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Abstract. We present the mathematical framework that governs the interaction of a force-
generating microorganism with a surrounding viscous fluid. We review slender-body theories
that have been used to study flagellar motility, along with the method of regularized Stokeslets.
We investigate the role of a dinoflagellate transverse flagellum as well as the flow structures
near a choanoflagellate.

1. INTRODUCTION. Microorganisms move through fluid in an inertia-free world
where their motile forces perfectly balance fluid forces at each instant [38]. If the flag-
ellum of a sperm suddenly stops waving, the sperm cell does not continue coasting—
the surrounding fluid motion and the sperm cell suddenly stop as well. Nevertheless,
microorganisms have evolved to move about efficiently in this regime, using molecu-
lar motors that rotate, flex, or undulate one or more flagella. Figure 1(a,b,c,d) shows a
sample of the diversity of flagellated eucaryotic microbes: the single flagellum of a rat
spermatozoa [33], the transverse and longitudinal flagella of a dinoflagellate, the single
flagellum of a choanoflagellate surrounded by a collar of microvilli [10], and the two
anterior flagella of an algal cell [46]. These elastic, flexible appendages exert forces
on the surrounding fluid, but at the same time, their shape responds to the fluid forces,
a fully coupled mechanical system. The rat spermatozoa must make its way through
the female reproductive tract and perhaps respond to chemical cues that guide its path
[13]. The choanoflagellate, when it is attached to the substratum with a stalk, uses its
flagellum to generate feeding currents [10, 39]. Figure 1(e) shows a diatom chain [47]
that, like the dinoflagellate in Figure 1(b), is a type of phytoplankton. Phytoplankton
are responsible for much of the oxygen production on Earth. Unlike the dinoflagellate,
the diatom chain is nonmotile and is moved passively by the surrounding fluid [47]. In
all cases, it is clear that the fluid dynamics near the microorganism is a vital contributor
to its function.

The first mathematical formulation of the fluid dynamics of microorganism motil-
ity was given in the classic 1951 paper by G.I. Taylor [43]. Using asymptotic analysis,
it was shown that a small-amplitude sinusoidal traveling wave passed down an infi-
nite, periodic filament immersed in a two-dimensional viscous fluid would experience
a translational velocity that was second order in amplitude. In the decades since, re-
search on the hydrodynamics of microorganism motility has flourished. Along with
laboratory experiments, mathematical modeling combined with analysis and compu-
tational methods has shed light on many features of coupled fluid-microorganism sys-
tems (see, for example, the review articles [14, 17, 20, 29]). Moreover, because of the
revolution in microfluidic technologies [42], researchers are able to investigate the in-
triguing possibility of using microscale machines to move colloids or particles within
a microfluidic device or in vivo. These microscale machines could be nature’s own mi-
croorganisms [46], as in the algal cell of Figure 1(e) or a fabricated helical bacterium
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Figure 1. (a) A rat sperm flagellum being manipulated by a microprobe [33] (reprinted with permission from
Charles Lindemann, taken from his website, http://www2.oakland.edu/biology/lindemann/Clips.
htm). The scale bar is 20 microns. (b) The dinoflagellate Pfisteria piscicida (courtesy of the Aquatic Botany
Lab, NC State). (c) Scanning electron micrograph of a choanoflagellate Salpingoeca rosetta thecate cell [10]
(reprinted from Developmental Biology, 357 Cell differentiation and morphogenesis in the colony-forming
choanoflagellate Salpingoeca rosetta, 72–82 (2011) with permission from Elevier). (d) A Chlamydomonas
reinhardtii cell moving a polystyrene bead [46] (Copyright (2005) National Academy of Sciences, U.S.A.).
(e) The chain-forming species of diatom Lithodesmium undulatum (courtesy of L. Karp-Boss, P. Jumars, and
A. Young, University of Maine) [47] (Copyright 2014 by the Association for the Sciences of Limnology and
Oceanography, Inc.). (f) A fabricated helical micromachine that will be actuated by an imposed electric field.
Reprinted with permission from [48] (Copyright 2009 American Chemical Society).

that is driven by an applied magnetic field (Figure 1(f)) [45, 48]. As this technology to
direct and control parcel delivery by microscale machines is developed, the importance
of understanding flows around both natural and fabricated microorganisms is evident.

Here, we will present the mathematical framework that governs the interaction of
a force-generating microorganism with the surrounding fluid. This framework gives
rise to a linear relationship between the forces supported by the microorganism (no
matter how complicated its geometry) and the fluid velocity, both at the microorgan-
ism’s surface and around it. We will review slender body simplifications that exploit
the aspect ratio of a typical flagellum, whose thickness is much smaller than its length.
We will also describe the method of regularized Stokeslets that may be used for more
complicated geometries that are not well approximated by a slender-body assumption.
Using both slender-body theory and regularized Stokeslets, we will examine the rota-
tional and translational motion of a waving helical ring chosen as a simple model for
the transverse flagellum of a dinoflagellate. A higher fidelity model of a dinoflagellate,
which includes the cell body, will also be discussed. Finally, we will present some
computational simulations of the flow around choanoflagellates.

2. EQUATIONS OF MOTION. The governing equations of incompressible fluid
dynamics express conservation of momentum and conservation of mass. Because the
characteristic lengths and velocities for flows at the scale of microorganisms are so
small, the fluid equations in this low Reynolds number regime reduce to the incom-
pressible Stokes equations. In R

3, they are
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μ�u = ∇ p − F(x, t) (1)

∇ · u = 0, (2)

where μ is the dynamic fluid viscosity, u is the fluid velocity, p is the pressure, and F
is the force that the microorganism is exerting on the fluid. This force will be concen-
trated at points corresponding to material points of the microorganism.

The first equation asserts that there is a balance between viscous forces, pressure
forces and the forces exerted by the microorganism at each instant in time. This time-
dependent force imposes a time scale in the flow. The second equation asserts that the
fluid is incompressible. At every spatial position x, for a given force F, these are four
scalar equations in four unknowns (the pressure and the three components of velocity).
Thepressure isdeterminedby the incompressibilitycondition—bytaking thedivergence
of (1), we see that the pressure satisfies the Poisson equation �p = ∇ · F in all of R3.

Most importantly, (1) and (2) represent a linear relationship between the forces ex-
erted by the microorganism and the fluid velocity. In the study of the hydrodynamics of
microorganism motility, one may exploit this linear relationship in either of two ways.
If the kinematics of the organism due to a prescribed sequence of motions of the flag-
ellum is assumed, then the velocities of the material points at the organism’s surface,
up to a rigid translation and rotation, are known. Given these prescribed velocities, the
distribution of forces F along the surface that is required to produce these velocities
may be solved. However, for a free-swimming organism, these forces must be such
that the total force and torque generated must be zero. These six constraints are used
to solve for the translational and rotational velocity of the microorganism (another six
scalars). Alternatively, one may take as given the forces F exerted at the organism’s
surface. From such a distribution of forces, the resulting velocity field u may be cal-
culated. Since the velocity of a material point of the microorganism is equal to the
fluid velocity evaluated at that point, the translation and rotation of the microorganism
is achieved by moving its surface points at these calculated velocities. In this sec-
ond approach, the kinematics of motility are not prescribed but emerge from the fully
coupled fluid-microorganism system. In this work, we will give two examples of the
first approach, where the fluid flow and resulting swimming progression are calculated
based upon the prescribed kinematics of both a dinoflagellate and a choanoflagellate
flagellum.

3. SINGULARITY SOLUTIONS OF STOKES EQUATIONS. The fundamental
solution of the problem in (1)–(2) is computed by considering an external force of
the form F(x) = f δ(x − X), where δ is the Dirac delta distribution and f is a vector
coefficient. We may solve for the pressure p(x) and substitute it back into (1) to solve
for the fluid velocity. The result is the Stokeslet [36, 37]:

pS(x) = f · (x − X)

4π |x − X|3 , (3)

uS(x) = f
8πμ|x − X| + (f · (x − X))(x − X)

8πμ|x − X|3 . (4)

We see that the velocity field due to this point force concentrated at X is, indeed,
singular at X, with a singularity 1/r , where r is the distance from the point of evalua-
tion of the Stokeslet to the position of the applied force. For such forces distributed on
the surface of the microorganism, the Stokeslet kernel is integrable. However, we note
that the Stokeslet kernel is not integrable over a one-dimensional curve in R

3.
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Other singularity solutions of the Stokes equations are derived from the Stokeslets
by differentiation. For example, a dipole can be defined as the negative Laplacian of a
Stokeslet of strength D:

pD(x) = 0,
(5)

uD(x) = − 2D
8πμ|x − X|3 + 6(D · (x − X))(x − X)

8πμ|x − X|5 .

Like the Stokeslet singular solution, the dipole singular solution satisfies the incom-
pressibility condition ((2)) as well as μ�u = ∇ p at every spatial point x �= X.

4. SLENDER-BODY THEORY. A slender-body theory begins with a thin tube im-
mersed in Stokes flow and a distribution of singularity solutions along its center-
line [1, 9, 25, 27, 30, 31]. Slender-body theories have been used to model the motion of
cilia, flagella, and filaments in a variety of situations [4, 19, 21, 22, 23, 26, 41, 43, 44].
The boundary conditions associated with the flow are (a) u(x) = v(σ ) for x on the
surface of the slender body at the cross section labeled by the parameter σ , and (b)
u(x) → 0 as |x| → ∞. Here, v(σ ) is a translational velocity of the cross section at σ .
The centerline of the tubular body is assumed to have length L and parametrized by
X(σ ). Here, for simplicity, we consider a tube with constant radius a (see Figure 2).
This tube is considered a slender body if the parameter ε = a/L is small. In dimen-
sionless variables, the slender body has length 1 and tube radius ε � 1. The goal of
slender-body theory is to develop an asymptotic formula that relates the velocity of
the slender body’s surface to forces, exerted along its centerline, that is consistent with
that motion. To this end, one considers the superposition of Stokeslets and dipoles,
given in (4)-(5), distributed along the centerline

8πμu(x) =
∫ 1

0

f(σ )

r
+ (f(σ ) · r)r

r 3
− 2D(σ )

r 3
+ 6(D(σ ) · r)r

r 5
dσ , (6)

where r = x − X (σ ) and r = |r|. The strength of the dipoles will be chosen so that
the velocities on a given circular cross section are approximately constant.

Figure 2. Schematic of a portion of the slender body. All spatial variables are scaled by the tube length so that
ε is a dimensionless slenderness parameter.

The zeroth order approximation. We consider first a straight cylinder aligned with
the x-axis so that X(σ ) = (σ, 0, 0) and assume the forces and dipole strengths are
constant along the section of the tube σ ∈ [−q, q] with ε � q. The velocity due to
this section of the tube at surface point x = (σ0, ε cos θ, ε sin θ) with |σ0| < q is

8πμvi (σ0) = f j

∫ q

−q

δi j

((σ0 − σ)2 + ε2)1/2
+ rir j

((σ0 − σ)2 + ε2)3/2
dσ

+ D j

∫ q

−q

−2δi j

((σ0 − σ)2 + ε2)3/2
+ 6rir j

((σ0 − σ)2 + ε2)5/2
dσ,
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with ri = xi − Xi(σ ) and implied summation notation. The second term of each inte-
gral involves the factor rir j , which leads to a θ dependence of the velocity of the tube.
That is, the velocity is different at different surface points on the same cross section
of the tube. The θ dependence can be eliminated from the leading order terms of the
integrals by choosing D = −ε2f/4. With this choice, taking β = 4(q2 − σ 2

0 )/ε2, the
velocity above is (to leading order in ε/q)

8πμv(σ0) =
⎛
⎝ 2 log β − 2 0 0

0 log β + 1 0
0 0 log β + 1

⎞
⎠

⎛
⎝ f1

f2

f3

⎞
⎠ . (7)

In resistive force theory, a long tube is approximated by a series of straight cylindrical
pieces placed end to end, and the velocity of each cylindrical piece is computed from
(7). This local slender-body theory was used in the classic 1955 work by Gray and
Hancock to study sperm motility [19]. Additional details can be found in [3, 31].

We note that as the evaluation point on the surface approaches an endpoint of the
tube (i.e., as σ0 → ±q), the approximation above becomes singular. This is a manifes-
tation of the fact that the approximation degrades as the evaluation point approaches
the tube endpoints. Higher-order singularities can be included to improve the ex-
pressions [25]. In the case of a periodic slender body, the centerline parametrization
can be chosen so that the evaluation point is always at σ0 = 0, leading to a simpler
expression.

Lighthill’s theory. We consider first a construction of the slender-body velocity fol-
lowing the strategy in [24, 30, 31]. The velocity evaluated at a point x is given by (6)
with D(σ ) = −ε2f(σ )/4. The result is

8πμu(x) =
∫ 1

0

f(σ )

r
+ (f(σ ) · r)r

r 3
+ ε2f(σ )

2r 3
− 3ε2(f(σ ) · r)r

2r 5
dσ ,

where r = x − X(σ ) and r = |r|. The choice of D(σ ) is motivated by the arguments
in the zeroth order approximation theory that eliminate the dependence on the angle
θ from the leading order terms of the integrals. The goal is to let x approach a point
on the tube centerline X(σ0). To do this, the integral is divided into two pieces. The
near-field portion is where |σ − σ0| is small, the forces are constant and equal to f(σ0),
and the tube is assumed to be straight. In the far-field portion, the dipole is neglected
due to its faster decay in r . Combining these elements, we obtain a final expression

8πμv(σ0) = 2fn(σ0) +
∫

ρ<r0

f(σ )

r0
+ (f · r0)r0

r 3
0

dσ , (8)

where r0 = X(σ0) − X(σ ), r0 = |r0| and ρ = ε
√

e/2. The factor fn is the component
of f normal to the tube centerline. In Lighthill’s slender-body theory, the errors are
O(ε).

Keller–Rubinow theory. Keller and Rubinow’s theory [28] develops the relationship
between velocity and force with errors O(ε2 ln(ε)). They begin by approximating (6)
at a point x in the fluid far from the filament. The far-field expression neglects the
dipoles as they decay faster than the Stokeslets. Then, as before, (6) is approximated
at a point x0 in the fluid near the point X(σ0) on filament using D = −ε2f/4. In the near
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field, the tube is assumed to have a uniform force density and a negligible curvature,
leading to the local term

8πμu(x0) = 8πμv(σ0) − (fn + 2fτ )
[

ln

( |x0|2
ε2

)
+ |x0|2 − ε2

|x0|2
]

+ 2fτ

[ |x0|2 − ε2

|x0|2
]

+ 2(f0 · x0)x0

[ |x0|2 − ε2

|x0|4
]

,

where f0 = f(σ0), fn and fτ are the components of f(σ0) normal and tangential to the
tube centerline, and v(σ0) is the unknown filament velocity at X(σ0). This expression is
matched asymptotically with the far-field velocity to produce a formula for the filament
velocity at X(σ0)

8πμv(σ0) =
∫ 1

0

f(σ )

r0
+ (f(σ ) · r0)r0

r 3
0

− f(σ0) + (f(σ0) · s)s
|σ − σ0| dσ

+ (fn + 2fτ )
[
ln

(
4σ0(1 − σ0)/ε

2
) − 1

] + 2fn(σ0), (9)

where r0 = X(σ0) − X(σ ), r0 = |r0|, and s is a unit vector tangent to the filament at
X(σ0). Because the asymptotic matching has been done for a point in the fluid, the
Keller–Rubinow theory also provides an expression for the fluid motion. More details
can also be found in [44].

5. REGULARIZED STOKESLETS. The Keller–Rubinow slender-body formula-
tion [28] relies on the exact cancellation of integrals that have the same asymptotic
singularity, which is difficult to achieve computationally unless one regularizes the in-
tegration kernel [44]. More generally, the Stokeslet formula gives a singular velocity
field when the forces are distributed along curves or scattered points. This motivates
revisiting the Stokes equations in (1)–(2) with a modified model of the forces.

We consider a force that is distributed smoothly over a small sphere of radius δ.
Rather than a delta distribution, the force is given by F(x) = fφδ(|x − X|), where φδ(r)

is a smooth symmetric function with total integral equal to 1 (like a narrow Gaussian).
The regularization parameter δ controls the width of the function. The function φδ(r)

can be selected so that �Gδ = φδ and �Bδ = Gδ can be solved analytically for Gδ(r)

and Bδ(r). Using these definitions, the solution of

μ�u = ∇ p − fφδ(|x − X|)
∇ · u = 0,

for the specific regularizing function φδ(r) = 15δ4/8π(r 2 + δ2)7/2 is

pδ
S (x) = f · (x − X)

(2r 2 + 5δ2)

8πμ(r 2 + δ2)5/2
, (10)

uδ
S (x) = f (r 2 + 2δ2)

8πμ(r 2 + δ2)3/2
+ (f · (x − X))(x − X)

8πμ(r 2 + δ2)3/2
, (11)

where r = |x − X|. As before, other regularized solutions to Stokes equations can be
found by differentiation. The method of regularized Stokeslets has been used in many
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applications related to the simulation swimming motions of microorganisms [5, 7, 16,
18, 40].

The regularized Stokeslet pressure and velocity in (10)–(11) are exact solution to
Stokes equations due to the regularized force centered at X and are no longer singu-
lar; the velocity is exactly incompressible, and the expressions reduce to the singular
Stokeslet in (3)–(4) as δ → 0. Using this method of regularized Stokeslets [6, 7], one
may readily compute the velocities at a collection of points on a surface due to forces
exerted at those same points by summing up the resulting regularized Stokeslets be-
cause the Stokes equations are linear. Alternatively, one may invert this relationship to
compute the forces at the points that give rise to prescribed velocities at these points.
Once these forces are computed, the evaluation of the fluid velocity at any point in R

3 is
easily achieved by summing up the Stokeslets due to each of these forces in (11) eval-
uated at that spatial point. We remark that a slender-body assumption is not required.

If a slender-body assumption is valid, then one may still exploit the geometry by
distributing regularized singularities along a centerline rather than around the surface
of the tube. The slender-body theories of Lighthill and Keller–Rubinow were rederived
in [8] for the case of force and dipole fields where the delta distribution was replaced
by a smooth localized spherically symmetric function φδ(r) centered at every point
X(σ ) of the body centerline, as above. Note that δ is assumed to satisfy δ ∼ ε.

For example, the regularized Keller–Rubinow formula to the asymptotic order
O(ε2 ln(ε)) + O(δ2 ln(δ)) becomes

8πμv(σ0) =
∫ 1

0

f(σ )√
r 2

0 + δ2
+ (f(σ ) · r0)r0

r 2
0

√
r 2

0 + δ2
− f(σ0) + (f(σ0) · s)s√

t2 + δ2
dσ

+ (f0 + (f0 · s)s)
[

ln(4σ0(1 − σ0)/(ε
2 + δ2)) − 1

] + 2fn(σ0), (12)

where r0 = X(σ0) − X(t). While the standard theory is recovered as δ → 0, the final
expression has built-in smoothing that eliminates instabilities encountered in compu-
tations with unsmoothed formulas (see [8] for details).

Regardless of the slender-body theory used in computations, the integrals in (8),
(9), or (12) are approximated by discretizing the centerline of the slender body and
replacing the integral with a quadrature rule. In practice, when the kinematics are im-
posed, the forces at the discrete points on the centerline are computed by solving a
linear system of equations since the velocities at these same points are known.

6. EXAMPLES.

Function of the dinoflagellate transverse flagellum. Dinoflagellates are unicellular
phytoplankton that swim due to the action of two flagella (see Figure 1(b)). A trail-
ing, longitudinal flagellum that propagates approximately planar waves, much like a
sperm flagellum, and a transverse helical flagellum that is wrapped around the cell’s
equator and propagates helical waves. The swimming trajectories of dinoflagellates are
helical, and the cell is observed to rotate about its longitudinal axis and translate also
along this axis. Until recently, there were differing conclusions about the role of the
each of the flagella [15, 32]. For instance, is the helical transverse flagellum responsi-
ble for rotation about the cell’s axis or translation along the axis or both? In order to
address this question, in [34], we idealized the transverse flagellum by a closed cylin-
drical ring around which helical bending waves were propagated. Here, we revisit this
idealized problem to compare Lighthill’s slender-body calculations of rotational and
translational velocity to those calculated using the method of regularized Stokeslets.
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We prescribe the kinematics of the tubular helical ring, such that its centerline’s
position at time t is ⎧⎪⎨

⎪⎩
X (s, t) = [

r − R sin
(

2πs
λ

− ωt
)]

cos
(

s
r

)
Y (s, t) = [

r − R sin
(

2πs
λ

− ωt
)]

sin
(

s
r

)
Z(s, t) = R cos

(
2πs
λ

− ωt
) (13)

where 0 ≤ s ≤ 2πr = L . The axis of this circular helix is a baseline circle of radius
r in the plane z = 0. The helical amplitude is R and λ is the wavelength. The surface
of the helical ring is then formed by circular cross sections of radius rh placed normal
to the above centerline. As time t progresses, a traveling wave with speed ws = ωλ

2π

revolves around the ring. In the following, we report lengths scaled by the diameter of
the baseline circle 2r , which we take equal to one, and velocities scaled by the velocity
of the traveling wave.

Figure 3 shows two views of a slender ring whose baseline circle has diameter
2r = 1, tubular radius is rh = 0.035 with four pitches supported along the ring and
a helical amplitude of R = 0.09, wavelength is λ = 2πr

4 , and angular frequency is
ω = 0.1. Using the method of regularized Stokeslets, the forces that are consistent
with the prescribed kinematics, along with the translational and rotational velocity that
guarantee that momentum and angular momentum are conserved, were computed. The
surface of the waving ring was discretized using 120 cross sections with six nodes per
cross section. The average distance between neighboring points on the ring’s surface
was ds = 0.0325, and the blob size was chosen to be δ = 0.019. Figure 3 shows stream-
lines that are projected onto the given planes by computing the 3D fluid velocities on
these planes due to the computed force distribution on the surface of the ring. Note the
upward-welling flow at the ring’s center. In these streamline plots, it is not possible
to discern either the translational or rotational velocity of the ring that will perfectly
balance force and torque. We report both the rotational velocity of the ring (Vr ) about
its axis and the upwards translational velocity normal to the ring’s baseline circle (Vt )
as a function of amplitude in Figure 4. We find that, indeed, a wave passed around the
helical ring causes it to undergo both rotation about its axis and translation along its
axis. Whether it moves upward or downward is dictated by the handedness of the helix
and the direction of the traveling wave. Figure 4 shows that both rotational and trans-
lational velocities increase with the amplitude of the helical wave. In this log-log plot,
a line of slope two is included to demonstrate that these velocities are second order
in amplitude for small amplitudes. We also note an excellent agreement between the
velocities computed using regularized Stokeslets and those computed using Lighthill’s
slender-body theory. In fact, the translational velocities computed using both meth-
ods are basically identical. We remark that while the method of regularized Stokeslets
relies on computing forces at a discrete collection of points on the two-dimensional
cylindrical surface, the slender-body method computes forces only at a discrete collec-
tion of points that discretize the one-dimensional helical centerline.

Of course, this idealized helical ring, while shedding some light on the function of
the transverse flagellum of a dinoflagellate, tells only a part of the story. What happens
when this ring is wrapped around a cell body? Will it still rotate as well as translate
along its axis? In order to examine this, we added a spherical cell body, centered also
at the ring’s center. Figure 5(a) shows a sphere whose radius R̄ = .5(r − R − 1.5rh)

and the sphere with twice that radius in Figure 5(b). Because this structure no longer
satisfies the assumptions of slender-body theory, we use the method of regularized
Stokeslets to compute the rotational and translational velocities of the coupled cell-
flagellum system. The surface of the sphere is discretized using a spherical centroidal
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Figure 3. Flow around the helical ring on (a) the xy-plane and (b) the yz-plane. These streamlines are pro-
jections onto the given planes of the 3D velocities calculated on those planes using the method of regularized
Stokeslets.
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Figure 4. Log-log plots of (a) normalized rotational velocity (Vr /ωs ) versus (R/λ) and (b) normalized trans-
lational velocity (Vt/ωs ) versus (R/λ) computed using slender-body theory (SBT) and regularized Stokeslets
with prescribed wave kinematics (RS).

Voronoi tessellation [12] so that points are approximately equally spaced with the av-
erage distance between nearby points about ds on the ring’s surface. Points on the
surface of the waving ring will move with a superposition of two velocities—the ve-
locity of the ring relative to itself due to the prescribed kinematics in Equation (13)
and the velocity due to a rigid translation and rotation. The points on the surface of
the sphere do not move relative to each other. Therefore, we specify the velocities due
to shape changes on the waving ring as before but prescribe zero shape-change ve-
locity at all points on the sphere. We then balance the total forces and torques on the
combined cell-flagellum structure to calculate the translational and rotational velocity
of the structure. Figure 6(a) shows that the resulting normalized rotational velocity
decreases with increasing spherical radius. However, Figure 6(b) shows that the trans-
lational velocity along its axis actually increases with spherical radius. In fact, the
translational velocity of the structure in Figure 5(b) is about 33% larger than that of
the helical ring alone. The rotational velocity, on the other hand, is about 19% smaller.
Note that the sphere in Figure 5(a) is discretized with 450 points (the average distance
between nearby points is 0.0329) while the sphere in Figure 5(b) is discretized with
1800 points (the average distance between nearby points is 0.0332). We also choose a
blob size δ = 0.019 as in the case without the sphere.
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Flows around choanoflagellates. Choanoflagellates are microorganisms whose life
cycle may include stages as a solitary, single cell as well as stages where it is part of a
multicelled colony. It is believed that understanding the aspects of multicellularity in
this model system can give insight into the evolution of cell differentiation in animals.
The choanoflagellate Salpingoeca rosetta, in response to different environmental cues,
differentiates into cell types that are either single celled or in colonies in the form of
chains or rosettes [10]. Each of the single-celled microorganisms has a single flagellum
that is responsible for motility and creating a fluid flow that draws bacterial prey onto
the outer surface of its collar of microvilli (see Figure 1(c)). Free-swimming cells may
have a full collar that is about 5 microns long, a truncated collar, or none at all. Chain
colonies are formed with cells attached side-by-side, but rosette colonies are formed
when the cells aggregate around a central point, with their flagella emanating radially
outwards from the spherical colony. In the intriguing experiments of Dayel et al. [10],
swimmer cells are induced into forming rosette colonies when bacteria are introduced
to the culture. Why is colony formation advantageous? Does the cooperative arrange-
ment of flagella of the cells, either side-by-side or emanating radially from a sphere,
enhance fluid flow to the cells? Recently, Roper et al. [39] investigated the hydrody-
namics of flagellated cells in a colony using a minimal fluid model, where each cell
is represented by two point forces. Studying the flow generated by these singularities
sufficiently far away from the cell dimers, it was shown that enhanced fluid supply
does occur. In this minimal model, neither the details of the flow near the organism
nor the effects of its morphologies are addressed.
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Figure 7. Projected streamlines around the choanoflagellate model on the xz-plane (first row) and the yz-plane
(second row) for an organism without microvilli (column (a)) and with microvilli (column (b)). A sinusoidal
wave from cell body to tip is being passed along the planar flagellum in the xz-plane.

In an effort to understand the role of the microvilli collar in the flow around a single
choanoflagellate, either tethered in space or freely swimming, we use the method of
regularized Stokeslets. The surface of a spherical cell body, individual microvilli, and
the flagellum that is beating in a planar wave from cell body to tip are discretized.
The velocity on the flagellum is imposed based upon the prescribed wave kinematics.
Zero fluid velocity on the cell body and on the microvilli is also imposed. Because the
cell body is fixed in space, as for a thecate cell, we do not allow for a translational
and rotational velocity. Figure 7 shows four snapshots of projected streamlines for a
cell without microvilli (column a) and a cell with microvilli (column b). The planar
flagellum is undulating sinusoidally in the xz-plane. While the flow away from the mi-
croorganism is similar in each case, the flow nearby is certainly altered when microvilli
are present. It is this nearby flow that dominates the dynamics of nutrient uptake at the
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cell surface. It is our hope to expand this model to study the hydrodynamic interaction
of a collection of such cells in a colony. In particular, we expect that detailed models
like these can be used to inform the more minimal models as in [39].

7. DISCUSSION. Here, we have presented an overview of the mathematics central
to computing flows around microorganisms. Because the flagella of these small crea-
tures are much longer than they are thick, the applied mathematician’s quest for a
small parameter ends in triumph. Slender-body theories have been succesfully used to
study flagellar hydrodynamics. However, the diversity of microorganisms, with their
many flagella and other appendages, quickly moves beyond the realm of slender-body
assumptions. Other formulations, like the method of regularized Stokeslets, have been
developed to address these complications.

It is important to note that the dinoflagellate and choanoflagellate examples chosen
above assumed that the kinematics of the waving flagella were preset and not deter-
mined by the coupling to the viscous fluid around them. In fact, many challenging
questions in the hydrodynamics of microorganism motility evolve around understand-
ing how passive elastic forces and forces due to molecular motors interact with the
surrounding fluid to achieve the observed wave form. How and why do the flagella of
a bacteria form a bundle [2]? Why does the symmetric beat pattern of a mammalian
sperm change to a highly asymmetric one when it is about to fertilize the egg [11]? The
methodology described above is also perfect for these questions (i.e., [16, 35])—here,
the forces are specified and the resulting velocities are directly evaluated. However,
this brings up a whole other set of mathematical modeling challenges. What are the
elastic properties of the microorganisms and their flagella? What are the internal force
generating mechanisms that enable flagellar beating, and how are they altered by bio-
chemistry or mechanics?

In summary, the fluid dynamics of microorganism motility has been a driving force
in applied mathematics and computation. With the advance of technologies, both ex-
perimental and computational, understanding movement at this microscale is possible.
Of course, as more is learned, more questions are posed, presenting a rich array of
intriguing problems for mathematical scientists.

ACKNOWLEDGMENT. The authors thank the undergraduate student Niti Nararidh for productive summer
research work on the choanoflagellate project.

REFERENCES

1. G. K. Batchelor, Slender-body theory for particles of arbitrary cross-section in Stokes flow, J. Fluid Mech.
44 (1970) 419–440.

2. H. Berg, R. Anderson, Bacteria swim by rotating their flagellar filaments, Nature 245 (1973) 380–382.
3. J. R. Blake, E. O. Tuck, P. W. Wakeley, A note on the S-transform and slender body theory in Stokes

flow, IMA J. Appl. Math. 75 (2010) 343–355, http://dx.doi.org/10.1093/imamat/hxq005.
4. A. T. Chwang, T. Y. Wu, A note on the helical movements of micro-organisms, Proc. Roy. Soc. Lond. B

178 (1971) 327–346.
5. L. Cisneros, J. Kessler, R. Ortiz, R. Cortez, M. Bees, Unexpected bipolar flagellar arrangements and

long-range flows driven by bacteria near solid boundaries, Phys. Rev. Lett. 101 (2008) 168102, http://
dx.doi.org/10.1103/physrevlett.101.168102.

6. R. Cortez, The method of regularized Stokeslets, SIAM J. Sci. Comput. 23 (2001) 1204, http://dx.
doi.org/10.1137/s106482750038146x.

7. R. Cortez, L. Fauci, A. Medovikov, The method of regularized Stokeslets in three dimensions: Analysis,
validation, and application to helical swimming, Phys. Fluids 17 (2005) 031504.

8. R. Cortez, M. Nicholas, Slender body theory with regularized forces, Commput. Appl. Math Comp. Sci.
7 (2012) 33–62, http://dx.doi.org/10.2140/camcos.2012.7.33.

November 2014] FLOWS AROUND MICROORGANISMS 821

http://dx.doi.org/10.1093/imamat/hxq005
http://dx.doi.org/10.1103/physrevlett.101.168102
http://dx.doi.org/10.1103/physrevlett.101.168102
http://dx.doi.org/10.1137/s106482750038146x
http://dx.doi.org/10.1137/s106482750038146x
http://dx.doi.org/10.2140/camcos.2012.7.33


9. R. G. Cox, The motion of long slender bodies in a viscous fluid Part 1. General theory, J. Fluid Mech. 44
(1970) 791–810.

10. M. Dayel, R. Alegado, S. Fairclough, T. Levin, S. Nichols, K. McDonald, N. King, Cell differentiation
and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta, Devel. Biol. 357 (2011)
73–82, http://dx.doi.org/10.1016/j.ydbio.2011.06.003.

11. R. P. DeMott, S. S. Suarez, Hyperactivated sperm progress in the mouse oviduct, Biol. Reprod. 46 (1992)
779–785.

12. Q. Du, M. Gunzburger, L. Ju, Constrained centroidal Voronoi tessellations for surfaces, SIAM J. Sci.
Comput. 24 (2003) 1488–1506.

13. M. Eisenbach, L. Giojalas, Sperm guidance in mammals—An unpaved road to the egg, Nat. Rev. Mol.
Cell Biol. 7 (2006) 276–285, http://dx.doi.org/10.1038/nrm1893.

14. L. Fauci, R. Dillon, Biofluidmechanics of reproduction, Annu. Rev. Fluid. Mech. 38 (2006) 371–394.
15. T. Fenchel, How dinoflagellates swim., Protist 152 (2001) 329–338, http://dx.doi.org/10.1146/

annurev.fluid.37.061903.175725.
16. H. Flores, E. Lobaton, S. Mendez-Diez, S. Tlupova, R. Cortez, A study of bacterial flagellar bundling,

Bull. Math. Bio. 67 (2005) 137–168, http://dx.doi.org/10.1016/j.bulm.2004.06.006.
17. E.A.Gaffney, H.Gadelha, D.J.Smith, J.R.Blake, J.C.Kirkman-Brown, Mammalian sperm motility: Obser-

vation and theory, Ann. Rev. Fluid Mech. 43 (2011) 501–528.
18. E. A. Gillies, R. M. Cannon, R. B. Green, A. A. Pacey, Hydrodynamic propulsion of human sperm,

J. Fluid Mech. 625 (2009) 445–474.
19. J. Gray, G. J. Hancock, The propulsion of sea-urchin spermatozoa, J. Exp. Biol. 32 (1955) 802–814.
20. J. S. Guasto, R. Rusconi, R. Stocker, Fluid mechanics of planktonic microorganisms, Ann. Rev. Fluid

Mech. 44 (2012) 373–400, http://dx.doi.org/10.1146/annurev-fluid-120710-101156.
21. S. Gueron, N. Liron, Simulations of three-dimensional ciliary beats and cilia interactions, Biophys. J. 65

(1993) 499–507.
22. J. J. L. Higdon, The generation of feeding currents by flagellar motions, J. Fluid Mech. 94 (1979)

305–330.
23. ———, A hydrodynamic analysis of flagellar propulsion, J. Fluid Mech. 90 (1979) 685–711.
24. J. Lighthill, Helical distributions of Stokeslets, J. Eng. Math. 30 (1996) 35–78.
25. R. E. Johnson, An improved slender-body theory for Stokes flow, J. Fluid Mech. 99 (1980) 411–431.
26. R. E. Johnson, C. J. Brokaw, A comparison between resistive-force theory and slender-body theory,

Biophys. J. 25 (1979) 113–127.
27. R. E. Johnson, T. Y. Wu, The asymptotic solution formula for uniform flow past a slender torus, J. Fluid

Mech. 95 (1979) 263–277.
28. J. B. Keller, S. I. Rubinow, Slender-body theory for slow viscous flow, J. Fluid Mech. 75 (1976)

705–714.
29. E. Lauga, T. Powers, The hydrodynamics of swimming microorganisms, Rep. Prog. Phys. 72 (2009)

096601, http://dx.doi.org/10.1088/0034-4885/72/9/096601.
30. J. Lighthill, Mathematical Biofluiddynamics, SIAM, Philadelphia, 1975.
31. ———, Flagellar hydrodynamics, SIAM Rev. 18 (1976) 161–230.
32. I. Miyasaka, K. Nanba, K. Furuya, Y. Nimura, A. Azuma, Functional roles of the transverse and longi-

tudinal flagella in the swimming motility of Prorocentrum minimum (Dinophyceae)., J. Exp. Biol. 207
(2004) 3055–3066.

33. M. J. Moritz, K. A. Schmitz, C. B. Lindemann, Measurement of the force and torque produced
in the calcium response of reactivated rat sperm flagella, Cell Motil. Cytoskeleton 49 (2001)
33–40.

34. H. Nguyen, R. Ortiz, R. Cortez, L. Fauci, The action of waving cylindrical rings in a viscous fluid, J. Fluid
Mech. 671 (2011) 574–586, http://dx.doi.org/10.1017/s0022112010006075.

35. S. D. Olson, S. S. Suarez, L. J. Fauci, Coupling biochemistry and hydrodynamics captures hyperactivated
sperm motility in a simple flagellar model, J. Theoretical Bio. 283 (2011) 203–216.

36. C. Pozrikidis, Boundary Integral and Singularity Methods for Linearized Viscous Flow, Cambridge Univ.
Press, 1992.

37. C. Pozrikidis, Introduction to Theoretical and Computational Fluid Dynamics, Oxford Univ. Press, 1997.
38. E. M. Purcell, Life at low Reynolds number, Am. J. Phys. 45 (1977) 3–11.
39. M. Roper, M. Dayel, R. Pepper, M. Koehl, Cooperatively generated stresslet flows supply fresh fluid to

multicellular choanoflagellate colonies, Phys. Rev. Lett. 110 (2013) 228104, http://dx.doi.org/10.
1103/physrevlett.110.228104.

40. D. J. Smith, A boundary element regularized Stokeslet method applied to cilia- and flagella-driven flow,
Proc. R. Soc. A 465 (2009) 3605–3626.

41. D. J. Smith, E. A. Gaffney, J. R. Blake, J. C. Kirkman-Brown, Human sperm accumulation near surfaces:
A simulation study, J. Fluid Mech. 621 (2009) 289–320.

822 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 121

http://dx.doi.org/10.1016/j.ydbio.2011.06.003
http://dx.doi.org/10.1038/nrm1893
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1146/annurev.fluid.37.061903.175725
http://dx.doi.org/10.1016/j.bulm.2004.06.006 
http://dx.doi.org/10.1146/annurev-fluid-120710-101156
http://dx.doi.org/10.1088/0034-4885/72/9/096601
http://dx.doi.org/10.1017/s0022112010006075
http://dx.doi.org/10.1103/physrevlett.110.228104
http://dx.doi.org/10.1103/physrevlett.110.228104


42. H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-
on-a-chip, Annu. Rev. Fluid Mech. 36 (2004) 381–411.

43. G. I. Taylor, Analysis of the swimming of microscopic organisms, Proc. R. Soc. Lond. 209 (1951) 447.
44. A. K. Tornberg, M. Shelley, Simulating the dynamics and interactions of flexible fibers in Stokes flows,

J. Comput. Phys. 196 (2004) 8–40.
45. S. Tottori, L. Zhang, K. K. Krawczyk, A. Franco-Obregon, B. J. Nelson, Magnetic helical micromachines:

Fabrication, controlled swimming, and cargo transport, Adv. Mater. 24 (2012) 811–816, http://dx.
doi.org/10.1002/adma.201103818.

46. D. B. Weibel, P. Garstecki, D. Ryan, W. R. DiLuzio, M. Meyer, J. E. Seto, G. M. Whitesides, Microoxen:
Microorganisms to move microscale loads, Proc. Natl. Acad. Sci. 102 (2005) 11963–11967.

47. A. M. Young, L. Karp-Boss, P. A. Jumars, E. N. Landis, Quantifying diatom aspirations: Mechanical
properties of chain-forming species, Limnol. Oceanogr. 57 (2012) 1789, http://dx.doi.org/10.
4319/lo.2012.57.6.1789.

48. L. Zhang, J. Abbott, L. Dong, K. Peyer, B. Kratochvil, H. Zhang, C. Bergeles, B. J. Nelson, Characteriz-
ing the swimming properties of artificial bacterial flagella, Nano Lett. 9 (2009) 3663–3667.

HOA NGUYEN received her Ph.D. in computational and applied mathematics from Florida State University
and then became a postdoctoral researcher at the Center for Computational Science at Tulane University. She
is now an assistant professor of the Department of Mathematics at Trinity University in San Antonio, Texas.
She is passionate about engaging undergraduate students in her research and enjoys collaborating with others
to solve interesting problems in computational fluid dynamics, mathematical biology, multiscale modeling and
simulations of protein aggregation and misfolding, mesh generation, and robotic navigation.
Department of Mathematics, Trinity University, San Antonio, TX 78212
hnguyen5@trinity.edu

RICARDO CORTEZ received a B.A. in mathematics and a B.S. in mechanical engineering from Arizona
State University. He earned a Ph.D. in applied mathematics from the University of California at Berkeley
in 1995 and became an NSF postdoctoral fellow and Courant Instructor at New York University. He joined
the faculty at Tulane University in 1998, where he is the Pendergraft William Larkin Duren Professor of
Mathematics and director of the Center for Computational Science. Prof. Cortez was the 2012 recipient of the
Blackwell–Tapia prize for significant contributions to research and for serving as a role model for mathematical
scientists and students from underrepresented minority groups. His research interests include computational
mathematics, mathematical biology, modeling, and secondary mathematics education.
Mathematics Department, Tulane University, New Orleans, LA 70118
rcortez@tulane.edu

LISA FAUCI received her Ph.D. in Mathematics from the Courant Institute of New York University, and then
joined the Department of Mathematics at Tulane University in New Orleans, Louisiana. She enjoys working
with students and postdocs on problems in biological fluid dynamics and scientific computing.
Mathematics Department, Tulane University, New Orleans, LA 70118
fauci@tulane.edu

November 2014] FLOWS AROUND MICROORGANISMS 823

http://dx.doi.org/10.1002/adma.201103818
http://dx.doi.org/10.1002/adma.201103818
http://dx.doi.org/10.4319/lo.2012.57.6.1789
http://dx.doi.org/10.4319/lo.2012.57.6.1789

