of the concentration front
throughout the calculation to allow diffusion downstream and to fill in the transverse
space between the higher velocity particles and the walls caused by the parabolic
velocity profile. Particles are no longer included in the computation after exiting the
end of the domain. Redistribution of particles to the initial spacing h is necessary if
the particles become highly disorganized such that the interparticle distance becomes
much smaller or greater than h. For example, recirculation regions or stagnation
points reduce the density of particles in portions of the domain while increasing the
particle density in other areas. When particle redistribution is necessary, the particles
are replaced with a new set of regularly spaced particles where the concentration values
are interpolated from the concentration values at the previous particle positions. The
concentration at the new location x0

p is obtained from the equation

ci(x
0
p) =

Np∑
j=1

ci(xj)φδ(x
0
p − xj)h

2,(3.19)

where the blob function φδ(x) = δ−2φ(|x|/δ) satisfies the condition ∫∫
R2 φδ(x) dx. We

use the following blob function derived from (3.16) for the interpolation:

φδ(x) =
1

2πδ2
(3− r2) exp(−r2), r =

|x|
δ
.(3.20)

The δ used for the interpolation blob (3.20) is not required to be identical to δ in the
PSEM equations (3.16) and (3.18), but in our computations we use the same δ.

This interpolation scheme introduces an approximate 1% loss of mass near the
boundaries in our calculations because the particle concentration is not allowed to
spread beyond the imposed boundary. To conserve mass, we can again utilize image
particles and interpolate the concentration on these particles outside the domain.
The concentration is then distributed to the boundary particles and the reciprocal
particles within the domain. While this technique is relatively simple for straight
boundaries, the implementation for an irregularly bounded domain such as ΩB is
much more complicated because regularly spaced particles may not exist directly on
the boundary.

One must carefully choose the appropriate time for redistribution by considering
the error caused by particle disorganization and the smoothing error introduced with
each interpolation: redistributing the particles too frequently contributes to unnec-
essary interpolation error, while infrequent particle redistribution in the case of an
irregular flow field can lead to large errors. For the computations in section 4.3, we
base the criterion for redistribution on the distance to the nearest neighbor of each
particle. When this distance is smaller than h/2 or greater than 2h for more than
a set percentage of the total number of particles in the computation, redistribution
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occurs. The percentage is decided from “a priori” knowledge of the flow map, and for
the computations in this paper we use 7–17%. A similar criterion based on a mea-
sure of distortion is described in [17]. See [11, 33, 34] for further details on particle
redistribution schemes.

4. Results and discussion of the advection-diffusion-reaction schemes.
We first demonstrate the accuracy and efficiency of the SEM and PSEM for the
advection-diffusion equation by solving the Taylor–Aris dispersion problem. The com-
putational solution from each method is compared to analytical solutions valid for
small and large Pe. Upon establishing accuracy of the two methods, we solve this
problem for a range of Pe to elucidate regimes at which either method is best suited
in terms of computational efficiency. We then investigate the difference between the
zero Re steady-state velocity field solution computed with the BEM Stokes solver and
the Navier–Stokes solution computed with the SEM for varying Re in straight and
serpentine geometries. We solve the advection-diffusion-reaction equation in these
geometries for a range of Pe and Re and determine the amount of reaction product
formed to compare the two channel configurations.

4.1. Validation of method: Taylor–Aris dispersion.

4.1.1. Problem definition. To verify the validity of the parallel PSEM with
image particles and the SEM implementation, we solve two-dimensional Taylor–Aris
dispersion [37, 1, 24, 44] wherein a solute of concentration c0 with diffusivity D is
introduced at x1 = 0 into fully developed laminar flow between two infinite parallel
plates separated by a distance 2a. The channel centerline is located at x2 = 0.
Here, in order to test the transport solvers only, we prescribe the velocity u1(x) =
1.5U(1 − (x2/a)

2), u2(x) = 0, where U is the mean axial velocity. Symmetry about
the centerline permits modeling of the half domain 0 ≤ x2 ≤ a. For this scenario the
governing equation,

∂c

∂t
+ 1.5U

(
1−

(x2

a

)2
)

∂c

∂xi
= D

(
∂2c

∂x2
1

+
∂2c

∂x2
2

)
,(4.1)

is subject to the following initial and boundary conditions representing a step-function
input between insulated walls:

c(x1 > 0, x2, t = 0) = 0,

c(x1 ≤ 0, x2, t ≥ 0) = c0,
(4.2)

c(x1 → ∞, x2, t) = 0,

∂c

∂x2

∣∣∣∣
x2=0

=
∂c

∂x2

∣∣∣∣
x2=a

= 0.

From Kolev and van der Linden [24], the analytical solution to (4.1) is

ca(x1, x2, t) =
1

2
erfc

(
x1 − Ut

2
√
tDeff

)

−Ua2

8D

(
− 7

30
+

x2
2

a2
− x4

2

2a4

)
1√

πtDeff

exp

(−(x1 − Ut)2

4tDeff

)
,(4.3)

where Deff is the effective diffusivity

Deff = D +
2U2a2

105D
.(4.4)
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This solution is valid only at large times t � θD, where θD = a2/D is a characteris-
tic transverse diffusion time, and is thus used only for small Pe = aU/D. At larger
Péclet numbers, a very long channel length is required to reach the long-time solu-
tion (4.3). Thus, for large Pe we compare the computed solution to the short-time
average concentration [44]

cma(x1, t) =
1

2

∫ 1

−1

c(x1, x2, t) dx2

(4.5)

≈
⎧⎨
⎩

1, x1 ≤ 0,√
1− x1/(1.5Ut), 0 < x1 ≤ 1.5Ut,

0, x1 > 1.5Ut.

4.1.2. Computational settings. With c0 = a = U = 1, we compute the
solution to the Taylor dispersion problem and compare the solution c(x1, x2, t) of
both methods to (4.3) for Pe = [10, 50, 100] at time T = 5θD and x1 position L = UT
using the absolute and relative L2-errors Δc and δc:

ΔcL2

∣∣
x1=L,t=T

=

√∫ (
ca(x2)− c(x2)

)2
dx2,

(4.6)

δcL2

∣∣
x1=L,t=T

=
ΔcL2√∫

(ca(x2))2 dx2

.

For Pe = [500, 1000, 5000], we compare the PSEM and SEM mean concentration
solutions cm(x1, t) to (4.5) at time t = 10 and position x1 = 10 using the absolute
and relative errors Δcm and δcm:

Δcm =
∣∣cma − cm

∣∣
x1=10,t=10

,
(4.7)

δcm =

∣∣∣∣cma − cm
cma

∣∣∣∣
x1=10,t=10

.

The PSEM solution is obtained with particle spacing h = 0.1 for the low Pe set
and h = 0.05 for the high Pe set, and δ = h. We use a smaller h for the set of larger
Pe to resolve the steep concentration gradient and avoid oscillations at early time.
Particles within a distance of 0.2 of the walls are mirrored about the boundary to
enforce the boundary conditions. Redistribution is not needed for this case because
the particles do not become irregularly spaced in this parabolic flow. The time step
size Δt is determined adaptively by the ODE solver and increases as Pe increases.
To compute the SEM solution, a regular triangular grid is used with uniform triangle
area h2/2, and the polynomial degree is N = 6. The time step is controlled by the
CFL condition, which is dependent on the element size h (see section 3.2.1 for how h
and Δt change with respect to Pe). Note that h here refers to the size of the triangles.
With polynomial degree N there are around (N/h)2 grid points per unit area. We
use h = 1, Δt = 1e−2 for Pe = [10, 50, 100]; h = 0.2, Δt = 2e−3 for Pe = [500, 1000];
and h = 0.1, Δt = 1e−3 for Pe = 5000.

4.1.3. Comparison to analytical solution. We show the error in the com-
puted solutions and the computational time required on the same single processor in
Table 4.1. The clock time for the PSEM computation on 8 processors is also included.
The processor efficiency E = TS/(TNcNc) of the computations is 94%, where TS is the
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Table 4.1

Comparison of the PSEM and SEM solutions to Taylor–Aris dispersion analytical solutions at
large times for low Pe (A) and small times for high Pe (B). The absolute and relative errors (4.6),
(4.7) and the computational clock time required TNc for Nc = 1 and Nc = 8 are shown.

(A) Long-time ΔcL2 δcL2 TNc=1 TNc=8

SEM PSEM SEM PSEM SEM PSEM PSEM
Pe = 10

t = x1 = 50
1.18e−2 4.94e−3 2.36% 0.99% 00:00:19 04:24:12 00:35:38

Pe = 50
t = x1 = 250

5.80e−3 1.65e−3 1.16% 0.33% 00:06:19 78:17:07 10:24:37

Pe = 100
t = x1 = 500

5.60e−3 1.66e−3 1.11% 0.33% 00:24:44 251:42:17 33:28:17

(B) Short-time Δcm δcm TNc=1 TNc=8

SEM PSEM SEM PSEM SEM PSEM PSEM
Pe = 500

t = x1 = 10
5.87e−3 4.44e−3 1.02% 0.83% 00:01:20 00:07:16 00:00:58

Pe = 1000
t = x1 = 10

2.95e−3 1.82e−3 0.51% 0.32% 00:01:19 00:04:46 00:00:38

Pe = 5000
t = x1 = 10

6.03e−4 8.15e−5 0.10% 0.01% 00:14:16 00:03:08 00:00:25

clock time required for one processor and TNc is the clock time required for Nc pro-
cessors. In section A of the table, the solutions are compared to the long-time Taylor
dispersion solution (4.3). In section B, the solutions are compared to the short-time
mean solution (4.5). The error between the computed solutions and analytical so-
lutions decreases with increasing Péclet number for both methods. The error is less
than 1% for the PSEM and less than 2% for the SEM in all cases except Pe = 10. The
clock time required by the SEM to compute the solutions at Pe = 10, 50, and 100 is
negligible compared to the time required by the PSEM. We note that the length of the
domain increases with time in both methods, and the PSEM requires the continual
addition of particles such that the number of ODEs to be solved also increases with
time. At high Pe, the PSEM computation time decreases with increasing Pe, while
the SEM time increases by 90% for Pe = 5000. The PSEM clock time is 4.5 times
faster than the SEM at Pe = 5000 on a single processor.

4.1.4. Comparison of computational time. We have shown that the SEM
and PSEM accurately compute advection-diffusion. To fairly compare the timing of
the two methods, we compute the solution to the Taylor–Aris dispersion problem to
T = 100 for Pe = [10, 50, 100, 500, 1000, 5000]. The computation parameters are the
same as in section 4.1.2 except for the PSEM particle spacing. We use h = 0.1 for all
cases so that the number of particles is constant, although the larger spacing results
in a small loss of accuracy at the highest Pe. We show in Figure 4.1 that the CPU
clock time TNc decreases with Pe using the PSEM, while the time required increases
with Pe using the SEM. We note that the sharp jumps in the SEM plot are due to
the changes in the number of elements and time step size in the computation. A finer
mesh and smaller time steps are required for the SEM due to stability issues and
cannot be held constant. From this figure and the time results in Table 4.1, we see
that in terms of computational time the SEM is a suitable solver choice for Pe < 500,
while the PSEM is appropriate for high Pe, convection-dominated problems. For the
advection-diffusion-reaction computations in section 4.3 we use the PSEM only for
Pe = 5000 and both methods for Pe = 50 and Pe = 500 to compare the solutions.
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Fig. 4.1. The CPU clock time in hours required for the PSEM and SEM to compute the Taylor–
Aris dispersion solution to T = 100 is plotted versus the Péclet number. We use the same type of
processor in each case; Nc is the number of CPUs.

4.2. Effect of Re on microchannel flow field. To determine the variations in
the flow field due to Reynolds number, we compute the SEM Navier–Stokes velocity
solution for Re = [0.01, 0.1, 1, 10, 50] and the SEM and BEM Stokes velocity solution
(Re = 0) in the two geometries ΩA and ΩB shown in Figure 2.1. The variation in Re
is assumed to be a change in the fluid property as the geometry and velocity remain
constant. A parabolic velocity profile with maximum velocity umax = 1 is prescribed
at each inlet. For the BEM, the boundary of domain ΩA is discretized into 1076 3-node
elements (node spacing = 0.025) and requires 46 seconds to compute the boundary
Stokes solution using two processors. Each internal velocity point calculation (3.9)
computed with 30 Gaussian points for this configuration requires 2.91e−3 seconds on
a single CPU; the calculation is nearly 100% efficient with increasing processors. The
boundary of domain ΩB is discretized into 1277 elements and requires 67 seconds to
compute the boundary solution on two processors, and each internal velocity point
calculation for this configuration requires 3.44e−3 seconds on a single CPU. For the
SEM computation, domains ΩA and ΩB are discretized into 9372 and 15121 triangles,
respectively. Note that very small triangles are used along the curved parts of the
boundary to make sure that the same domains as in the BEM are used. This results
in the large number of triangles, a very small time step due to the CFL condition, and
low polynomial degrees in the computations. Polynomial degree N = 2 is used for
the velocity and N = 1 is used for the pressure. The SEM computation is performed
using the same CPU as the BEM. For the Re = 0 case, the computation required 91
seconds for ΩA and 213 seconds for ΩB.

The physical time t required for the velocity to reach steady state and the total
computation time TNc required are presented in Table 4.2. For Re ≤ 1, the velocity
solution reaches steady state within a single unit of time. The physical time and
the computation time to reach steady state decrease with Re. We note that the
Re = 0.1 solution reached steady state slightly faster than the Re = 0.01, resulting
in fewer iterations and a shorter CPU time. The serpentine domain ΩB requires
both longer physical and computational time to reach steady state for Re > 1. The
computational times of the BEM solution and the steady-state SEM solutions for
Re < 1 are comparable; all are completed in about one minute.

In Figure 4.2 we plot the relative maximum difference Δurel between the velocity
magnitude at Re = 0 and the steady-state velocity for Re > 0 in both domains,

D
ow

nl
oa

de
d 

03
/3

0/
15

 to
 1

29
.8

1.
21

7.
20

4.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B860 HAMLINGTON, KWAN, FUJIOKA, CORTEZ, AND GAVER

Table 4.2

The physical time t and the CPU time TNc (hr:min:sec) for the SEM Navier–Stokes velocity
solution to come to steady state in domains ΩA and ΩB for Re = [0.01, 0.1, 1, 10, 50].

Domain Re = 0.01 Re = 0.1 Re = 1 Re = 10 Re = 50

ΩA t 0.07 0.06 0.44 2.04 5.49

TNc 00:00:32 00:00:20 00:01:37 00:05:22 00:14:04

ΩB t 0.07 0.07 0.44 2.37 11.71

TNc 00:01:02 00:00:55 00:04:09 00:15:30 00:55:54

0
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Δ
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Stokes Solver
(Re = 0)

Fig. 4.2. Difference Δurel between the Navier–Stokes steady-state velocity solutions computed
for Re > 0 with the SEM and the Stokes velocity solution (Re = 0) computed with the BEM and
SEM in geometries ΩA and ΩB.

computed as

Δurel = max
x∈Ω

∣∣∣∣ |uRe>0(x)| − |uRe=0(x)|
|uRe=0(x)|

∣∣∣∣ ,(4.8)

where uRe>0 and uRe=0 are the velocity profiles solved with the Navier–Stokes equa-
tion (2.1) and Stokes equation (2.3), respectively. We exclude the boundary points
in the calculation of error where u = 0, and internal velocity points are a minimum
distance of 0.05 from the wall. The relative maximum difference Δurel between the
SEM and BEM solutions for Re = 0 are Δurel = 0.37% for ΩA and Δurel = 0.25% for
ΩB. As clearly shown in Figure 4.2, the difference between the two solutions decreases
with Re and is less than 1% for Re < 1 in both the straight and serpentine geometries,
indicating that the BEM solution may be used for such cases. In the straight domain
ΩA, the differences between the Re = 0 and Re > 0 velocity fields occur in the region
where the three-inlets converge into the main channel. The largest difference occurs
at Re = 50 in the serpentine geometry.

In Figure 4.3, we show the velocity vector field in domain ΩB for Re = 0 and
Re = 50. For the higher Reynolds number case, centrifugal forces cause the maximum
velocity to move away from the channel center towards the walls. This shift may en-
hance the combination of two substances by forcing the lower streams into the vicinity
of the upper streams. In three-dimensional channels, the wavy walls generate Dean
vortices that promote cross-sectional mixing. This phenomenon has been applied in
the development of microfluidic mixers [20, 19, 7, 43].
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Re = 0

Re = 50

Fig. 4.3. The steady-state velocity streamlines for domain ΩB with Re = 0 and Re = 50.

4.3. Advection-diffusion-reaction in microchannel domains.

4.3.1. Problem definition. We investigate the transport-reaction between two
concentrations in the two domains ΩA and ΩB and compare the amount of product
formation. The steady-state velocity profiles computed in section 4.2 are used to solve
the advection-diffusion-reaction equation (2.4) for the concentration of three species:
an antibody c1, an analyte c2, and antibody-analyte complex c3. A reversible reaction
occurs between c1 and c2 that is described by the reaction terms

R1 = R2 = −rfc1c2 + rdc3, R3 = rf c1c2− rdc3,(4.9)

where rf = 5.2 and rd = 0.1872 are the dimensionless formation and dissociation
parameters, respectively. These specific values describe the reaction between the
analyte fluorescein and its antibody. The three species are assumed to have identical
Péclet numbers for this calculation, and the initial concentration conditions are set
as shown in Figure 2.1 with C0 = 1. We compute the average c3 relative to the total
amount of c2 in the outlet region A at time t = 20:

c̄3 =

∫
A
c3 dx∫

A
(c2 + c3) dx

, A = {x ∈ Ω : 15.2 ≤ x1 ≤ 18}.(4.10)

While the path length the fluid travels in ΩB is longer due to the sinuous geometry,
the two domains are of equal geometric length in the x-y coordinate system.

4.3.2. Computational settings. We use the PSEM formulation for the case
of Pe = 5000 and compare both methods at Pe = 50 and Pe = 500. We complete
the simulation for Re = [0, 0.01, 0.1, 1, 10, 50]. We note that the changes in Re and
Pe are based upon a change in a fluid property (density or viscosity) or concentration
property (diffusivity) since the velocity and geometry length scale are held constant
for all cases.
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The steady-state velocity field for each Re case is obtained from the SEM or BEM
and used in the transport calculation. For the PSEM computations, the velocities at
the particle locations are interpolated from this field at every time step to advance
the particles. We use h = 0.05 and a mirror particle distance of 0.2. For ΩA, the
particles are redistributed every two time units as determined by the interparticle
distance criterion described in section 3.2.2. This time interval corresponds to the
time when more than 7% of the particles are at a distance smaller than h/2 or greater
than 2h to the nearest particle. For ΩB, redistribution occurs at every one time unit,
corresponding to the time when more than 17% of the particles are out of the specified
distance. More frequent redistribution created an unacceptable smoothing error due
to the interpolation in this geometry. The SEM is solved with polynomial degree
N = 2 for Pe = 50 and N = 4 for Pe = 500.

4.3.3. Simulation results. The average time steps used for the PSEM and the
time steps determined by the CFL condition for the SEM are shown in Table 4.3.
The average time step is reported for the PSEM because it is determined adaptively
by the ODE solver. The results for Re < 0.1 are not shown as they are similar to the
results for Re = 0.1.

Table 4.3

Time step Δt used for PSEM and SEM computations in ΩA and ΩB . The time step is constant
for the SEM in each case; the average is given for the PSEM.

Δt Pe = 50 Pe = 500 Pe = 5000

SEM PSEM SEM PSEM PSEM

ΩA All Re 5e−3 2e−3 1e−3 1e−2 1e−2

Re = 50 2e−3 3e−3 4e−4 4e−3 4e−3

ΩA Re = 10 5e−3 3e−3 5e−4 8e−3 1e−2

Other Re 5e−3 3e−3 1e−3 8e−3 1e−2

The computational times for both methods are shown in Table 4.4. We see the
same trend as discussed in section 4.1.4: the clock time required for Nc processors
(TNc) increases with increasing Pe for the SEM, while the opposite is true for the
PSEM. At Pe = 50 the SEM computation is completed in 1–2% of the time required
by the PSEM. The SEM computes the solutions about two times faster than the PSEM
on a single processor for Pe = 500. Increasing the number of processors reduces the
computational time of the PSEM; the processor efficiency E = TNc=1/(TNcNc) of
the computations is 94%. The PSEM computational time decreases for Pe = 5000.
We did not compute this case with the SEM because of the fine spatial and time
resolution, and thus long CPU time, required. For the PSEM times given, 25% of
the computation time for ΩA and 40% of the computation time for ΩB is spent
interpolating the particle velocities, while the remainder is spent computing particle
concentrations. Once the Navier–Stokes solution reaches steady state, the SEM does
not require this additional step because the steady-state velocity is always known at
the grid points.

The averaged product concentration c̄3 (4.10) is shown in Table 4.5. First, com-
paring the PSEM and SEM methods in both geometries at Pe = 50 and Pe = 500,
we find that the overall relative difference in c̄3 is 0.5% at Pe = 50 in ΩA, 2.7–2.8%
at Pe = 50 in ΩB, 0.2%–1.0% at Pe = 500 in ΩA, and 0.6–1.2% at Pe = 500 in ΩB,
with the SEM providing slightly larger values. There is little variation in c̄3 as a
function of Re at Pe = 50 and Pe = 500 in both geometries indicating that diffusion
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Table 4.4

We show the computational clock time TNc for each case, where Nc is the number of processors
used. The parallel PSEM scales at 94% efficiency with Nc = 8.

ΩA

Pe = 50 Pe = 500 Pe = 5000

SEM PSEM SEM PSEM PSEM

Re TNc=1 TNc=1 TNc=8 TNc=1 TNc=1 TNc=8 TNc=1 TNc=8

50 00:15:52 29:27:12 03:55:00 03:45:38 07:23:03 00:58:55 05:16:13 00:42:03

10 00:16:45 31:55:06 04:14:40 03:34:13 06:54:34 00:55:08 04:55:10 00:39:15

1 00:15:48 32:29:11 04:19:12 03:34:30 06:43:00 00:55:35 04:58:33 00:39:42

0.1 00:14:33 32:35:12 04:20:00 03:48:07 06:58:55 00:55:42 04:54:09 00:39:07

ΩB

Pe = 50 Pe = 500 Pe = 5000

SEM PSEM SEM PSEM PSEM

Re TNc=1 TNc=1 TNc=8 TNc=1 TNc=1 TNc=8 TNc=1 TNc=8

50 01:34:50 44:06:17 05:51:54 12:44:42 20:38:48 02:44:44 19:32:52 02:35:58

10 00:48:44 49:59:59 06:38:56 10:33:10 12:19:43 01:38:22 10:02:29 01:20:07

1 00:49:03 53:07:59 07:03:56 05:59:05 11:43:07 01:33:30 09:38:48 01:16:58

0.1 00:50:18 53:03:43 07:03:22 05:54:26 11:50:31 01:34:29 09:43:48 01:17:38

Table 4.5

The average c̄3 relative to the total amount of c2 in the outlet region A at time t = 20 (4.10) is
computed for domains ΩA and ΩB at a range of Reynolds and Péclet numbers. Product formation
decreases with increasing Pe, with little variation over Re.

Pe = 50 Pe = 500 Pe = 5000

Domain Re SEM PSEM SEM PSEM PSEM

ΩA 50 0.934 0.930 0.853 0.862 0.465

10 0.934 0.930 0.858 0.860 0.475

1 0.934 0.930 0.860 0.861 0.478

0.1 0.934 0.930 0.860 0.862 0.479

ΩB 50 0.928 0.902 0.904 0.894 0.754

10 0.933 0.908 0.898 0.892 0.715

1 0.933 0.908 0.898 0.893 0.714

0.1 0.933 0.908 0.897 0.893 0.714

dominates over variation in the convection field as would be expected when Pe � 1.
The differences are larger at Pe = 5000. We note a slight increase in product with
decreasing Re in ΩA at Pe = 500, 5000 and ΩB at Pe = 50. Conversely, the prod-
uct formation increases with increasing Re in ΩB at Pe = 500, 5000. Decreasing Re
enhances diffusive mixing of the two reacting species, while geometries such as the
sinuous channel increase inertial effects that may also increase mixing at higher Re.

As Pe is increased, the reaction product c̄3 decreases in both geometries. How-
ever, the serpentine geometry ΩB produces more c̄3 than the straight domain ΩA,
particularly when Pe = 5000. At this Pe, the averaged product concentration c̄3 is
62% greater in ΩB than in ΩA at Re = 50; the product formation is 50% greater in
ΩB than in ΩA at lower Re. This indicates that at the high Péclet numbers augment-
ing the geometry of the microchannel domain to encourage varying flow patterns can
enhance product formation.
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4.4. Further comments. In the previous sections, we demonstrate the use of
the BEM, PSEM, and SEM to simulate advection-diffusion-reaction processes in mod-
els of microchannels. We demonstrate the validity of the methods by comparing sim-
ulation results to the analytical solutions of the Taylor–Aris dispersion problem. The
error between the analytical and computed solutions is small and decreases with in-
creasing Pe. We show that at small Pe, the SEM computes the solution faster due
to the increased diffusion, while the PSEM requires smaller (and hence more) time
steps to solve the ODEs in this regime. Conversely, the PSEM is faster at large Pe
because the method does not require the CFL condition. The BEM Stokes solution
for the velocity field is appropriate for Re < 1, which is generally true in microfluidic
devices. This method is suited to complex domains because an internal grid is not
required to find the solution. The internal velocity at any point may be computed
as a postprocessing step. In steady flow, we compute the internal velocity only once
at the SEM mesh points or at a high density of internal points so that the veloc-
ity at individual particle positions can be interpolated for the PSEM. On the other
hand, if it takes considerable time for the velocity to reach steady state because Re
is large or the domain geometry is complicated, the SEM can compute the velocity
field on the fly using the same triangulation as for the concentration field. This is
advantageous because in this case there would be no need to store the velocity at each
time step. Analysis of reaction product formation in straight and serpentine geome-
tries at a range of Pe and Re shows that improvements in the geometry to promote
mixing of two species encourage the reaction at the high Pe and low Re expected in
microchannel flows.

While we have shown that the implementations of the methods described in this
paper accurately compute the advection-diffusion-reaction equation in microchannel
geometries, further improvements may be made. The SEM computations can be
improved in several ways. First, in the computations in sections 4.2 and 4.3, very
small triangular elements are used along the curved portions of the boundary. This
ensures that the boundary is the same as the piecewise-linear one assumed for the
BEM. This results in an increased number of triangular elements and very small
time steps, which increase the computational time. In practice, one could use bigger
triangular elements by allowing curved triangles along the boundary. Second, the
SEM computations are not parallelized. We found that most of the CPU time was
spent calling the matrix-vector multiplication function DGEMV in the BLAS library
(Netlib Repository, http://www.netlib.org). We attempted a simple parallelization by
using the multithread version of the BLAS library (Intel Math Kernel Library), but
saw no improvement with eight threads compared to a single processor. To achieve
an efficient parallelization of the SEM code, we could develop a parallel algorithm
of the SEM by recomposing the existing code. Compared with the SEM, the PSEM
algorithm is simple, and therefore it is easier to distribute the workload over multiple
CPUs.

Finally, for convection-dominated applications, a large part of the domain has
zero concentration at early time. One could use a smaller domain with zero boundary
condition at the outlet at early time. In the PSEM computations, this strategy is
already employed by putting particles only near the inlets initially. In the SEM
computations, the strategy is employed in section 4.1 but not in section 4.3. In a
general domain, this strategy would require more involved postprocessing procedures
for the generated mesh.

We note that the BEM-PSEM implementation is formulated to compute advec-
tion-diffusion-reaction in complex domains with internal obstacles at high Pe, which
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we did not show in this paper. The implementation may be extended to three dimen-
sions and may be modified to include physico-chemical and/or fluid-structure inter-
actions. We mentioned the drawbacks of the PSEM in section 1.2: particle distortion
due to the flow map and enforcement of boundary conditions. The redistribution
and interpolation scheme described in this paper caused a slight loss of mass at the
boundaries. We could ameliorate this by using a different interpolation scheme or by
a using one-sided blob that covers only the space within the boundary in (3.19). The
use of image particles as described in section 3.2.2 to deal with enforcing the no-flux
condition on the channel walls is time-consuming and presents difficulties with inter-
nal obstacles. This method could be refined for efficiency, and we could incorporate
one-sided blobs for the particles on or near the boundaries. We note, however, that to
achieve an accuracy level similar to the results in section 4.1.3 without image parti-
cles the particle spacing h must be reduced to h = 0.025, requiring a large increase in
the number of particles. Additionally, the code could be further optimized for faster
processing time, such as by implementing a parallel ODE solver.

5. Conclusion. We have presented a combination of grid-based and grid-free
methods that are useful for computing advection-diffusion-reaction in microchannel
geometries for varying fluid and transport conditions. The grid-free methods are
particularly advantageous for investigating transport in the convection-dominated,
irregular geometry problems expected for microfluidic applications where the Reynolds
number is near zero and the Péclet number is very high. Both the PSEM and the BEM
may be adapted to problems with moving boundaries, which could be employed to
model droplets or bubbles in microchannels. Together, these computational tools may
be applied to the design and optimization of microscale channels for use in antibody-
based sensors and other microfluidic applications, which would significantly accelerate
the development of such devices.
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