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Abstract. We focus on the problem of evaluating the velocity field outside a solid ob-
ject moving in an incompressible Stokes flow using the boundary integral formulation.
For points near the boundary, the integral is nearly singular, and accurate computation
of the velocity is not routine. One way to overcome this problem is to regularize the
integral kernel. The method of regularized Stokeslet (MRS) is a systematic way to reg-
ularize the kernel in this situation. For a specific blob function which is widely used,
the error of the MRS is only of first order with respect to the blob parameter. We prove
that this is the case for radial blob functions with decay property φ(r)=O(r−3−α) when
r→∞ for some constant α>1. We then find a class of blob functions for which the lead-
ing local error term can be removed to get second and third order errors with respect
to blob parameter. Since the addition of these terms might give a flow field that is not
divergence free, we introduce a modification of these terms to make the divergence
of the corrected flow field close to zero while keeping the desired accuracy. Further-
more, these dominant terms are explicitly expressed in terms of blob function and so
the computation time is negligible.

AMS subject classifications: 76D07, 65N99
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1 Introduction

Incompressible Newtonian Stokesian fluid flows, governed by the Stokes equations
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0=−∇p+µ∆u+f,

0=∇·u

have been widely used to study biological problems, for example, micro-organism loco-
motions [11], bioconvection [12], and effective viscosity of suspensions [7, 8]. Here, u is
the fluid velocity, p the pressure, f the external force or the body force, and µ the viscosity
of the fluid. The equations are an approximation of the Navier-Stokes equations in the
low Reynolds number regime.

When an object moves in and interacts with Stokes flow, the velocity of the exterior
flow can be represented in terms of boundary integrals [13]. The boundary integral for-
mulation has the advantage of reducing the full three-dimensional problem of solving for
fluid flow to a two-dimensional problem of evaluating surface integrals. In the case of a
rigid body immersed in a Stokes flow, we can represent the velocity as a first-kind inte-
gral equation with density equal to the traction on the surface and kernel the Stokeslet,
the fundamental solution of the Stokes equations in free-space. The velocity can then be
computed by numerically evaluating the surface integral. For evaluation points away
from the surface, the integrand is smooth and slowly varying and we can use standard
quadratures with high accuracy. But for points close to the surface, the integrand be-
comes nearly singular and accurate computation of the velocity is not routine. There are
different approaches to this problem. One commonly used approach is to regularize the
kernel.

The method of regularized Stokeslet (MRS), originally introduced by Cortez [5], is a
systematic approach to regularize the kernel. The formulation is based on a free-space
solution of the Stokes equation with concentrated but smooth forcing of the form

f(x)=gφǫ(x),

where f is the force, g is a constant vector, φǫ(x) is a radially symmetric smooth ap-
proximation to the Dirac delta function, and ǫ is the blob parameter that controls the
concentration of the force. In our work, we only consider blobs of the form

φǫ(x)=
1

ǫ3
φ
(x

ǫ

)

, (1.1)

where φ(x) is any radially symmetric function having integral 1 over R
3. The velocity

computed by the MRS is automatically divergence free. A boundary integral equation
of the first kind based on a regularized Stokeslet together with the trapezoidal quadra-
ture discretization was studied in [6]. In that work, the authors proved and showed by
numerical examples that for the blob of the form (1.1) where

φ(x)=
15

8π(|x|2+1)7/2
, (1.2)
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the error associated with the regularization (referred to as regularization error in this
paper) was bounded by O(ǫ2) for evaluation points away from the surface but bounded
by only O(ǫ) for points close by. This means that in order to improve the accuracy of the
numerically evaluated velocity, we need small values of ǫ. As a result, we need a finer
grid on the surface and that makes it expensive to compute the velocity. This raises a
question of how to improve the regularization error, either by using appropriate blobs or
by other methods while ensuring that the computed velocity field is divergence free. The
purpose of this paper is to answer this question to some extent.

The structure of our paper will be as follows. In Section 2, we discuss the regulariza-
tion error of the MRS for a general blob. As detailed in Theorem 2.1, we can construct
blobs so that the far field error, the regularization error for points away from the surface,
is equal to O(ǫα) with α as large as we want. We can even make the far field error exactly
zero by using appropriate compact support blobs. In contrast, we should only expect
O(ǫ) near field error because Theorem 2.2 says that, for almost all radially symmetric
blobs, the sup-norm of the regularization error cannot be better than O(ǫ). However, the
leading order term of the regularization error can be isolated and removed to improve
the convergence rate of the near field. In Section 3, inspired by the work of Beale [2, 3],
we use local analysis to find the leading order terms (called corrections in this paper)
of the regularization error and add them back to the computed velocity in order to get
O(ǫ2) and O(ǫ3) error. The second order correction is given in Theorem 3.1 and the third
order correction is given in Theorem 3.2. The addition of the corrections might result in
non-divergence-free flow fields. In Subsection 3.2, we propose a simple analytical mod-
ification to the corrections in order to make the divergence of the corrected flow close to
zero while maintaining the desire order of accuracy. Our approach to reduce the diver-
gence seems to work well only for the second order correction as shown by numerical
results. In Section 4, we present numerical results to support our theoretical prediction
in the previous Sections. We end this paper with some conclusions and future work in
Section 5.

2 The regularization error

Let us consider the problem of evaluating the velocity field of a Stokesian fluid flow
surrounding a moving rigid object. Let φ(x) be a radially symmetric smooth function
having integral 1 over R

3 and define φǫ(x) = (1/ǫ3)φ(x/ǫ). In 2005, Cortez et al. [6]
showed that one can approximate the velocity at any field point x by a boundary integral

uǫ
j (x)=− 1

8πµ

∫

∂D
Sǫ

ij(x,y) fids(y), (2.1)

where ∂D is the surface of the solid object, f is the traction on the surface, and Sǫ
ij(x,y) is

the regularized Stokeslet corresponding to φǫ(x−y)

Sǫ
ij(x,y)=

δij

r
Hǫ

1(r)+
(xi−yi)(xj−yj)

r3
Hǫ

2(r), (2.2)
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with r= |x−y| and

Hǫ
1(r)=−8π

[

r(Bǫ(r))′′+(Bǫ(r))′
]

, (2.3)

Hǫ
2(r)=8π

[

r(Bǫ(r))′′−(Bǫ(r))′
]

. (2.4)

Here, Bǫ(x) is a radially symmetric function satisfying

∆Gǫ =φǫ, (2.5)

∆Bǫ =Gǫ. (2.6)

In comparison, the exact velocity can be written in the same form as (2.1) but with the
Stokeslet in place of the regularized Stokeslet [13]

uj(x)=− 1

8πµ

∫

∂D
Sij(x,y) fids(y),

where Sij(x,y) is the Stokeslet

Sij(x,y)=
δij

r
+
(xi−yi)(xj−yj)

r3
.

The regularization error, defined as

Eǫ(x)=u(x)−uǫ(x) (2.7)

can then be written as
Eǫ(x)= e1+e2, (2.8)

with

e1=− 1

8πµ

∫

∂D

(1−Hǫ
1(|x̂|))
|x̂| f(y)ds(y), (2.9)

e2=− 1

8πµ

∫

∂D

(1−Hǫ
2(|x̂|))

|x̂|3 (f(y)·x̂)x̂ds(y), (2.10)

where x̂=x−y.

2.1 Far field error

From (2.9) and (2.10), it is clear that, in the far field, the regularization error will depend
on how fast Hǫ

1(r) and Hǫ
2(r) converge to 1 as r/ǫ goes to ∞. As detailed in the following

Lemma, Hǫ
i (r), i = 1,2, depend only on the blob and the decay of (1−Hǫ

i (r)) in the far
field can be controlled.

Lemma 2.1. Suppose that ∂D is C2, f is C1, φǫ(x)=(1/ǫ3)φ(|x|/ǫ), where φ(x)=φ(|x|) is a
piecewise continuous function over R

3 satisfying the following conditions:
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1. the integral of φ(x) over R
3 is 1, and

2. |φ(x)|=O(|x|−3−α) when |x|→∞ for some constant α>1.

For r>Kǫ where K is some constant depending on the decay rate of φ(x), we have

|1−Hǫ
1(r)|≤ c1

( ǫ

r

)1+β
, (2.11)

|1−Hǫ
2(r)|≤ c2

( ǫ

r

)1+β
, (2.12)

where β is any constant satisfying 0<β≤1 and β<α−1, and c1 and c2 are constants depending
on φ(x) and β. If, in addition, the function φ(x) has zero second moment, i.e.,

∫

∞

0
s4φ(s)ds=0,

we can choose β=α−1. Furthermore, if φ(x) also has compact support, we can choose constants
c1= c2=0 outside the support of φ(x).

The proof of Lemma 2.1 is given in Appendix A. The lemma shows that if the second
moment of φ(x) is nonzero, the exponent in (2.11) and (2.12) is at most 2, regardless of
how fast φ(x) decays. As a direct consequence of Lemma 2.1, the far field error can be
estimated as in the following theorem.

Theorem 2.1. Suppose that ∂D is C2, f is C1, φǫ(x)=(1/ǫ3)φ(|x|/ǫ), where φ(x)=φ(|x|) is
a piecewise continuous function over R

3 satisfying the following conditions:

1. the integral of φ(x) over R
3 is 1, and

2. |φ(x)|=O(|x|−3−α) when |x|→∞ for some constant α>1.

Let β be such that 0< β≤1 and β<α−1. Then, the regularization error at a point x away from
the surface is equal to O(ǫ1+β). If, in addition, the function φ(x) has second moment 0, then the
regularization error at that point is O(ǫα). Furthermore, if φ(x) also has compact support, the
far field error is exactly zero.

Remark 2.1. Theorem 2.1 holds for any radially symmetric blob. We can construct blobs
with α>2 such that the second moment is zero. According to Theorem 2.1, the far field
error is O(ǫα) where α as large as we want. We can even construct compact support blobs
so that the far field error is exactly zero.

2.2 Near field error

It is known that an error bound of the regularization error corresponding to a specific
radially symmetric blob is Cǫ for some constant C> 0 [6]. In this section, we will prove
that this is the case for almost all radial blob functions and the bound is sharp, i.e., there
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exist two constants C2 >C1 >0 such that the sup-norm of regularization error lies in the
interval [C1ǫ,C2ǫ]. The idea is to use local analysis as in [3] to find the dominant term of
the regularization error Eǫ(x) and then show that this term is of and no better than O(ǫ)
for almost all radial blob functions.

Theorem 2.2. Suppose that ∂D is C2, f is C1, φǫ(x)=(1/ǫ3)φ(|x|/ǫ), where φ(x)=φ(|x|) is
a piecewise continuous function over R

3 satisfying the following conditions:

1. the integral of φ(x) over R
3 is 1,

2. |φ(x)|=O(|x|−3−α) when |x|→∞ for some constant α>1.

Then, the regularization error Eǫ(x) defined in (2.7) is as good as O(ǫ) but cannot be better, i.e.,
there exist constants C2>C1>0 such that

C1ǫ< sup
x∈R3\D

|Eǫ(x)|<C2ǫ.

In order to prove Theorem 2.2, we will need Lemma 2.2 which gives us the exact form
of the dominant term of the regularization error Eǫ(x) when the evaluation point is close
to the surface.

Lemma 2.2. With φǫ(r) as in the Theorem 2.2, choose 0<β≤1 such that β<α−1. Fix a point
x in the flow field. Let x0 be a point on the surface that is closest to x and define b= |x−x0|. We
assume that x is close enough to the surface so that x0 is uniquely determined. Let N be the unit
outer normal vector to the surface at x0. Let f0 be the force applied on the surface at x0. Then the
regularization error defined in (2.7) can be written as

Eǫ(x)=−π

µ
(f0−(f0 ·N)N)

∫

∞

b
s(s−b)2φǫ(s)ds+O(ǫ1+β/2). (2.13)

The proof of Lemma 2.2 will be given in Appendix B.

Proof of Theorem 2.2. Fix a point x close to the surface, let b be the distance from x to the
surface, then, by Lemma 2.2, we have

Eǫ(x)=−π

µ
(f0−(f0 ·N)N)

∫

∞

b
r(r−b)2φǫ(r)dr+O(ǫ1+β/2)

=ǫ

(

−π

µ
(f0−(f0 ·N)N)

∫

∞

ζ
r(r−ζ)2φ(r)dr

)

+O(ǫ1+β/2)

=O(ǫ),

where ζ=b/ǫ, and β<α−1, 0<β≤1.
Furthermore, we have

∫

∞

ζ
r(r−ζ)2φ(r)dr=

∫

∞

0
r3φ(r)dr− ζ

2π
+ζ2

∫

∞

0
rφ(r)dr+

∫ ζ

0
r(r−ζ)2φ(r)dr.
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Hence, for ζ≪1 (equivalently, b≪ǫ), we have

∫

∞

ζ
r(r−ζ)2φ(r)dr=

∫

∞

0
r3φ(r)dr− ζ

2π
+O(ζ2).

This means that the integral
∫

∞

ζ r(r−ζ)2φ(r)dr is not identically 0 for ζ ≥ 0. Therefore,

there exist a constant l>0 independent of ǫ and some ζ small such that

∣

∣

∣

∣

∫

∞

ζ
r(r−ζ)2φ(r)dr

∣

∣

∣

∣

> l

and
∥

∥

∥

∥

π

µ
(f0−(f0 ·N)N)

∫

∞

b
s(s−b)2φǫ(s)ds

∥

∥

∥

∥

2

>‖(f0−(f0 ·N)N)‖2
πǫl

µ
.

Thus, for ǫ small enough, we have

sup
R3\D

|Eǫ(x)|>‖(f0−(f0 ·N)N)‖2
πǫl

µ
=C1ǫ.

In general, the surface force will contain a tangential component so that

(f0−(f0 ·N)N) 6=0.

Therefore, C1>0. This completes the proof of Theorem 2.2.

3 Corrections and their divergence

In this section, we will give the explicit forms of what we called the second order cor-
rection Eǫ

2(x) and the third order correction Eǫ
3(x) for an arbitrary blob. As the name

suggests, we can write the regularization error (2.7) as

Eǫ(x)=Eǫ
2(x)+O(ǫ2), (3.1)

Eǫ(x)=Eǫ
3(x)+O(ǫ3). (3.2)

We then give the explicit form of the divergence of the second order correction. The
divergence of the third order correction could be found using the same approach. Since
the divergence of the corrections are not zero, we add some high-order terms to make
them close to zero. These terms can be found by solving a simple first order ordinary
differential equation shown in Subsection 3.2. The second order correction Eǫ

2(x) has a
much simpler formula than the third order correction, and so does its divergence.
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3.1 The corrections

In this Subsection, the explicit forms of the second order and the third order corrections
will be given. But only the derivation of the third order correction is presented since the
second order correction can be obtained by removing O(ǫ2) terms from the third order
correction.

Theorem 3.1 (Second Order Correction). Suppose that the surface of the solid object is smooth,
the force is smooth along the surface. Suppose further that φǫ(x)=(1/ǫ3)φ(|x|/ǫ), where φ(x)=
φ(|x|) is a smooth function over R

3 satisfying the following conditions:

1. the integral of φ over R
3 is 1,

2. |φ(r)|≤Cr−7 for r≥1 and some constant C>0,

3. the second moment of φ(x) is 0.

x

x0 = y(0)

r = |x− y|

y = y(α)

b

Figure 1: The surface has a parametrization y=y(α) near x0.

Fix a point x in the flow field. Let x0 be a point on the surface that is closest to x and define
b= |x−x0|. Let y=y(α) with α=(α1,α2) be a parametrization of the surface near x0=y(0) such
that {yα1

(0),yα2(0)} is an orthonormal set, and define

N=
yα1

×yα2

|yα1
×yα2 |

at α=0. Then,
Eǫ(x)=Eǫ

2(x)+O(ǫ2),

where

Eǫ
2(x)=−π

µ
(f−(f·N)N)

∫

∞

b
s(s−b)2φǫ(s)ds. (3.3)

Theorem 3.2 (Third Order Correction). With the hypotheses and notations as in Theorem 3.1,
we can write the regularization error Eǫ(x)= e1+e2 with

e1=− π

2µ
(2+bN·yαiαi

)fI1+O(ǫ3),

e2=
π

2µ

(

2+bN·yαiαi

)

(f·N)NI1+
π

µ

(

−1

2
(f·N)yαiαi

+cNN+cαi
yαi

)

I2+O(ǫ3),
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where

I1=
∫

∞

b

(

−bs2+
2sb2

3
+

s4

3b

)

φǫ(s)ds,

I2=
∫

∞

b

(

− s4

3
+s3b−s2b2+

b3s

3

)

φǫ(s)ds,

and

cN =−(fαi
·yαi

)− 1

2
(f·yαiαi

)+
1

2
(f·yαi

)(yαi
·yαjαj

),

cα1
=

1

b
(f·yα1

)−(fα1
·N)+(f·yα2)(N·yα1α2)

+
1

2
(f·N)yα1

·yαiαi
+

1

2
(f·yα1

)(3N·yα1α1
+N·yα2α2),

cα2 =
1

b
(f·yα2)−(fα2 ·N)+(f·yα1

)(N·yα1α2)

+
1

2
(f·N)yα2 ·yαiαi

+
1

2
(f·yα2)(3N·yα2α2+N·yα1α1

).

All the derivatives of y and f are evaluated at α=0.

Remark 3.1. When the field point is right on the surface x≡x0 and b=0, we rewrite the
regularization error (2.7) as

Eǫ(x)=−π

µ

∫

∞

0
s3φǫ(s)ds+O(ǫ3)=−π

µ
ǫ
∫

∞

0
s3φ(s)ds+O(ǫ3).

Thus, if in addition to satisfying conditions in Theorem 3.2, φ(r) satisfies

∫

∞

0
s3φ(s)ds=0,

we have

Eǫ(x)=O(ǫ3) for x on the surface.

This is useful when we know the velocity distribution on the surface and want to solve
for the traction on the surface.

Proof. Fix a small constant λ>ǫ. By Lemma 2.1, since φ(x) has zero second moment, for
r≥λ, we have

1

r
|1−Hǫ

1(r)|=O(ǫ4), (3.4)

1

r3
|1−Hǫ

2(r)|=O(ǫ4). (3.5)
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Thus, we can rewrite e1 and e2 in (2.8) as

e1=− 1

8πµ

∫

∂D, |x̂|<λ

(1−Hǫ
1(|x̂|))
|x̂| f(y)ds(y)+O(ǫ4), (3.6)

e2=− 1

8πµ

∫

∂D, |x̂|<λ

(1−Hǫ
2(|x̂|))

|x̂|3 (f(y)·x̂)x̂ds(y)+O(ǫ4). (3.7)

With the hypothesis as in Theorem 3.2, let α-derivatives of y at α= 0 be denoted by
Ti = yαi

(0) and Tij = yαiαj
(0), then {T1,T2} is an orthonormal set. Expand y= y(α) near

the origin 0, we have

y(α)=y(0)+αiTi+
1

2
αiαjTij+O(|α|3). (3.8)

Let x be a point off the surface, and x0=y(0) a point on the surface that is closest to x, we
have

x̂=x−y=bN−αiTi−
1

2
αiαjTij+O(|α|3) (3.9)

and
r2=b2+(1−κb)|α|2+αiαjαkTi ·Tjk+O(b|α|3+|α|4),

where κ is the normal curvature of the surface at x0=y(0) in the α-direction.

κ=
αiαjN·Tij

αiαjTi ·Tj
=

αiαj

|α|2 N·Tij.

To simplify the dependence of r in the integral, we make a further coordinate change
α 7→ξ. We define ξ=(ξ1,ξ2) by requiring ξi/|ξ|=αi/|α| and r2=b2+|ξ|2, or

|ξ|2=(1−κb)|α|2+c|α|3+O(b|α|3+|α|4),

so that

|ξ|=(1− 1

2
κb+

1

2
c|α|)|α|+O(b|α|2+|α|3),

where

c=
αi

|α|
αj

|α|
αk

|α|Ti ·Tjk =
ξi

|ξ|
ξ j

|ξ|
ξk

|ξ|Ti ·Tjk.

For α near 0, we can solve for |α| to get

|α|=(1+
1

2
κb− 1

2
c|α|)|ξ|+O(b|ξ|2)+O(|ξ|3)

⇒ |α|=(1+
1

2
κb− 1

2
c|ξ|)|ξ|+O(b|ξ|2)+O(|ξ|3),

and then

αi =(ξi/|ξ|)|α|=(1+
1

2
κb− 1

2
c|ξ|)ξi+O(b|ξ|2)+O(|ξ|3).
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Thus
∣

∣

∣

∣

∂α

∂ξ

∣

∣

∣

∣

=1+κb− 3

2
c|ξ|+O(b|ξ|+|ξ|2). (3.10)

Now, let us look at others term of the integrand in (3.6) and (3.7). With the α-derivatives
of f at α=0 denoted by fi and fij, we have

f(y)= f0+αifi+O(|α|2), (3.11)

|yα1
×yα2 |=1+αi|yα1

×yα2 |i+O(|α|2). (3.12)

Representing the surface by the new parameter ξ, using (3.9), (3.10), (3.11), and (3.12), we
have

(1−Hǫ
1(|x̂|))
|x̂| f(y)|yα1

×yα2 |
∣

∣

∣

∣

∂α

∂ξ

∣

∣

∣

∣

=
(1−Hǫ

1(
√

|ξ|2+b2))
√

|ξ|2+b2

(

(1+κb)f0+w(ξ,b)+R2(ξ,b)
)

(3.13)

and

(1−Hǫ
2(|x̂|))

|x̂|3 (f(y)·x̂)x̂|yα1
×yα2 |

∣

∣

∣

∣

∂α

∂ξ

∣

∣

∣

∣

=
(1−Hǫ

2(
√

|ξ|2+b2))

(
√

|ξ|2+b2)3

(

b2(f0 ·N)N− b

2
ξ2

i (f0 ·yii)N−bξ2
i (fi ·Ti)N

+(1+κb)ξ2
i (f0 ·Ti)Ti−bξ2

i (fi ·N)Ti−
1

2
bξ2

i (f0 ·N)yii+κb3(f0 ·N)N

−κb2ξ2
i (f0 ·Ti)Ti+

3

2
bc|ξ|ξl(f0 ·N)yl+

3

2
bc|ξ|ξl(f0 ·yl)N

−b|yα1
×yα2 |iξ2

i (f0 ·Ti)N−b|yα1
×yα2 |iξ2

i (f0 ·N)Ti+w(ξ,b)+R4(ξ,b)
)

, (3.14)

where w(ξ,b) is some vector of odd functions in ξ1 and ξ2, Rs(ξ,b), s ∈N, is a sum of
terms of the form |ξ|mbnq(ξ,b) with m+n=s,m≥0,n≥0 and q is some vector of bounded
functions. The term |yα1

×yα2 |i can be computed as follow

|yα1
×yα2 |i =

∂
√

(yα1
×yα2)·(yα1

×yα2)

∂αi

=(yα1
×yα2)·

∂(yα1
×yα2)

∂αi

=(yα1
×yα2)·

(

y1i×y2+y1×y2i

)

=y1 ·y1i+y2 ·y2i.

Now, let (ξ,θ) be the polar coordinate in the ξ-plane, i.e., ξ= |ξ|. We have

κ=cos2 θN·y11+2sinθcosθN·y12+sin2θN·y22 (3.15)
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and
c=(cosθy1+sinθy2)·(cos2 θy11+2sinθcosθy12+sin2 θy22).

Using (3.13) and (3.4), we can rewrite (3.6) as

e1=− 1

8πµ

∫

R2

(1−Hǫ
1(
√

|ξ|2+b2))
√

|ξ|2+b2
(1+κb)f0dξ

− 1

8πµ

∫

|ξ|2+b2<λ2

(1−Hǫ
1(
√

|ξ|2+b2))
√

|ξ|2+b2
w(ξ,b)dξ

− 1

8πµ

∫

|ξ|2+b2<λ2

(1−Hǫ
1(
√

|ξ|2+b2))
√

|ξ|2+b2
R2(ξ,b)dξ+O(ǫ4).

Since, w(ξ,b) is odd with respect to ξ1 and/or ξ2, the second integral of e1 equals to zero.
By changing to polar coordinates, the first integral of e1 can be rewritten as

− 1

8πµ
f0

∫ 2π

0
(1+κb)dθ

∫

∞

0

(1−Hǫ
1(
√

ξ2+b2))
√

ξ2+b2
ξdξ. (3.16)

Recall that κ is a function of θ only as shown in (3.15). Using the integral form of Hǫ
1(r)

developed in Appendix A (Eq. (A.5)), making a change of variables, and changing the
order of integration, we can replace (3.16) by

− π

2µ

(

2+b(N·y11+N·y22)
)

∫

∞

b

(

−bs2+
2sb2

3
+

s4

3b

)

φǫ(s)ds.

Similarly, we can represent e2 as in Theorem 3.2. What is left is to prove that the remaining
terms in e1 and e2 are really O(ǫ3). For e1, the remaining terms are O(ǫ3) if, for m,n∈ z,
m≥1, n≥0, m+n=3, we have

∫

∞

0

∣

∣1−Hǫ
1(
√

ξ2+b2)
∣

∣

(ξ2+b2)1/2
bnξm dξ=O(ǫ3). (3.17)

For e2, the remaining terms are O(ǫ3) if, for m,n∈z, m≥1, n≥0, m+n=5, we have

∫

∞

0

∣

∣1−Hǫ
2(
√

ξ2+b2)
∣

∣

(ξ2+b2)3/2
bnξm dξ=O(ǫ3). (3.18)

The proofs of (3.17) and (3.18) are based on formulas (2.11) and (2.12) with β = α−1=
(7−3)−1= 3, because φ(x) has zero second moment and decays as |x|−7. We only give
the proof of (3.17), since the proof of (3.18) is basically the same. To prove (3.17), we first
substitute r2= ξ2+b2 and rewrite the integral on the left hand side of (3.17) as

∫

∞

b

∣

∣1−Hǫ
1(r)

∣

∣

r
bn(r2−b2)(m−1)/2rdr=

∫

∞

b

∣

∣1−Hǫ
1(r)

∣

∣bn(r2−b2)(m−1)/2dr. (3.19)
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Since r2−b2 < r2 and m≥ 1, we have (r2−b2)(m−1)/2 ≤ (r2)(m−1)/2 = rm−1. Also, because
the integral is from b to ∞, we have b≤r, and, thus, bn≤rn. Therefore, the last integral in
(3.19) is bounded by

∫

∞

b

∣

∣1−Hǫ
1(r)

∣

∣rnrm−1dr
m+n=3
=====

∫

∞

b

∣

∣1−Hǫ
1(r)

∣

∣r2dr≤
∫

∞

0

∣

∣1−Hǫ
1(r)

∣

∣r2dr. (3.20)

Now let substitute r=ǫt, the last integral in (3.20) becomes
∫

∞

0

∣

∣1−Hǫ
1(ǫt)

∣

∣(ǫt)2ǫdt=ǫ3
∫

∞

0

∣

∣1−H1
1(t)

∣

∣t2dt. (3.21)

Since φ(x) has zero second moment, according to Lemma 2.1,
∣

∣1−Hǫ
1(t)

∣

∣=O(t−4) for t
large enough, and, hence, the last integral in (3.20) converges. We have proved (3.17).

This completes the proof of Theorem 3.2.

3.2 Divergence of the computed flow field

The advantage of the MRS is that the computed flow field is automatically divergence
free. This is a desired property in applications. On the other hand, the correction to the
flow field computed by using the MRS is not necessarily divergence free, and could be
O(1). Although we have not been able to derive a divergence free correction formula,
in many cases, the corrections can be modified to get a flow field with small divergence
while keeping the magnitude of the error induced by adding corrections to the computed
flow field. The idea is to represent the divergence of the correction in terms of the distance
from the field point to the surface, and the surface and force information at the point on
the surface that is closest to that field point. We then add a modification in the normal
direction, which could be found by solving a simple ordinary differential equation in b,
the distance from field points to the surface, to make the total divergence close to zero.

Modified Second Order Correction. In addition to the conditions in Theorem 3.1, we assume
that at every point on the surface, the principal curvatures with respect to the outer normal vector
are non-positive. Then we can write the flow velocity u(x) at x as

u(x)= ũ(x)+O(ǫ2),

with

ũ(x)=uǫ(x)+Eǫ
2(x)+V2(x),

where

V2(x)=− πN

µ(1−bκ1)(1−bκ2)

∫

db

(

∫

∞

b
s(s−b)2φǫ(s)ds

)

×
(

(1−bκ2)f1 ·T1+(1−bκ1)f2 ·T2+(κ1+κ2−2bκ1κ2)f0 ·N
)

=O(ǫ2) (3.22)
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is a term with divergence being a ‘good’ approximation (numerically verified) to the negative of
the divergence of Eǫ(x) and Ti,κi, i=1,2 are the principal directions and principal curvatures at
x0, fi’s are the derivatives of the force f at x0 in the directions of Ti’s.

To validate the above statement, we first find the divergence of the correction (3.3) at
x. We have to assume that the coordinates have the directions of principal curvatures,
more special than in the previous Sections. Assuming that the origin of the coordinate
system is x0, in that special coordinates system, locally near x0 = 0 the surface can be
described as

y=y(α)=α1T1+α2T2+

(

1

2
κ1α2

1+
1

2
κ2α2

2

)

N+O(|α|3).

Let z= z1T1+z2T2+z3N be a field point that is close to x, i.e., z1 ≪1, z2 ≪1, and z3 ≈ b.
Let z0=y(α) be a point on the surface that is closest to z. The unit outer normal vector at
z0 is given by

n=−κ1α1T1−κ2α2T2+N+O(|α|2).
Let t be the distance from z to the surface. We then have z=z0+tn, i.e.,











z1=(1−tκ1)α1+O(|α|2),
z2=(1−tκ2)α2 +O(|α|2),
z3= t+O(|α|2).

Thus






















α1=
z1

1−z3κ1
+O(z2

1+z2
2),

α2=
z2

1−z3κ1
+O(z2

1+z2
2),

t= z3+O(z2
1+z2

2).

Hence, the unit outer normal vector at z0 can be written as

n=− κ1z1

1−z3κ1
T1−

κ2z2

1−z3κ2
T2+N+O(z2

1+z2
2).

Expanding f(z0) near x0, we have

f(z0)= f(x0)+α1
∂f

∂α1
(x0)+α2

∂f

∂α2
(x0)+O(|α|2)

= f0+
z1

1−z3κ1
f1+

z2

1−z3κ2
f2+O(z2

1+z2
2).

When z= z1T1+bN, we have

t=b+O(z2
1), (3.23)

n=− κ1z1

1−bκ1
T1+O(z2

1), (3.24)

f(z0)= f0+
z1

1−bκ1
f1+O(z2

1). (3.25)



140 H.-N. Nguyen and R. Cortez / Commun. Comput. Phys., 15 (2014), pp. 126-152

Hence,

f(z0)−(f(z0)·n)n= f0−(f0 ·n)n+
z1

1−bκ1
(f1−(f1 ·n)n)+O(z2

1), (3.26)

and the correction at z is

Eǫ
2(z)=−π

µ

(

f(z0)−(f(z0)·n)n)
)

∫

∞

t
s(s−t)2φǫ(s)ds

=−π

µ

(

f(z0)−(f(z0)·n)n)
)

∫

∞

b
s(s−b)2φǫ(s)ds+O(z2

1). (3.27)

From (3.24), (3.26), and (3.27), the component of Eǫ
2(z) along T1-direction can be written

as

(Eǫ
2(z))1 =−π

µ

(

(f0 ·T1)+
κ1z1

1−bκ1
(f0 ·N)+

z1

1−bκ1
(f1 ·T1)

)

×
∫

∞

b
s(s−b)2φǫ(s)ds+O(z2

1). (3.28)

The component of Eǫ
2(x) along T1-direction is

(Eǫ
2(x))1=−π

µ
(f0 ·T1)

∫

∞

b
s(s−b)2φǫ(s)ds. (3.29)

Combining (3.28) and (3.29), we have

(Eǫ
2(z))1−(Eǫ

2(x))1

z1
=−π

µ
· (f1 ·T1)+κ1(f0 ·N)

1−bκ1

∫

∞

b
s(s−b)2φǫ(s)ds+O(z1).

Letting z1 go to zero, we have

∂(Eǫ
2(x))1

∂z1
=−π

µ
· (f1 ·T1)+κ1(f0 ·N)

1−bκ1

∫

∞

b
s(s−b)2φǫ(s)ds.

Similarly, we have

∂(Eǫ
2(x))2

∂z2
=−π

µ
· (f2 ·T2)+κ2(f0 ·N)

1−bκ2

∫

∞

b
s(s−b)2φǫ(s)ds.

When z= z3N, the component of Eǫ
2(z) along the normal direction N is identically zero.

Therefore, the divergence of the correction at x is

∇·Eǫ
2(x)=−π

µ

(

(f1 ·T1)+κ1(f0 ·N)

1−bκ1
+
(f2 ·T2)+κ2(f0 ·N)

1−bκ2

)

∫

∞

b
s(s−b)2φǫ(s)ds. (3.30)

Similarly, let D(b) be a function of b only. The divergence of the term D(b)n is

D′(b)−
(

κ1

1−bκ1
+

κ2

1−bκ2

)

D(b). (3.31)
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Solving the following differential equation for D(b)

D′(b)−
(

κ1

1−bκ1
+

κ2

1−bκ2

)

D(b)=∇·Eǫ
2(x) (3.32)

and writing

V2(x)=D(b)N,

we have our main result (3.22).

Note that, in order to arrive at Eq. (3.32), we assume that D is a function of b only. But
the solution of (3.32) actually depends on x too. As we will see in the numerical results in
Section 4, this approach works quite well for modified second order correction but does
a terrible job for modified third order correction.

Now let us prove that V2(x)=O(ǫ2). Consider the integral I in the definition of V2(x)

I=
∫

db

(

∫

∞

b
s(s−b)2φǫ(s)ds

)

×
(

(1−bκ2)f1 ·T1+(1−bκ1)f2 ·T2+(κ1+κ2−2bκ1κ2)f0 ·N
)

=
∫

(a1+a2b)

(

∫

∞

b
s(s−b)2φǫ(s)ds

)

db, (3.33)

where a1 = f1 ·T1+f2 ·T2+(κ1+κ2)f0 ·N and a2 =−κ2f1 ·T1−κ1f2 ·T2−2κ1κ2f0 ·N are two
constants.

Making the change of variables b=ǫb′ and s=ǫs′, we have

I=
∫

(a1+a2ǫb′)
(

∫

∞

b′
ǫ3s′(s′−b′)2 1

ǫ3
φ(s′)ǫds′

)

ǫdb′

=ǫ2
∫

(a1+ǫa2b′)
(

∫ ′∞

b
s′(s′−b′)2φ(s′)ds′

)

db′.

Therefore,

|I|≤ǫ2
∫

∞

0

(

|a1|+ǫ|a2 |b′
)

(

∫

∞

b′
s′(s′−b′)2φ(s′)ds′

)

db′. (3.34)

Fix a constant K such that |φ(s′)|≤C(s′)−7 for s′≥K and rewrite the double integral on
the right hand side of (3.34) as a sum of two double integrals, we have

ǫ−2|I|≤
∫ K

0

(

|a1|+ǫ|a2|b′
)

(

∫

∞

b′
s′(s′−b′)2φ(s′)ds′

)

db′

+
∫

∞

K

(

|a1|+ǫ|a2|b′
)

(

∫

∞

b′
s′(s′−b′)2φ(s′)ds′

)

db′. (3.35)
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Clearly, the first integral in (3.35) is bounded. Since |φ(s′)|≤C(s′)−7 for s′≥K, the second
integral in (3.35) is bounded by

∫

∞

K

(

|a1|+ǫ|a2|b′
)

(

∫

∞

b′
(s′)3 C

(s′)7
ds′

)

db′=
∫

∞

K

(

|a1|+ǫ|a2|b′
) C

3(b′)3
db′

=
C

3

( |a1|
2K2

+
ǫ|a2|

K

)

. (3.36)

Therefore, ǫ−2|I|=O(1) and I=O(ǫ2).

4 Numerical results

4.1 Test problem

We will use the above numerical correction formulas to determine the flow field around a
prolate spheroid translating parallel to its axis of symmetry. We choose this problem as a
test problem for our numerical method because the exact solution is well known and non-
trivial [4]. We parametrized the surface of a prolate spheroid whose axis of symmetry is
aligned with the z-direction as

y(φ,θ)= asinφcosθ~x+asinφsinθ~y,+ccosφ~z

where φ ∈ [0,π] and θ ∈ [0,2π]. For translation velocity U = U~z parallel to the axis of
symmetry, the surface traction is of the form f= f (φ)~z with

f (φ)=− 4Uµe3

a((1+e2)L−2e)
· 1
√

1−e2 cos2 φ
,

where e=
√

c2−a2/c and L=log[(1+e)/(1−e)]. In all of our numerical tests, we use µ=1,
U=1, a=1, c=2.

4.2 Blobs in use

We compare the error corresponding to 3 different blob functions. The first blob which is
widely used in literature [1, 5, 6, 14] is

φǫ(x)=
15ǫ4

8π(r2+ǫ2)7/2
. (4.1)

When r → ∞ (ǫ fixed) or, equivalently, ǫ → 0 (r fixed), the regularized Stokeslet corre-
sponding to this blob converges to the singular one as ǫ2/r2 at best, regardless of how
fast the blob decays.

The second blob, which has been used in other computations [9, 10], has second mo-
ment 0. The regularized Stokeslet corresponding to this blob, when r → ∞ (ǫ fixed) or,
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equivalently, ǫ→0 (r fixed), converges to the singular one as (ǫ/r)m−3 if the blob decays
as ǫm−3/rm for m>5

φǫ(r)=
5ǫ2−2r2

2π3/2ǫ5
e−r2/ǫ2

. (4.2)

The third blob will be useful in the situation where we know the velocity of the boundary
surface and want to solve for the traction distribution on the surface.

φǫ(r)=
1

ǫ3















(

525

2π
− 1050

π

r

ǫ
+

945

π

r2

ǫ2

)

(

1− r

ǫ

)2
, if 0≤ r

ǫ
≤1,

0,
r

ǫ
≥1.

(4.3)

Beside having second moment 0 as the second blob function, the third blob function also
satisfies

∫

∞

0
r3φǫ(r)dr=0

and

Sǫ
ij(x,y)=Sij(x,y) when |x−y|>ǫ.

4.3 Numerical quadrature

For the purpose of numerically evaluating the exterior flow field, the surface of the pro-
late spheroid is discretized with Mφ+1 points in the φ-direction and Mθ+1 points in the
θ-direction. Accounting for the redundancy of the poles, the total number of points is
M = (Mφ−1)Mθ+2. We will use trapezoidal quadrature in the φ- and θ- directions to
approximate the integrals. Thus, depending on the correction used, the total error can be
written as [6]

O(ǫp)+O
(h2

ǫ3

)

, p=2,3. (4.4)

The first term in (4.4) is the regularization error and the second term is the quadrature
error. From (4.4), one can see that there is an optimal value of ǫ for given h. For a fixed
discretization of the surface, when ǫ is small compared to h (smaller than the optimized
value of ǫ), the total error (4.4) is dominated by the quadrature error and we will not
see the effect of adding corrections to the computed exterior velocity. When ǫ is large
compared to h (larger than the optimized value of ǫ), the total error is dominated by
the regularization error and we can see the effect of adding corrections to the computed
velocity by looking at the total error.

In all of our numerical tests, we observe that for a fixed Mφ, the error when Mθ ≪Mφ

is worse than when Mθ ≈Mφ, and when Mθ ≫Mφ, we haven’t seen much improvement.
So the best choice in this case is Mθ =Mφ.

Note that, since the computational time for corrections is O(1), it is not affected by
the refinement of the grid on the surface.
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4.4 Numerical results

Because of symmetry, we only evaluate the flow field on the half-plane {y=0,x>0} and
compare to the exact solution. Since the regularization error and the quadrature error
are very small when the distance from the field points to the surface is bigger than 1, we
only evaluate the velocity inside a region of distance less than 1 from the surface. The
sup-norm in this section is computed on this region.
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Figure 2: log-log plot of the sup-norm of
the error without using any of the correc-
tions developed in Section 3 versus the ra-
tio ǫ/h, h= 2π/Mφ, Mφ ranges from 50
to 800.

In Figs. 2(a), 2(b), and 2(c), we draw log-log plots of the sup-norm of the error without
using any correction versus the ratio ǫ/h for various values of ǫ and h=π/Mφ , Mφ=Mθ

is in the range 50–800. Each line corresponding to a fixed value of h and varying values
of ǫ. We can see that we only get error of the first order with respect to ǫ in all cases.

Next, we examine the effect of the second and third order corrections. Fig. 3 show the
log-log plot of the sup-norm of the error corresponding to the second blob when using
corrections versus the ratio ǫ/h for various values of ǫ and h = π/Mφ, Mφ = Mθ is in
the range 50–800. Each line corresponding to a fixed value of h and varying values of
ǫ. Dash lines and solid lines correspond to applying Eǫ

2(x) and Eǫ
3(x) to the second blob,

respectively. The slopes of these lines equal the order of convergence of the regulariza-
tion error. By comparing with reference lines, we can see that we get the right order as
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Figure 3: log-log plot of the sup-norm of the error corresponding to the second blob when using the second
and third order corrections versus versus the ratio ǫ/h, h=2π/Mφ, Mφ ranges from 50 to 800.
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Figure 4: log-log plot of the maximum of the absolute value of the errors on the surface versus the ratio ǫ/h.
Each curve corresponds to a fixed value of h=π/Mφ, Mφ=Mθ ranges from 50 to 800. Lines with +-markers

corresponds to Mφ = 800, �-markers Mφ = 400, ∗-markers Mφ = 200, ◦-markers Mφ = 100, and ⋄-markers

Mφ =50. The black line is a line of slope 3 drawn for reference.

predicted by the theorems in Section 3. When ǫ is large compared to h, the regulariza-
tion error is dominant and is of expected order. When ǫ goes to zero, after some point,
the quadrature error will be dominant and we do not see the effect of the corrections to
the regularization error. The graph also suggests that there might be some optimal value
of the ratio ǫ/h that give the best approximation. The same results hold when we use
modified corrections.

When we only have information of the velocity on the surface, in order to evaluate the
exterior velocity field, we need to solve the boundary integral equation for the traction on
the surface and use the MRS. As mentioned above the third blob (4.3) will be of advantage
in this situation because of high order of accuracy with respect to the blob parameters. In
Fig. 4, we look at errors right on the surface when using 3 different blobs. The solid line
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corresponds to the third blob (4.3), the dash lines the second blob (4.2), the dash-dot lines
the first blob (4.1). The first and the second blob give only first order error while the third
blob gives third order error as expected.

Now let verify the argument in Subsection 3.2 numerically. In Fig. 5, we graph the
sup-norm of the divergence of the computed flow field with and without corrections. We
use finite difference to approximate the derivatives of the velocity. The divergence of the
computed flow field before adding correction is close to zero but after adding corrections,
the divergence is large compared to zero. For the case of adding modified second order
correction, the divergence is as good as without correction, and is even better if the blob
parameter ǫ is small. But the modified third order correction does not work as expected.
This phenomenon can be explained as following. As mentioned earlier in Subsection 3.2,
we need to assume that the function D(b) depends on the distance b only. But when we
solve (3.32), the function D(b) now depends on the information about the force and the
surface at x0 which is not completely independent of b. This dependence in the modi-
fied third order correction is stronger than in the modified second order correction. The
modified third order correction requires values of the third derivatives of the surface at
x0 and the second derivatives of the force at x0.
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Figure 5: log-log plot of the sup-norm of divergence versus the ratio ǫ/h. Each curve corresponds to a fixed
value of h=π/Mφ. The figure on the left corresponds to Mφ =50, and the figure on the right Mφ =800.

5 Conclusions and future work

In this paper we focused on the problem of accurately evaluating the velocity field out-
side a solid object moving in an incompressible Stokes flow using the method of reg-
ularized Stokeslet. The original goal was to find a class of blobs whose corresponding
regularization error (2.7) was of at least second order with respect to blob parameter
ǫ. We proved that this was nearly impossible to achieve with radially symmetric blobs.
Though we cannot make the ‘constant’ in (2.13) equal to zero, in practice, we could find
a class of blobs that minimizes that constant. This could be the topic of another analysis.
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Then, we found a class of blobs that the local analysis was feasible and found the cor-
responding error corrections. Since these error corrections may not be divergence free,
we proposed a simple approach to modify the error corrections in order to make the di-
vergence of the corrected flow close to zero. However, our approach to reduce divergence
seemed to work well only for the second order correction as shown by numerical results
in Section 4.
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A Proof of Lemma 2.1

We will now give a proof of Lemma 2.1 by representing the regularized Stokeslet explic-
itly as a sum of integrals involving the φǫ(r) blob.

Solve (2.5) for Gǫ by changing to spherical coordinates, we have

Gǫ(r)=Gǫ(0)− 1

r

∫ r

0
s2φǫ(s)ds+

∫ r

0
sφǫ(s)ds. (A.1)

We want Gǫ(r) to behave like the Green’s function as r→∞, i.e.,

lim
r→∞

(

Gǫ(r)+
1

4πr

)

=0.

Add 1/(4πr) to both sides of Eq. (A.1) and use condition 1 of φ(r) in the statement of
Theorem 2.1, we have

Gǫ(r)+
1

4πr
=Gǫ(0)+

1

r

∫

∞

r
s2φǫ(s)ds+

∫ r

0
sφǫ(s)ds. (A.2)

Let r goes to infinity, the left hand side of (A.2) goes to zero as needed, and the right hand
side goes to

Gǫ(0)+
∫

∞

0
sφǫ(s)ds.

Therefore, (A.1) becomes

Gǫ(r)=−1

r

∫ r

0
s2φǫ(s)ds−

∫

∞

r
sφǫ(s)ds. (A.3)

Solve (2.6) for (Bǫ(r))′, we have

(Bǫ(r))′=
1

r2

∫ r

0
r2Gǫ(r)dr. (A.4)
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Using (2.6), (A.4), and (A.3), we can rewrite (2.3) as

Hǫ
1(r)=4π

∫ r

0
s2φǫ(s)ds+

16πr

3

∫

∞

r
sφǫ(s)ds+

4π

3r2

∫ r

0
s4φǫds. (A.5)

In a similar manner, (2.4) becomes

Hǫ
2(r)=4π

∫ r

0
s2φǫ(s)ds− 4π

r2

∫ r

0
s4φǫ(s)ds. (A.6)

It is easy to see that Hǫ
1(r) and Hǫ

2(r) are continuous. We will now prove the boundedness
properties (2.11) and (2.12). We will prove (2.11) only since the proof of (2.12) is similar.
Using (A.5), we write

1−Hǫ
1(r)=4π

∫

∞

r
s2φǫds− 16πr

3

∫

∞

r
sφǫ(s)ds− 4π

3r2

∫ r

0
s4φǫds. (A.7)

Fix a constant K>1 such that

|φ(r)|≤Cr−3−α when r>K.

There exists such a constant K because of the second condition of φ(r). For r>Kǫ, since
β<α−1, the first term is bounded by

4π
∫

∞

r
s2 Cǫα

sα+3
ds=4πC

ǫα

(α)rα
<4πC

( ǫ

r

)1+β
,

and the second term is bounded by

16πr

3

∫

∞

r
s

Cǫα

sα+3
ds=

16πCr

3

ǫα

(α+1)rα+1
<

16πC

3

(ǫ

r

)1+β
.

Now let us look at the last term of (A.7). For r > Kǫ, the last term in 1−Hǫ
1(r) can be

rewritten as

4π

3r2

(

∫ Kǫ

0
s4φǫ(s)ds+

∫ r

Kǫ
s4φǫ(s)ds

)

=
4π

3

( ǫ

r

)2
∫ K

0
s4φ(s)ds+

4π

3r2

∫ r

Kǫ
s4φǫ(s)ds.

Since β≤1, the first term on the right hand side is bounded by

4πCK

3

( ǫ

r

)2
≤ 4πCK

3

( ǫ

r

)1+β
,

where CK is some constant. The second term is bounded by

4π

3r2

∫ r

Kǫ
s4 Cǫα

sα+3
ds=



















4πC

2−α

(ǫ

r

)α
− 4πCK2−α

2−α

( ǫ

r

)2
, for α 6=2,

4πC

(

ln(r/ǫ)

(r/ǫ)2

)

−4πClnK
(ǫ

r

)2
, for α=2.
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Thus, in order to prove that the left hand side is bounded by C1

(

ǫ
r

)1+β
for some constant

C1>0, we only need to prove that

lnr

r2
<C2

(ǫ

r

)1+β
for r>Kǫ,

where C2>0 is some constant. Since

lim
r→+∞

rγ lnr=0 if γ<0,

there exists some constant Cγ such that

rγ lnr<Cγ if r>1.

Because β<α−1, 1+β<α. Put γ=(1+β)−α<0 and simplify to get

lnr

rα
<Cγ

1

r1+β
if r>1.

Therefore, when α=2, since r/ǫ>K>1, we have

ln(r/ǫ)

(r/ǫ)2
<Cγ

( ǫ

r

)1+β
.

If, in addition, the function φ(x) has second moment 0, then we can change the integral
in the last term of (A.7) to the integral from r to ∞ and proving the boundedness of the
last term becomes straight forward as for the first two terms.

B Proof of Lemma 2.2

Fix a small constant λ>ǫ, using (2.11) and (2.12), for r≥λ, we have

1

r
|1−Hǫ

1(r)|=O(ǫ1+β),

1

r3
|1−Hǫ

2(r)|=O(ǫ1+β).

Therefore, we can rewrite e1 and e2 in (2.8) as

e1=− 1

8πµ

∫

∂D, |x̂|<λ

(1−Hǫ
1(|x̂|))
|x̂| f(y)ds(y)+O(ǫ1+β), (B.1)

e2=− 1

8πµ

∫

∂D, |x̂|<λ

(1−Hǫ
2(|x̂|))

|x̂|3 (f(y)·x̂)x̂ds(y)+O(ǫ1+β). (B.2)
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With the same notation as in the proof of Theorem 3.2, we can write

(1−Hǫ
1(|x̂|))
|x̂| f(y)|yα1

×yα2 |
∣

∣

∣

∣

∂α

∂ξ

∣

∣

∣

∣

=
(1−Hǫ

1(
√

|ξ|2+b2))
√

|ξ|2+b2
(f0+|ξ|q(ξ,b)) (B.3)

with some vector of bounded functions q, and

(1−Hǫ
2(|x̂|))

|x̂|3 (f(y)·x̂)x̂|yα1
×yα2 |

∣

∣

∣

∣

∂α

∂ξ

∣

∣

∣

∣

=
(1−Hǫ

2(
√

|ξ|2+b2))

(
√

|ξ|2+b2)3

(

b2(f0 ·N)N+ξ2
i (f0 ·Ti)Ti+w(ξ,b)+R(ξ,b)

)

, (B.4)

where w(ξ,b) is an vector of odd functions in ξ1 and ξ2, R is a sum of terms of the form
|ξ|mbnq(ξ,b) with m+n=3,m≥0,n≥0 and q is some vector of bounded functions.

Now, let (ξ,θ) be the polar coordinate in the ξ-plane, i.e., ξ = |ξ|. Using (B.3) and
changing to polar coordinate, we can rewrite (B.1) as

e1=− f0

4µ

∫

√
λ2−b2

0

(1−Hǫ
1(
√

ξ2+b2))
√

ξ2+b2
ξdξ

− 1

4µ

∫

√
λ2−b2

0

(1−Hǫ
1(
√

ξ2+b2))
√

ξ2+b2
ξ2q(ξ,b)dξ+O(ǫ1+β). (B.5)

The first integral in (B.5) can, by using (2.11), be replaced by

− 1

4µ

∫

∞

0
f0
(1−Hǫ

1(
√

ξ2+b2))
√

ξ2+b2
ξdξ+O(ǫ1+β). (B.6)

After a change of variable r =
√

ξ2+b2 and changing the order of integration, we can
replace (B.6) by

−π

µ
f0

∫

∞

b

(

−bs2+
2sb2

3

)

φǫ(s)ds+
π

3bµ
f0

∫ b

0
s4φǫ(s)ds+O(ǫ1+β). (B.7)

Now, let us look at the second integral in (B.5). Since 0< ξ ≤λ< 1 and 1+β/2< 2, we

have ξ2 ≤ ξ1+β/2. Using (2.11) and making change of variable ǫr=
√

ξ2+b2, the absolute
value of the second integral in (B.5) is, with C denoting an arbitrary positive constant
independent of ǫ, bounded by

C
∫

∞

0

|1−Hǫ
1(
√

ξ2+b2)|
√

ξ2+b2
ξ1+β/2dξ ≤Cǫ1+β/2

∫

∞

0
|1−H1

1 (r)|rβ/2dr

≤Cǫ1+β/2. (B.8)
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Combining (B.7) and (B.8), we can write e1 as

e1=−π

µ
f0

∫

∞

b

(

−bs2+
2sb2

3

)

φǫ(s)ds+
π

3bµ
f0

∫ b

0
s4φǫ(s)ds+O(ǫ1+β/2). (B.9)

We now turn to e2. Using (B.4) and changing to polar coordinate, we can rewrite (B.2) as

e2=− 1

4µ

∫

√
λ2−b2

0

(1−Hǫ
2(
√

ξ2+b2))

(ξ2+b2)3/2
b2(f0 ·N)Nξdξ

− 1

8µ

(

(f0 ·T1)T1+(f0 ·T2)T2

)

∫

√
λ2−b2

0

(1−Hǫ
2(
√

ξ2+b2))

(ξ2+b2)3/2
ξ3dξ

− 1

4µ

∫

√
λ2−b2

0

(1−Hǫ
2(
√

ξ2+b2))

(ξ2+b2)3/2
w(ξ,b)ξdξ

− 1

4µ

∫

√
λ2−b2

0

(1−Hǫ
2(
√

ξ2+b2))

(ξ2+b2)3/2
R(ξ,b)ξdξ+O(ǫ1+β). (B.10)

Using (2.12), similarly to the case of e1, we can write the first integral of (B.10) as

−π

µ
(f0 ·N)N

∫

∞

b

(

bs2− 2

3
b2s

)

ds− π

3bµ
(f0 ·N)N

∫ b

0
s4φǫ(s)ds+O(ǫ1+β) (B.11)

and the second integral of e2 as

−π

µ
(f0−(f0 ·N)N)

∫

∞

b

(

s3−bs2+
1

3
b2s

)

ds

− π

3bµ
(f0−(f0 ·N)N)

∫ b

0
s4φǫ(s)ds+O(ǫ1+β). (B.12)

Since w is a vector of odd functions in ξ1 and ξ2, the third integral of e2 equals to zero.
We will now prove that the last integral of e2 is O(ǫ1+β/2), i.e., we will prove that for
m≥0,n≥0,m+n=3, we have

− 1

4µ

∫

√
λ2−b2

0

|1−Hǫ
2(
√

ξ2+b2)|
(ξ2+b2)3/2

ξmbnξdξ=O(ǫ1+β/2). (B.13)

Similarly to proving (B.8), using (2.12) and the fact that 1−β/2>0, the above integral can
be, with C denoting an arbitrary constant independent of ǫ, bounded by

C
∫

∞

0

|1−Hǫ
2(
√

ξ2+b2)|
(ξ2+b2)3/2

ξm+β/2bn dξ ≤Cǫ1+β/2
∫

∞

0
|1−H1

2(r)|rβ/2 dr

≤Cǫ1+β/2. (B.14)

Combining (B.11), (B.12), (B.14), and (B.9), we have

Eǫ(x)=−π

µ
(f0−(f0 ·N)N)

∫

∞

b
s(s−b)2φǫ(s)ds+O(ǫ1+β/2).

This completes the proof the Lemma 2.2.
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