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a b s t r a c t

We develop a Lagrangian numerical algorithm for an elastic rod immersed in a viscous,
incompressible fluid at zero Reynolds number. The elasticity of the rod is described by a
version of the Kirchhoff rod model, where intrinsic curvature and twist are prescribed,
and the fluid is governed by the Stokes equations in R3. The elastic rod is represented by
a space curve corresponding to the centerline of the rod and an orthonormal triad, which
encodes the bend and twist of the rod. In this method, the differences between the rod con-
figuration and its intrinsic shape generate force and torque along the centerline. The cou-
pling to the fluid is accomplished by the use of the method of regularized Stokeslets for the
force and regularized rotlets for the torque. This technique smooths out the singularity in
the fundamental solutions of the Stokes equations for the computation of the velocity of
the rod centerline. In addition, the computation of the angular velocity of the rod requires
the use of regularized (potential) dipoles. As a benchmark problem, we consider open and
closed rods with intrinsic curvature and twist in a viscous fluid. Equilibrium configurations
and dynamic instabilities are compared with known results in elastic rod theory. For cases
when the exact solution is unknown, the numerical results are compared to those pro-
duced by the generalized immersed boundary (gIB) method, where the fluid is governed
by the Navier–Stokes equations with small Reynolds number on a finite (periodic) domain.
It is shown that the regularization method combined with Kirchhoff rod theory contributes
substantially to the reduction of computation time and efficient memory usage in compar-
ison to the gIB method. We also illustrate how the regularized method can be used to
model microorganism motility where the organism is propelled by a flagellum propagating
sinusoidal waves. The swimming speeds of this flagellum using the regularized Stokes for-
mulation are matched well with classical asymptotic results of Taylor’s infinite cylinder in
terms of frequency and amplitude of the undulation.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The classical Kirchhoff rod theory [1] has been employed to study the dynamical instabilities of elastic rods [2–6] and
applied to various problems in which long, thin rodlike structures at macro and micro scales are involved. Most of the work
focuses on the rod dynamic instabilities or steady configurations in the absence of any environment [7–12,3]. Initial models
that include the effect of a fluid medium around the rod used some type of artificial damping [13,5] to account for the drag
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within the fluid or used resistive force theory for the case of a Stokes fluid [14]. More recently, Lim et al. have developed a
more comprehensive model where the rod is immersed in a fluid by coupling the rod dynamics with the Navier–Stokes equa-
tions [15–17].

The importance of including the fluid medium in the rod dynamics is evident in the many applications of elastic rod mod-
els, such as the study of supercoiling dynamics of DNA [18–20], bacterial flagellar behavior [21], and growth of bacteria [22–
24]. In many physical and biological applications, we are interested in modeling an elastic filament or thin rodlike structure
that is immersed in a fluid, where the outcome of interest may be the flow around the object, interactions of structures, or
possibly the swimming speed if the structure is actively bending. Since most of these applications are focused on small
length scale filamentous structures within the fluid, where viscous forces dominate, it is natural to model the dynamics
of elastic rods in a viscous fluid governed by a Kirchhoff rod formulation and the Stokes equations.

The goal of this work is to present a grid free numerical algorithm for thin rodlike structures in the limit of zero Reynolds
number that captures the bend and twist of an elastic rod. The elastic rod is described by a three-dimensional space curve
representing the centerline of the rod and an associated orthonormal triad along the rod, encoding the amount of bend and
twist along the rod. The differences between the rod configuration at a given time and its intrinsic shape generate forces and
torques along the centerline. These act on the fluid, generating flows that affect the rod itself. This coupling can be modeled
by a variety of methods. In the Stokes regime, it is known that boundary integral methods [25–27], slender body theory [28–
30], the immersed boundary (IB) method [31], and the method of regularized Stokeslets [32,33] have been used to model
slender bodies immersed in a fluid. Biological applications using the method of regularized Stokeslets include modeling
arthropod filiform hairs [34], flagellar bundling of bacteria [35], spirochete motility [33], sperm swimming near surfaces
[36], and hyperactivated sperm motility [37]; however, the formulation has never been coupled with the elastic rod dynam-
ics. Slender body theory has also been extended to study growing elastic filaments [30] and the interaction of flexible fila-
ments [38]. In all of these examples, each structure was described by a centerline (or centerlines), which captured the
shearing and extension/compression, but the twist was neglected.

In the past few years the generalized immersed boundary (gIB) method has been developed and improved to study the
dynamics of filamentous structures such as marine cables and bacterial flagella [15–17,39]. In this method, the dynamics of
the rod are governed by a Kirchhoff rod model, where the bend and twist of the rod are captured. The fundamental math-
ematical framework is the same as the original IB method; however, in the gIB method the immersed boundary applies tor-
ques as well as forces to the surrounding fluid, and the immersed boundary rotates at the local angular velocity of the fluid as
well as translates at the local fluid velocity. A possible disadvantage, but not always, of the IB method is that since the fluid is
governed by the full Navier–Stokes equations, the computation time is expensive, especially, in three-dimensional settings.
One way to overcome this disadvantage is to use an adaptive version of the numerical method [15], and another way is to use
fundamental solutions for problems at zero Reynolds number, which will be presented here.

We will focus on a regularized Stokes formulation in which the immersed structure takes the form of Kirchhoff’s elastic
rod. In this formulation, we are able to exploit the linearity of the Stokes equations to represent the local linear and angular
velocity as a superposition of regularized fundamental solutions. Since this is strictly a Lagrangian method, we only evaluate
the linear and angular fluid velocity at the centerline of the rod, making the method computationally efficient. To investigate
the utility of the regularized Stokes framework, we illustrate how this method can be used to model waves of bending in a
flagellum. We also conduct validation studies and compare the results with known solutions from elastic rod theory. In cases
when solutions are unknown, the numerical results are compared to those produced by the gIB method, where the fluid is
described by the Navier–Stokes equations with small Reynolds number.
2. Kirchhoff rod model

Variations of Kirchhoff models for elastic rods have been developed and applied to various modeling problems [8,10,1,3–
5,40]. In this work we adopt a version of the Kirchhoff rod model, as developed by Lim et al. [16,17], to study the dynamics of
an elastic rod interacting with an incompressible, viscous fluid. As in the standard Kirchhoff rod model, the rod can be rep-
resented by a space curve XðsÞ and an associated orthonormal triad fD1ðsÞ; D2ðsÞ; D3ðsÞg for 0 6 s 6 L, where L is the length of
the unstressed rod and s is a Lagrangian parameter that is initialized as arclength. It is assumed that the rod is homogeneous
and isotropic. In contrast to the standard Kirchhoff rod theory, we do not exactly enforce the constraint that D3 is to be
aligned with the tangent vector to the rod
@X=@s ¼ D3: ð1Þ
Similarly, we do not enforce an inextensibility constraint for the rod,
jj@X=@sjj ¼ 1; ð2Þ
where jj � jj denotes the Euclidean norm. Instead, we use a postulated energy penalty associated with the rod that tends to
maintain these two conditions approximately (see Eq. (6) below).

We consider an elastic rod in its relaxed form such that D1 and D2 are perpendicular to the axis of the rod and aligned
with the principal axes of the cross section, capturing the bend and twist of the rod. The director basis also forms a right-
handed triad, Di � Dj ¼ dij, where dij is the Kronecker delta. Internal forces and couples are transmitted across a section of
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the rod at s and are denoted by FðsÞ and NðsÞ, respectively. As derived in [16], averaging the stresses on an arbitrary cross
section, the force and torque balance give:
0 ¼ f þ @F
@s
; ð3aÞ

0 ¼ nþ @N
@s
þ @X

@s
� F

� �
; ð3bÞ
where the force density f and torque density n (with respect to the measure ds) exerted by the fluid on the rod are expanded
in terms of the orthonormal triad fD1;D2;D3g. Similarly, the internal force F and internal moment N on a perpendicular cross
section are also expanded in the basis of the triad as follows:
F ¼
X3

i¼1

FiDi; N ¼
X3

i¼1

NiDi; ð4aÞ

f ¼
X3

i¼1

f iDi; n ¼
X3

i¼1

niDi; ð4bÞ
for i = 1, 2, 3. The constitutive relations for the unconstrained version of the Kirchhoff rod are given by:
Ni ¼ ai
@Dj

@s
� Dk �Xi

 !
; ð5aÞ

Fi ¼ bi Di � @X
@s
� d3i

� �
; ð5bÞ
where ði; j; kÞ is any cyclic permutation of (1, 2, 3), i.e., (1, 2, 3), (2, 3, 1), and (3, 1, 2). The twisting modulus of the rod is a3 and
the bending moduli are a1 and a2 with a1 ¼ a2, since we assume the rod has axisymmetric material properties and a circular
cross section of constant radius. The extension modulus is b3 and the shear moduli are b1 and b2. The strain twist vector is

defined to be ðX1;X2;X3Þ, where the intrinsic curvature is given as j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þX2
2

q
and X3 is the intrinsic twist whose sign

determines the handedness of the rod. An open rod at a relaxed state becomes straight and untwisted when the strain twist
vector is a zero vector, while the open rod becomes a helix when both intrinsic curvature and twist are nonzero. The helical
pitch and radius are uniquely determined by the intrinsic curvature and twist, ðj;X3Þ.

The constitutive relations above are derived from a variational argument of the following elastic energy penalty,
E ¼ 1
2

Z L

0

X3

i¼1

ai
@Dj

@s
� Dk �Xi

 !2

þ
X3

i¼1

bi Di � @X
@s
� d3i

� �2
2
4

3
5ds; ð6Þ
where ði; j; kÞ is again any cyclic permutation of (1, 2, 3). In the limit as bi !1, we have the standard Kirchhoff rod model.
See [16] for more detail. In this unconstrained Kirchhoff rod model, the penalty formulation tends to maintain the inexten-
sibility constraint and tends to maintain that D3 is the unit tangent vector to the rod.
3. Regularized Stokes formulation

In this section we establish the exact regularized solutions of the incompressible Stokes equations in R3 to describe an
elastic rod with intrinsic curvature and twist. The rod is moving in a viscous, incompressible fluid, thus its movement is dri-
ven by regularized forces and torques as defined by the Kirchhoff rod model, described in §2. To simplify the derivation, we
first look at the local linear and angular velocity of the Stokes equations for a single point force and torque applied at the
same point. This derivation will then be extended from the case of a single point force and torque to the case of forces
and torques along the rod.

In the low Reynolds number regime, where viscous forces dominate, many methods have utilized the linearity of the
Stokes equations to derive solutions in terms of fundamental solutions, Stokeslets. When the forces are concentrated along
a curve in R3, the Stokeslet solution is singular when evaluated at a point along the curve. Due to this singularity in the
Stokeslet, regularization techniques have been utilized. The method of regularized Stokeslets has been previously developed
and implemented to calculate the local linear velocity for the case of fb corresponding to forces only [32,33], and for the case
of fb corresponding to body forces and a driving torque at a single point [33,35]. This framework is now extended to the case
where the force and torque can be defined at all points along the centerline and at the orthonormal triads. In addition, the
twist of the elastic rod will be captured via the local angular velocity, corresponding to the rigid rotation of the orthonormal
triad.
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3.1. Regularized derivation for a singular force

In the case of zero Reynolds number, we assume that the fluid is governed by the Stokes equations,
0 ¼ �rpþ lDuþ fb
; ð7Þ

0 ¼ r � u; ð8Þ
where l is the fluid viscosity, u is the fluid velocity, p is the fluid pressure, and fb is the force per unit volume applied to the
fluid by the immersed body. The incompressibility condition is given in Eq. (8). When the elasticity of the rod is governed by
the Kirchhoff model detailed in Section 2, the rod applies force and torque to the surrounding fluid. Hence, equations of mo-
tion for the rod involve both the local linear velocity and the local angular velocity of the fluid w, defined as
w ¼ 1
2
r� u: ð9Þ
Deriving the regularized Stokes formulation for a point force and torque applied to the fluid, we replace fb by the regu-
larized force and torque as follows:
fbðxÞ ¼ goweðx� XoÞ þ
1
2
r�moweðx� XoÞ; ð10Þ
where go is a point force and mo is a point torque, both applied at Xo. Here, x may be any point in the fluid, including the
point where the force and torque are being applied. For simplicity in this derivation, we assume go and mo are constant.
However, in the elastic rod applications, they depend on time and the Lagrangian parameter s. The cutoff (or blob) function
we is a radially symmetric smooth approximation to a three-dimensional delta distribution and has the property that
Z

R3
weðx� XoÞdx ¼ 1: ð11Þ
The point force or torque is spread by the cutoff function we to a region centered at Xo. The regularization parameter e is a
numerical parameter that controls the effective radius of the region where the support is concentrated [33]. Examples of
three-dimensional, radially symmetric cutoff functions with infinite support include:
weðrÞ ¼
15e4

8pðr2 þ e2Þ7=2 ; ð12Þ

weðrÞ ¼
15e6 5� 2r2

e2

� �
16pðr2 þ e2Þ9=2 ; ð13Þ
where r ¼ jjx� Xojj. In Fig. 1, a graph of the cutoff function in Eq. (13) is given for different values of the regularization
parameter e. Note that as e increases, the height of the cutoff function decreases due to the constraint thatR

R3 weðx� XoÞdx ¼ 1. In the limit as e! 0, we recover a Dirac delta function.
Similar to the derivation in [32], we now define two functions GeðxÞ and BeðxÞ as the solutions of
DGe ¼ weðxÞ and DBe ¼ Ge in R3; ð14Þ
2 0 2

0

0.5

1

1.5

r

=1

=2

=3

Fig. 1. Blob function given in Eq. (13) for different values of the regularization parameter e.
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where Ge and Be are smooth approximations of the Green’s function and the solution to the biharmonic equation, respec-
tively. We write the regularized fundamental solution of the incompressible Stokes Eqs. (7, 8) and (10) for the local linear
velocity in the form of
u ¼ 1
l

uS½go� þ
1
l

uR½mo�; ð15Þ
where uS½go� and uR½mo� are the regularized Stokeslet given the point force go and the regularized rotlet given the point tor-
que mo, respectively. They are given specifically by
uS½go� ¼ ðgo � rÞrBe � goGe; ð16Þ

uR½mo� ¼
1
2

mo �rGe: ð17Þ
Similarly, we can obtain the angular velocity w by
w ¼ 1
2
r� u

¼ 1
l

uR½go� þ
1
l

uD½mo�; ð18Þ
where the first term describes the regularized rotlet by the point force go and the second term describes the regularized di-
pole by the point torque mo and they are written as
uR½go� ¼
1
2

go �rGe; ð19Þ

uD½mo� ¼ �
1
4
½rðmo � rGeÞ �mowe�: ð20Þ
The above expressions for the linear velocity and the angular velocity are the regularized versions of the fundamental
solutions of the Stokes equations when the regularized point force and torque are applied at Xo. We wish to emphasize that
Eqs. (15) and (18) are an exact solution for the regularized body forces as given in Eq. (10). For more details on the derivation
of the linear and angular velocities, the reader is referred to the appendix in Section A.

3.2. Regularized Stokes formulation for an elastic rod with curvature and twist

We now extend this method for the incompressible Stokes equations where the elasticity of the rod is governed by the
Kirchhoff model in Section 2 and the rod is immersed in the fluid and moving in time. The elastic rod C is given a Lagrangian
description by a three-dimensional space curve Xðs; tÞ and its associated orthonormal basis fD1ðs; tÞ;D2ðs; tÞ;D3ðs; tÞg that
indicates the amount of curvature and twist of the rod. The variable s is a material coordinate along the rod initialized as
arclength and t is time. We use the force and torque balance Eqs. (3a)–(5b) described in Section 2 to describe the elastic
rod C, which is assumed to be neutrally buoyant. Since the rod is moving in the fluid, each of the variables in these equations
are now functions of s and t. Together with Eqs. (3a)–(5b), (7)–(9), the coupled system of continuous equations of the reg-
ularized Stokes formulation is as follows:
fbðx; tÞ ¼
Z

C
ð�fðs; tÞÞweðx� Xðs; tÞÞdsþ 1

2
r�

Z
C
ð�nðs; tÞÞweðx� Xðs; tÞÞds; ð21aÞ

@Xðs; tÞ
@t

¼ uðXðs; tÞ; tÞ; ð21bÞ

@Diðs; tÞ
@t

¼ wðXðs; tÞ; tÞ � Diðs; tÞ; i ¼ 1;2;3: ð21cÞ
The evaluation point x may be anywhere in R3, including points along the rod. Eq. (21a) describes how to regularize and
apply the force and torque generated by the Kirchhoff rod model to the surrounding fluid. The no-slip condition for the veloc-
ity is given in Eq. (21b), which states that the linear velocity of a material point corresponds to the local linear fluid velocity
at that point. Similarly, Eq. (21c) is a no-slip condition for the angular velocity, which states that the rotation of the ortho-
normal triad is a rigid rotation corresponding to the angular velocity of the fluid at that point.

In the simplified derivation in Section 3.1, the body force fb is a single point force and torque applied at a point Xo. In the
moving rod, fb corresponds to a sum of point forces and torques distributed along the centerline Xðs; tÞ of the rod, which will
be discretized into M immersed boundary points. Due to the linearity of the Stokes equations, we can now extend the
regularized fundamental solutions in Eqs. (15) and (18) to a superposition of fundamental solutions, corresponding to
the contributions of many body forces along the elastic rod, all defined by Eq. (21a). There are a few important aspects of
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the regularized Stokes formulation that we wish to emphasize. The original derivation of the Kirchhoff rod assumes a rod
thickness that is much smaller than the rod length. In this method, we are only tracking a space curve corresponding to
the centerline. However, the regularization parameter e that is introduced for computational reasons, can be interpreted
as the radial extent of the rod cross-section where the forces are exerted. In this sense, the regularization parameter can
be given a physical meaning. Additionally, due to the regularization of the forces and torques applied to the fluid via the blob
function, we obtain a finite velocity everywhere, including on the space curve that represents the rod. Moreover, the solution
we obtain is incompressible everywhere. The numerical algorithm, detailed in the next section, will describe the discretiza-
tion and calculation of the force and torque, as well as the calculation of the local linear and angular velocity.

4. Numerical method for Stokes formulation

In this section, we describe the numerical scheme that we use to solve the equations of motion in Eqs. (7, 8) together with
Eq. (10), when the force and torque are given by Eqs. (3a)–(5b) and (21a), subject to the no-slip conditions given in Eqs. (21b)
and (21c). We discretize the rod centerline into M immersed boundary points by letting Ds be a fixed uniform interval of the
Lagrangian parameter s. Each material point on the rod will be given a point index k, such that sk ¼ kDs, for k ¼ 1;2; . . . ;M.
The Lagrangian variables X;D1;D2;D3; F;N; f, and n will be defined at points sk for integer values of k, and for such variables
we shall use the notation Xk ¼ XðkDsÞ, etc. The variables X;D1;D2;D3; F, and N will also be defined at skþ1

2
for half-integer val-

ues, where k is restricted to integer values. The body force in Eq. (21a) will be discretized as follows,
fbðxÞ ¼
XM

k¼1

� fkDsweðx� XkÞ þ
1
2
r�

XM

k¼1

� nkDsweðx� XkÞ; ð22Þ
where the summation is over each of the immersed boundary points. The curl is discretized using a standard central differ-
ence approximation, see [16] for details. Note that �fkDs and �nkDs correspond to the terms go and mo, respectively, from
the derivation of the simplified case in Section 3.1.

We use a slight perturbation of a given configuration for the initial configuration of the rod, which is detailed for each of
the numerical examples that are presented in Section 6. Given a configuration of the rod X and fD1;D2;D3g, and given a par-
ticular cutoff function we:

1. Compute the force and moment that are transmitted across the section of the rod using a discretization of Eqs. (5a) and
(5b)
Fi
kþ1

2
¼ bi Di

kþ1
2
� Xkþ1 � Xk

Ms
� d3i

� �
; ð23Þ

N1
kþ1

2
¼ a1

D2
kþ1 � D2

k

Ms
� D3

kþ1
2
�X1

 !
; ð24Þ

N2
kþ1

2
¼ a2

D3
kþ1 � D3

k

Ms
� D1

kþ1
2
�X2

 !
; ð25Þ

N3
kþ1

2
¼ a3

D1
kþ1 � D1

k

Ms
� D2

kþ1
2
�X3

 !
: ð26Þ
The force and torque vectors may be expressed in the basis of triads:
3 3
Fkþ1
2
¼
X
i¼1

Fi
kþ1

2
Di

kþ1
2
; Nkþ1

2
¼
X
i¼1

Ni
kþ1

2
Di

kþ1
2
: ð27Þ
The orthonormal triad ðD1
kþ1

2
;D2

kþ1
2
;D3

kþ1
2
Þ can be evaluated at the point skþ1

2
as follows:

i
ffiffiffip

i
Dkþ1
2
¼ ADk; ð28Þ
where i ¼ 1;2;3 and A is an orthogonal matrix which maps the triad Di
k to the triad Di

kþ1
2

(i ¼ 1;2;3Þ defined by
A ¼
X3

i¼1

Di
kþ1

2
ðDi

kÞ
T
; ð29Þ
where T stands for the transpose of a matrix. Here A is a rotation about a certain axis through a certain angle h and
ffiffiffi
A
p

is the
principal square root of the matrix A, which is a rotation about that same axis by half the angle. For a more detailed descrip-
tion, see [16].
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2. Compute force and torque exerted by the fluid at the material point sk by discretizing Eqs. (3a) and (3b) as follows:
�fk ¼
Fkþ1

2
� Fk�1

2

Ms
; ð30Þ

�nk ¼
Nkþ1

2
� Nk�1

2

Ms
þ 1

2
Xkþ1 � Xk

Ms
� Fkþ1

2
þ Xk � Xk�1

Ms
� Fk�1

2

� �
: ð31Þ
3. Compute the local linear fluid velocity at any point x by:
uðxÞ ¼ 1
l
XM

k¼1

uS �fkDs½ � þ 1
l
XM

k¼1

uR �nkDs½ �; ð32Þ
where uS½�fkDs� and uR½�nkDs� are the regularized Stokeslet and rotlet from the point force and torque applied at Xk, respec-
tively. See the appendix for the detailed formulation.
4. Compute the local angular velocity of the fluid at any point x by:
wðxÞ ¼ 1
l
XM

k¼1

uR �fkDs½ � þ 1
l
XM

k¼1

uD½�nkDs�; ð33Þ
where uR �fkDs½ � and uD½�nkDs� are the regularized rotlet and dipole from the point force and torque applied at Xk, respec-
tively. See the appendix for the detailed formulation.
5. Update the position of the rod and triads: Let the superscript n be the time-step index, such that Xn

k denotes the position
of the rod immersed in the fluid at time t ¼ nDt, where Dt is the time-step duration. Once the fluid velocity u and the
angular fluid velocity w at the immersed boundary point Xn

k are known, we define
Xnþ1
k ¼ Xn

k þ uðXn
kÞDt; ð34Þ

ðDi
kÞ

nþ1 ¼ R
wðXn

kÞ
jwðXn

kÞj
; jwðXn

kÞjDt
� �

ðDi
kÞ

n; ð35Þ
where i ¼ 1;2;3 and k ¼ 1; . . . ;M. Rðe; hÞ is the orthogonal matrix that describes a rotation through an angle about the axis of
the unit vector e and the formulation is explicitly given by
Rðe; hÞ ¼ ðcos hÞI þ ð1� cos hÞeeT þ ðsin hÞðe�Þ; ð36Þ

where I is the 3� 3 identity matrix and ðe�Þ is the antisymmetric 3� 3 matrix defined by ðe�Þv ¼ e� v for any v.

We update the location of the rod and orthonormal triad in step #5 above using no-slip conditions. Specifically, in Eq.
(34), we are using Euler method, which is first order accurate. In this step, one could easily substitute a higher order explicit
method, such as the Runge–Kutta method.

5. Generalized immersed boundary (gIB) method

We summarize the gIB method in order to compare its numerical results with those from the regularized Stokes formu-
lation described in Sections 3 and 4. For further details, see Lim et al. [16] and Lim [17]. In the gIB formulation, we employ
two different types of variables, Eulerian and Lagrangian forms. The former is used to describe the fluid motion on fixed
Cartesian coordinates, whereas the latter is used to describe the motion of the structure immersed in that fluid. The fluid
and the immersed structure defined on the two different coordinate systems interact with each other via a C1-function
approximated smoothly to a three-dimensional delta function. The gIB method has been developed to model an elastic
rod immersed in a fluid, using the unconstrained Kirchhoff rod theory. The key features of the gIB formulation, as an exten-
sion of the standard IB method, are that elastic rods apply both force and torque to the surrounding fluid; and the rod moves
according to the local linear velocity and rotates according to the local angular velocity.

In order to compare to the regularized Stokes formulation, we use the same description for the rod as detailed in the pre-
vious sections, with Xðs; tÞ as the centerline of the rod and the associated orthonormal basis fD1ðs; tÞ;D2ðs; tÞ;D3ðs; tÞg. The
Eulerian variables are functions of ðx; tÞ, where x ¼ ðx1; x2; x3Þ is the fixed Cartesian coordinate. Together with the torque
and force balance given in Eqs. (3a)–(5b), the coupled system of continuous equations of the gIB method is as follows:
q
@u
@t
þ u � ru

� �
¼ �rpþ lr2uþ fb

; ð37aÞ

r � u ¼ 0; ð37bÞ

fb ¼
Z
ð�fðs; tÞÞdcðx� Xðs; tÞÞdsþ 1

2
r�

Z
ð�nðs; tÞÞdcðx� Xðs; tÞÞds; ð37cÞ



176 S.D. Olson et al. / Journal of Computational Physics 238 (2013) 169–187
@Xðs; tÞ
@t

¼ Uðs; tÞ ¼
Z

uðx; tÞdcðx� Xðs; tÞÞdx; ð37dÞ

Wðs; tÞ ¼ 1
2

Z
ðr � uÞdcðx� Xðs; tÞÞdx; ð37eÞ

@Diðs; tÞ
@t

¼Wðs; tÞ � Diðs; tÞ; i ¼ 1;2;3: ð37fÞ
The incompressible Navier–Stokes equations are given in Eqs. (37a) and (37b), where q is the fluid density. When the
above equations are discretized, the Eulerian variables uðx; tÞ; pðx; tÞ, and fbðx; tÞ are now defined only at fixed Cartesian grid
points x ¼ ðx1; x2; x3Þ. The Lagrangian variables are the centerline X, the orthonormal triads D, the locally averaged linear
velocity at the centerline U, and the locally averaged angular velocity at the centerline W.

The interaction of the rod with the fluid is described by Eqs. (37c)–(37e). These interaction equations connect the
Lagrangian and Eulerian variables via a three-dimensional smoothed Dirac delta function dcðxÞ, where c is a physical param-
eter that is proportional to the effective thickness of the rod. We choose dcðxÞ as
dcðxÞ ¼
1
c3 /

x1

c

� �
/

x2

c

� �
/

x3

c

� �
; ð38Þ
where / is a bell function with compact support:
/ðrÞ ¼

3�2jrjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ4jrj�4r2
p

8 jrj 6 1;
5�2jrj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�7þ12jrj�4r2
p

8 1 6 jrj 6 2;
0 jrjP 2:

8>>><
>>>:
Note that dcðx� XÞ is a continuous function of x with continuous first derivatives and with support equal to a cube of edge
4c centered on X. Eq. (37c) shows how to apply the force and torque of the rod to the surrounding fluid. Eq. (37d) is the no-
slip condition which states that the velocity of an immersed boundary point on the rod coincides with the locally averaged
fluid velocity evaluated at that point, and Eqs. (37e) and (37f) imply that the triad at each point of the rod rotates at the lo-
cally averaged angular velocity of the fluid.

All gIB simulations will be completed in a 3-dimensional periodic box where the Eulerian variables will be set on a fixed
Cartesian grid of constant meshwidth h that consists of N � N � N grid points. The Lagrangian variables have the same dis-
cretization as described in the Stokes formulation, with the rod having spatial step size Ds and the rod is discretized into M
immersed boundary points. The finite difference method described in steps #1–2 of the numerical algorithm in Section 4 is
employed to solve for the force and torque equations in the gIB method. The force and torque are spread to the Cartesian grid
points using a discretized version of Eq. (37c). The discretized incompressible Navier–Stokes equation are then solved at each
of the Cartesian grid points using the fast Fourier transform. The immersed boundary points are then updated using the lo-
cally averaged fluid velocity and the orientation of the orthonormal triad is updated using the locally averaged angular veloc-
ity. For more details on the numerical algorithm used for the gIB method, see [16,17].
6. Numerical examples

We validate the regularized Stokes formulation for an elastic rod immersed in a viscous fluid developed in Section 3, using
the numerical algorithm detailed in Section 4. Test cases, including open and closed elastic rods, are compared to established
results of equilibrium configurations in elastic rod theory. Additionally, we compare the regularized Stokes formulation to
the gIB method, summarized in Section 5, in the low Reynolds number regime. In order to compare the gIB method and reg-
ularized Stokes formulation, we focus on computational efficiency, equilibrium configurations, and energy profiles as the rod
is moving and interacting with the fluid.

The computational parameters for both the gIB method and regularized Stokes formulation are summarized in Table 1. In
order to compare the computational efficiency of these two methods, the Lagrangian discretization of the rod is kept con-
stant for each type of rod and the time step is fixed across all simulations. Since the gIB method has an Eulerian discretization
for the fluid domain, a periodic box, these computational parameters are also detailed in Table 1. We also choose a suffi-
ciently large periodic box so that the interactions with the periodic copies are insignificant (doubling of the box results in
energy profiles that vary by less than 4% on average). For comparison, the Reynolds number Re, defined as
Re ¼ qUL
l

; ð39Þ
is fixed at 10�4 where the length scale L is the length of the rod, U is the maximum velocity of the fluid, and the values used
for q and l are reported in Table 1. The blob or cutoff function used in all simulations of the regularized Stokes formulation is
given in Eq. (12).



Table 1
Computational parameters for open and closed rod (sec = seconds).

Open Closed

Stokes formulation and gIB method
Unstressed rod, L (lm) 6 15.708
Immersed Boundary points, M 76 200
Meshwidth for rod, Ds (lm) 0.0785 0.0785
Time step, Dt (s) 1 �10�6 1 �10�6

Fluid viscosity, l (g lm�1 s�1) 1 �10�6 1 �10�6

Regularized Stokes formulation
Regularization parameter, e (lm) 5Ds� 8Ds 3Ds� 6Ds

gIB Method
Length of fluid domain (lm) 10 10
Cartesian grid size (N � N � N) 64 � 64 � 64 64 � 64 � 64
Meshwidth for fluid, h (lm) 2Ds 2Ds
Delta function parameter, c (lm) 2Ds 2Ds
Fluid density, q (g lm�3) 1 �10�12 1 �10�12

Reynolds number, Re 10�4 10�4

Table 2
Material parameters for open and closed rods. These parameters are the same for the Stokes formulation and the gIB method (sec = seconds).

Open Closed

Bending modulus, a ¼ a1 ¼ a2 (g lm3 s�2) 3:5� 10�3 3:5� 10�3

Twist modulus, a3 (g lm3 s�2) 3:5� 10�3 3:5� 10�3

Shear modulus, b ¼ b1 ¼ b2 (g lm3 s�2) 8:0� 10�1 8:0� 10�1

Stretch modulus, b3 (g lm3 s�2) 8:0� 10�1 8:0� 10�1

Perturbation parameter, n 0.0001 1
Strain twist vector, (X1;X2;X3) (lm�1) Varied Varied
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The material parameters for the open and closed rods are summarized in Table 2. It is noted that material properties,
along with intrinsic properties, will determine the stability of an elastic rod. Since we are comparing the regularized Stokes
formulation with the gIB method, these parameters will be the same for both cases. We wish to emphasize that the time
steps and material parameters chosen ensure (within 1% relative error) that the rod tends to maintain the inextensibility
constraint and that the D3 is aligned with the tangent vector, via the elastic energy penalty in Eq. (6). In the following sub-
sections, we will focus on the rod stability as the intrinsic curvature and twist are varied and provide an application of the
regularized Stokes formulation at the end of this section.

6.1. Open elastic rod

As a benchmark comparison, we investigate the dynamics of an open elastic rod immersed in a viscous fluid. A straight
rod is considered and represented by a three-dimensional space curve and an orthonormal triad,
fXðs; tÞ;D1ðs; tÞ;D2ðs; tÞ;D3ðs; tÞg. Both ends of the rod freely move through the fluid. The initial configuration of the rod will
be a perturbation of the straight rod as follows:
XðsÞ ¼ ð0;0; ð1þ nÞsÞ; ð40Þ

D1ðsÞ ¼ ð1;0;0Þ; ð41Þ

D2ðsÞ ¼ ð0; cosðnÞ;� sinðnÞÞ; ð42Þ

D3ðsÞ ¼ ð0; sin n; cos nÞ; ð43Þ
where the rod is given a strain twist vector, fX1;X2;X3g, that determines the intrinsic curvature and torsion of the rod. The
perturbation of the rod is controlled by the parameter n and is chosen to correspond with previous gIB simulations [17]. Since
an equilibrium configuration of the rod is XðsÞ ¼ ð0;0; sÞ, the perturbation is used to ensure the rod is not initialized in the
equilibrium configuration. We solve the discretized version of the regularized Stokes formulation, as outlined in Section 4.
Since this is an open rod, the internal force and moment boundary conditions are prescribed as follows:
F1=2 ¼ FMþ1=2 ¼ 0;N1=2 ¼ NMþ1=2 ¼ 0; ð44Þ
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where M is the total number of immersed boundary points along the rod. When the rod is initialized as a perturbation of a
straight rod, it will continue to move and interact with the surrounding fluid until it reaches its equilibrium configuration, as
defined by the strain twist vector.

According to the Kirchhoff theory for elastic rods, any perturbed open rod whose strain twist vector is set equal to zero,
ðX1;X2;X3Þ ¼ ð0;0; 0Þ, will relax to a stable equilibrium state that is a straight, untwisted rod [41,42]. Numerical results for
this strain twist vector are not shown, but were verified and match the results established by elastic rod theory. Through
linear stability analysis, it has been shown that if j > 0 and the twist is greater than a critical twist value, a straight rod will
become unstable and bifurcate into a stable helix configuration [3]. (The critical twist value depends on the material param-
eters of the rod, as well as the strain twist vector [4].) Geometric properties of this new helix equilibrium configuration, such
as the number of turns along the rod q, can be determined as
Fig. 2.
twist. T
(a)–(e)
e ¼ 6Ds
q ¼ X3L
2p

; ð45Þ
where X3 is the intrinsic twist (or torsion) of the rod and L is the length of the rod. In Fig. 2, representative results for the
regularized Stokes formulation are shown for two different strain twist vectors, where the configurations of the rod are at
increments of 0.001 s. In these cases, the twist is high enough to cause the rod to go from its initial configuration to an equi-
librium configuration that is a stable helix. Verifying the results with elastic rod theory, it can be seen for the simulated 6 lm
rod in Fig. 2 that the top panel has q ¼ 1:5 turns when X3 ¼ p=2 and the bottom panel has q ¼ 3 turns when X3 ¼ p. The
configuration at each of the time points also matches the gIB results when solving the Navier–Stokes equations on a periodic
domain.

We also examined the time profile of the energy to understand and verify how the rod is moving and interacting with the
fluid as it reaches its equilibrium configuration. The classical results of elastic rod theory do not capture the interaction of the
rod with the fluid, therefore we compare the energy profiles to those obtained from the gIB method that is described in Sec-
Results of regularized Stokes formulation where the open rod is initialized as a perturbation of a straight rod with nonzero intrinsic curvature and
he top and bottom rows correspond to rods with strain twist vector’s ð1:3;0;p=2Þ and ð1:3;0;pÞ, respectively. In both rows, going from left to right,
represents the time profiles between t ¼ 0:001 and t ¼ 0:005 s, where each graph increments by 0.001 s. The regularization parameter used is
.
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tion 5. For comparison, energy profiles are shown in Fig. 3 for strain-twist vector ðX1;X2;X3Þ ¼ ð1:3;0;pÞ, with time depen-
dent configuration corresponding to the bottom row of Fig. 2. Each plot displays five curves, one corresponding to the result
from the gIB method where dc is given in Eq. (38), and the rest correspond to the results from the Stokes formulation for four
different values of e. Here, the energy profiles are calculated as the discretized version of Eq. (6) and the units of energy are
kT. Here, k is the Boltzmann’s constant (Joules per Kelvin) and T is the temperature in degrees Kelvin, set to room temper-
ature. The Stokes formulation uses an infinite support blob given in Eq. (12), that spreads the majority of the force and torque
in a sphere of radius e around the given point. We choose to vary the regularization parameter e from 5Ds to 8Ds. Note that in
Fig. 3(a)–(d), the regularized Stokes formulation profiles follow the same trends as the gIB method. Additionally, for this set
of parameters, the regularized Stokes formulation matches the gIB method curve for the case of e ¼ 6Ds. Recall that in the gIB
method, the discrete delta function has cubic compact support of length 4c ¼ 8Ds. The regularized Stokeslet blob has infinite
support and is radial, so it is difficult to make a direct comparison. However, the regularization parameter of e ¼ 6Ds is con-
sistent with the corresponding size in the gIB method. The fluid domain is different in the two methods, thus we have chosen
a sufficiently large periodic domain for the gIB method to eliminate any significant interactions with periodic copies. Since
the governing equations of the fluid are different for the two methods, we do not expect the curves to match exactly. How-
ever, the results verify that the energy profiles of the regularized Stokes formulation are similar in magnitude and trend to
the gIB method as well as the overall shape of the equilibrium configuration. As expected, Fig. 3 shows that the bending en-
ergy in (a), twist energy in (c), and total energy in (d) decrease monotonically from the initial amount stored in the rod down
to zero as the rod reaches its equilibrium configuration. As the rod is interacting with the fluid, the kinetic energy in (b) in-
creases at first, and then decreases, which implies that the rod moves quickly initially and then slows down. These trends in
the energy profiles are seen in both the regularized Stokes formulation and the gIB method. Although the energy penalty
function seen in Eq. (6) includes shearing and stretching energy terms, they are small enough to be negligible.
Fig. 3. The energy profiles are as follows: (a) Bending energy, (b) Kinetic energy, (c) Twisting energy, (d) Total energy. Each panel displays five curves: one
for the Navier Stokes case with a virtual radius of c ¼ 2Ds (solid black line). The other curves correspond to simulations of the regularized Stokes
formulation for e ¼ 5Ds;6Ds;7Ds, and 8Ds, where e is the regularization parameter of the blob function given in Eq. (12). For the energy profiles shown, the
strain twist vector is: (X1;X2;X3) = (1.3, 0, p). In each of the plots, the x-axis corresponds to the time in seconds (s) and the y-axis corresponds to the Energy
(kT), where k is the Boltzmanns constant (Joules per Kelvin) and T is the temperature in degrees Kelvin, set to room temperature.
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6.2. Closed elastic rod

As a second benchmark comparison, we study the dynamics of an intrinsically curved and twisted closed elastic rod im-
mersed in a viscous fluid. The initial configuration of the rod is set to a sinusoidal perturbation of an equilibrium solution of
Eqs. (3a) and (3b) in the absence of any applied forces and moments. This equilibrium configuration takes the form of a cir-
cular rod in a horizontal plane and is untwisted initially. The rod will have length L ¼ 2pro, which is the circumference of the
unstressed rod with radius ro, where 0 6 s 6 2pro. The rod is given by
Fig. 4.
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s
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� �
; ð49Þ
where n is the perturbation parameter and (r; h; z) are cylindrical coordinates with unit vectors {rðhÞ; hðhÞ; z}. The values for
the length L and perturbation parameter n, along with the material parameters of the rod used for the simulations are given
in Table 2. We solved the discretized version of the regularized Stokes formulation, as outlined in Section 4. Since this is a
closed rod, assuming that X1 ¼ XMþ1, where M is the total number of immersed boundary points along the rod, periodic
boundary conditions are used for the force and moment. When the rod is initialized as a perturbation of a closed circular
rod, it will continue to move and interact with the surrounding fluid until it reaches its equilibrium configuration, as defined
by the strain twist vector.

In Fig. 4, the configurations for the regularized Stokes formulation are given for two different intrinsic strain twist vectors.
In both cases, the closed rod reaches its coiled configuration in around 0.1 s. Note that this is a much longer time scale than
for the open rod to reach its helical equilibrium configuration. The closed rod does not have free ends and its motion is con-
fined to a closed form, which elongates the time period to reach a stable equilibrium configuration. In contrast, the linear rod
has two ends free to move through the fluid, which makes the rod easier to deform into a helix, as prescribed by the energy
minimum configuration. In these plots, the fluid markers were initiated on the outside of the closed rod. As the rod is mov-
ing, the fluid markers give insight into how the fluid is moving close to the rod. Similar to the results of the gIB in [16], the
rod becomes unstable, writhes, and starts to buckle. The ring or closed rod then forms loops back on itself until it reaches a
stable coiled configuration. The achieved equilibrium configurations in Fig. 4 using the regularized Stokes formulation are
more coiled in the top panel for the case of intrinsic twist X3 ¼ 0:6 and less coiled in the bottom panel for the case of
X3 ¼ 0:5.
Configurations for the regularized Stokes formulation where the rod is initialized as a perturbation of a circular, closed rod in a horizontal plane. The
bottom rows correspond to rods with intrinsic strain twist vectors ðX1;X2;X3Þ ¼ ð1:2;0;0:6Þ and ðX1;X2;X3Þ ¼ ð1:2;0;0:5Þ, respectively. In both

oing from left to right, (a)–(e) represents the time profiles between t ¼ 0:03 and t ¼ 0:1 s. The value of regularization parameter is given as e ¼ 4Ds.
ers of fluid markers (dots) are spread around the circular rod initially.
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We also compared the energy profiles between the regularized Stokes formulation and the gIB method. Similar to the re-
sults for the open rod above, we fix the compact support of the dc function to be c ¼ 2Ds for the gIB (Navier–Stokes) simu-
lations and we vary the regularization parameter of the Stokes formulation from e ¼ 3Ds to 6Ds. Once again, since we are
comparing methods with different governing equations, we wish only to verify that the energy profiles are on the same order
of magnitude and follow the same trends. The results for the energy profiles are shown in Fig. 5 for a closed elastic rod with
intrinsic twist that interacts with the surrounding fluid. These profiles correspond to the configuration in the bottom panel of
Fig. 4. The instability due to the value of the intrinsic twist causes the closed rod to writhe in the fluid. As this writhing and
coiling occurs, the kinetic energy that is stored in the closed rod decreases to zero as shown in Fig. 5(b). Additionally, the
bending and total energy, shown in Fig. 5(a) and (d), respectively, also approach zero. The stretching energy profile in
Fig. 5(c) increases due to the coiled equilibrium configuration. Note that the energy profiles for the regularized Stokes for-
mulation are in the range of those calculated by the gIB method.
6.3. Computation time

In order to study the computational efficiency of our method based on the regularized Stokes formulation, we compare
the computation time to the gIB method. In both methods, the component that solves the force and torque balance on the
cross section of a rod is the same. The major difference is in how the velocity is computed. In the regularized Stokes formu-
lation, we use a superposition of fundamental solutions along the rod centerline, given in Eqs. (32) and (33), to compute the
velocity. In contrast, for the gIB method, we solve for the velocity on the underlying Cartesian fluid grid and then interpolate
it to the locations of the rod. The regularized Stokes formulation solves the Stokes equations in R3 and the gIB method solves
the Navier Stokes equations (Re � 10�4) on a periodic domain. For the gIB computations, we use the coarsest Cartesian grid
that was shown to be stable in previous studies [16,17]. We also choose a sufficiently large periodic box so that the inter-
actions with the periodic copies are negligible (doubling of the box results in energy profiles that vary by less than 4% on
average). Both methods were coded in Fortran 90, compiled using pgf90, and they were run on the oneSIS cluster at the Cen-
ter for Computational Science at Tulane University.
Fig. 5. The energy profiles are as follows: (a) Bending energy, (b) Kinetic energy, (c) Stretching energy, (d) Total energy. In each of the plots, there are 5
curves shown: one for the Navier Stokes gIB method with a virtual radius of c ¼ 2Ds (solid black line) and the other lines correspond to the simulations of
the regularized Stokes formulation for e ¼ 3Ds;4Ds;5Ds, and 6Ds, where e is the regularization parameter of the blob function given in Eq. (12). For the
energy profiles shown, the strain twist vector is set to (X1;X2;X3) = (1.2, 0, 0.5). In each of the plots, the x-axis corresponds to the time in seconds (s) and the
y-axis corresponds to the Energy (kT), where k is the Boltzmanns constant (Joules per Kelvin) and T is the temperature in degrees Kelvin, set to room
temperature. (The energy profiles correspond to a discretized version of Eq. (6)).
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Table 3 shows the results of the comparison of these two methods for the case of a closed rod whose equilibrium con-
figuration is a twisted ring. The rod is initialized as a circular tube with strain twist vector fX1;X2;X3g ¼ f1:2; 0;0:6g and
evolves in time to reach its equilibrium configuration. In both methods, the simulations were run for the same number of
time steps until the rod reached the desired equilibrium configuration. The same number of immersed boundary points
and fluid marker points were used in the comparison. As shown in the table, the regularized Stokes formulation runs more
than 12 times faster than the gIB method when using 200 immersed boundary points. Similar times were observed for the
case of an open rod as well as other cases of the closed rod (results not shown). We note that as the number of immersed
boundary points increases, the factor of speed up is not as significant.

In the regularized Stokes formulation, the computation of the sums in Eqs. (32) and (33) represents an M-body problem,
where each immersed boundary point contributes to the velocity of every point. This is the most time-consuming part of the
method. Although there are fast summation techniques, such as the fast multipole method, that may be used to speed up this
part of the computation, even using a simple OpenMP parallelization of the velocity calculation with 2 processors is enough
to speed up the computation by a factor of 1.74 compared to the serial computation (see Table 3). Using 4 processors for the
velocity computation, the program ran 2.7 times faster than the serial case. The table also shows the memory usage of the
two methods. The required memory in the regularized Stokes formulation increases only slightly when more processors are
used. However, the amount of memory required is significantly smaller than that of the gIB method, which has to store vari-
ables on a three-dimensional grid.

In applications of swimming flagella, where the dynamics of the elastic rod may be driven by a time dependent strain
twist vector, the outcome of interest may be the swimming speed or trajectory of the flagella. These applications typically
require long-time simulations, so that the speed-up obtained with the regularized Stokes formulation compared to the gIB
method can have a considerable impact. Overall, the regularized Stokes formulation has a substantial decreased computation
time and a decreased memory usage in comparison to the gIB method.

6.4. Motion of an undulatory flagellum

This regularized Stokes formulation of an elastic rod can be used to investigate the hydrodynamics of eukaryotic flagella
that use an undulatory motion to propel themselves forward [43,36]. Eukaryotic flagella have a distinct structure composed
of 9 sets of microtubule doublets in a circular structure surrounding a central pair of microtubule doublets. For example, in
sperm, there are dynein motors (active force generators) along the length of the microtubules that cause the microtubule
doublets to slide relative to one another, generating the propagation of a flagellar bending wave [44,45]. (This is in contrast
to prokaryotic flagella, such as Escherichia coli, that have a different internal structure where movement is generated by a
rotary motor at the base of the flagellum.) Flagella are thin and flexible, with length much greater than radius, therefore
we can idealize them as an elastic rod. Since most flagella are on the length scale of microns, flagellar motility is in the re-
gime where viscous forces dominate [43,46] and we can describe the fluid with the Stokes equations.

We model a single flagellum as a filament or rod in three spatial dimensions, keeping track of the centerline and the
orthonormal triads. In this framework, we model the undulatory motion using a preferred curvature function that corre-
sponds to a sine wave with a prescribed frequency and amplitude. In this initial study, we explore the validity of this algo-
rithm to model a planar undulatory motion, i.e., a flagellum with lateral displacement (in the y plane), that propagates along
the length of the flagellum (in the z plane). Specifically, as detailed in Section 2, the intrinsic curvature of the flagellum is

given as j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2

1 þX2
2

q
. To create planar motion of the flagellum, we set X2 ¼ X3 ¼ 0 and model a wave of lateral displace-

ment along the length of the rod by choosing X1 as:
Table 3
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gIB (
RegS
RegS
RegS
X1ðs; tÞ ¼ �k2b sinðksþ rtÞ; ð50Þ
corresponding to a sine wave with zðs; tÞ ¼ s and yðs; tÞ ¼ b sinðksþ rtÞ (up to translations and rotations), where the undu-
lating flagellum has wavelength 2p=k, amplitude b, frequency r, and s is the material parameter along the centerline of the
flagellum. (Since the propagating wave is planar, we have xðs; tÞ ¼ 0 for all time.) In contrast to the open and closed rod
examples presented earlier, X1 given in Eq. (50) is a function of space and time. All parameters used for these simulations
are detailed in Table 4.

In a seminal paper by Taylor [47], a mathematical analysis was completed for a waving, infinite cylinder in a Newtonian
fluid. The classical asymptotic results of this paper approximate the swimming speed V of the infinite cylinder to first order
as
tational time (RegSto stands for regularized Stokes formulation).

od Numerical case Wall time (hour:min:sec) Mem (kb)

serial) Closed rod 15:12:27 87532
to (serial) Closed rod 1:15:14 4808
to (2 nodes) Closed rod 0:43:16 4880
to (4 nodes) Closed rod 0:27:57 5020



Table 4
Computational parameters for numerical study of undulatory flagellum.

Parameter Value

Unstressed rod length, L 40 lm
Immersed Boundary points, M 600
Meshwidth for rod, Ds 0.0667 lm
Time step, Dt 1 �10�6 s
Fluid viscosity, l 1 �10�6 g lm�1 s�1

Regularization parameter, e 7Ds lm
Bending modulus (a1 ¼ a2) 3:5� 10�2 g lm3 s�2

Twist modulus (a3) 3:5� 10�2 g lm3 s�2

Shear modulus (b1 ¼ b2) 8:0� 10�1 g lm3 s�2

Stretch modulus (b3) 8:0� 10�1 g lm3 s�2

Frequency of undulation, r Varied 250–550 Hz
Amplitude of undulation, b Varied 0.075–1.5 lm
Wavelength of undulation, 2p=k wavelength = 5 lm (k ¼ 2p=5 lm�1)

Curvature in direction of D1;X1 �k2b sinðksþ rtÞ lm�1

Curvature in direction of D2;X2 0 lm�1

Intrinsic twist, X3 0 lm�1

Fig. 6.
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V ¼ 1
2

krb2 KoðkrcÞ � 1
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KoðkrcÞ þ 1
2

 !
; ð51Þ
valid for krc � 1, where b is the amplitude, r is the frequency, k ¼ 2p=k is the wavelength, rc is the radius of the cylindrical
tube, and Ko is the zeroth order modified Bessel equation of the second kind.

Simulations of the model were run using the parameters in Table 4 in order to compare swimming speeds of the regu-
larized Stokes formulation of an elastic rod, where the intrinsic curvature is specified as a small amplitude sinusoidal wave
of displacement. The simulations were performed on a finite elastic rod that is 8 wavelengths long in order to minimize end-
point effects. In order to compare the swimming speed from the simulations and the first order swimming speed of Taylor in
Eq. (51), the parameter rc needs to be specified. In the model of the elastic rod, we do not specify the radius of the rod. How-
ever, in specifying a cutoff function as in Eq. (12) and a regularization parameter e ¼ 7Ds, most of the force and torque is
being applied within a radius of 7Ds. Since the cutoff function has infinite support, the regularization parameter is a rough
estimate of the approximate radius. Therefore, we choose to set rc ¼ 10Ds to compare to the results of Taylor.

In Fig. 6(a) and (b), the swimming velocities using the regularized Stokes formulation are shown with markers of varying
types. Note that in Fig. 6(a), as the amplitude b increases for a given fixed frequency, the swimming speed is increasing qua-
dratically, as expected from Taylor’s results given in Eq. (51). Similarly, in Fig. 6(b), as the frequency r of the undulation in-
creases for a fixed amplitude, the swimming speed increases linearly. In both Fig. 6(a) and (b), we have also plotted dashed
curves, which are for the Taylor approximation of the swimming speed as calculated from Eq. (51). The swimming speeds in
Fig. 6(a) have better agreement between Taylor’s analysis and the simulations for smaller amplitudes. There is also better
agreement between Taylor’s analysis and the results of the computational model for lower frequencies in Fig. 6(b). Note also
that simulation results did not match as well for shorter length rods (results not shown for rods of 10 lm, and 20 lm). Over-
all, the comparison between theory and simulations have good agreement. We emphasize here that Taylor’s first order
Swimming speed of flagellum, where amplitude and frequency of the undulation are specified in terms of a wave of lateral displacement. In (a),
ing speed is shown as a function of amplitude for varying frequencies and in (b), swimming speed is shown as a function of frequency for varying
de. The markers are from simulations and the dashed lines correspond to swimming speed calculated from Taylor’s analysis, given in Eq. (51) [47].
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approximation of swimming speed is valid for krc � 1 and for an infinite cylinder, whereas the flagellum in our simulations
has finite length with a propagating sine wave.

7. Discussion and conclusions

In this paper, we have derived and implemented a regularized Stokes formulation that describes an elastic rod with
intrinsic curvature and twist that is immersed in a viscous, incompressible fluid. The elasticity of the rod is governed by a
Kirchhoff rod model in which the rod is described by a space curve corresponding to the centerline and an associated ortho-
normal triad to capture the bend and twist of the rod. This formulation extends the method of regularized Stokeslets, cap-
turing the twist of the rod. In this formulation, the rod now applies both force and torque to the surrounding fluid, and the
rod moves according to the linear velocity and rotates according to the angular velocity. The solution of the linear and angu-
lar velocity is determined as a superposition of fundamental solutions: Stokeslets, rotlets, and dipoles.

We motivate the development of this method as a way to model zero Reynolds number applications with a decreased
computation time. The open and closed rods presented in Sections 6.1 and 6.2, are numerical examples of rods or filaments
at the microscale that are immersed in a fluid. In these examples, we verify that results of this model matched well with
results of elastic rod theory. Additionally, results for equilibrium configurations and energy profiles were the same as those
from the gIB method which considers the full Navier–Stokes equations. The computational efficiency of this algorithm is
shown in Section 6.3; the regularized Stokes formulation is 12 times faster than the gIB method and uses less memory.
The speed up in computation time is attributed to using regularized fundamental solutions to calculate the velocities and
to the use of one curvilinear mesh for the rod. This is in contrast to the gIB method that uses a Cartesian grid for the fluid
variables and a curvilinear mesh for the rod.

This regularized Stokes formulation of an elastic rod with intrinsic curvature and twist has many low Reynolds number
applications. Examples include modeling DNA supercoiling and motility of microorganisms that are propelled by a flagellum,
where these structures can be idealized as elastic rods. As a proof of concept, in Section 6.4, we used the regularized Stokes
formulation derived in this paper to model an undulatory filament. A time dependent intrinsic curvature is assigned that
corresponded to waves of lateral displacement along the length of the rod. The utility of this application is verified by good
agreement of the swimming speeds computed from the simulations in comparison to the classical results of Taylor for an
infinite cylinder [47].

This algorithm has been derived, implemented, and verified through several numerical examples. There are still a number
of open questions and analyses to be completed in the future. Further investigation will be completed to determine how this
regularized Stokes formulation can be extended and used to study applications of elastic rods with self-contact. One avenue
of future research involves studying the regularization parameter e. This parameter does not correspond directly to the ra-
dius of the rod and it does affect the solution, as shown in Figs. 2 and 4. Future work will study an optimal value of e, which
will most likely be problem dependent. In the same area, future research will also investigate the choice of blob function on
the results. Additionally, a complete error analysis of this regularized Stokes formulation remains to be completed for the
regularization and discretization error.
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Appendix A

We derive complete forms of the linear velocity and angular velocity at any point used in this paper as a fundamental
solution of the regularized Stokes equations:
0 ¼ �rpþ lDuþ fowe þ
1
2
r� nowe; ð52Þ

0 ¼ r � u: ð53Þ
First, we derive the linear velocity. Given that we is the cutoff function, let Ge and Be be the regularized Green’s function
and biharmonic function, respectively, satisfying the following equations:
DGe ¼ we and DBe ¼ Ge; ð54Þ
where we;Ge and Be are functions of r, where r ¼ jjx� Xojj and e is a parameter that controls the spreading size of the blob
function. Taking the divergence of Eq. (52), we can simplify it as follows:
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r � rp ¼ lr � ðDuÞ þ r � fowe þ
1
2
r� nowe

� �
¼ lr � ðDuÞ þ r � ðfoweÞ þ

1
2
r � r� noweð Þ

¼ 0þ wer � fo þ fo � rwe þ 0 ¼ fo � rwe: ð55Þ
Here we have used the fact that the fluid is incompressible, fo is a constant vector, andr � ðr � AÞ ¼ 0 for any vector field
A. We now solve for the fluid pressure, p:
Dp ¼ fo � rwe ¼ ðfo � rÞDGe ¼ Mðfo � rGeÞ ð56aÞ

) p ¼ fo � rGe ð56bÞ
By substituting a particular solution for the pressure in Eq. (56b) into Eq. (52), we solve for the fluid velocity:
lDu ¼ rp� fowe �
1
2
r� nowe

¼ rðfo � rGeÞ � fowe �
1
2
r� nowe

¼ rðfo � rðDBeÞÞ � foDGe �
1
2
rwe � no

¼ ðfo � rÞrðDBeÞ � foDGe �
1
2
rðDGeÞ � no: ð57Þ
Then the solutions of the regularized Stokes equations for given point forces and torques are as follows,
luðxÞ ¼ ðfo � rÞrBeðx� XoÞ � foGeðx� XoÞ þ
1
2

no �rGeðx� XoÞ; ð58Þ

pðxÞ ¼ fo � rGeðx� XoÞ; ð59Þ
for any x 2 R3. Therefore, Eqs. (58) and (59) can be used to evaluate the motion of the centerline of the rod as well as at any
point in the surrounding fluid.

Second, we evaluate the angular velocity from Eq. (58) as follows:
lw ¼ 1
2
r� ðluÞ

¼ 1
2
r� ½ðfo � rÞrBe� �

1
2
r� ½foGe� �

1
4
r� ðr� ðnoGeÞÞ

¼ 0þ 1
2
ðfo �rGeÞ þ

1
4

noDGe �
1
4
rðno � rGeÞ

¼ 1
2
ðfo �rGeÞ þ

1
4

nowe �
1
4
ðno � rÞrGe: ð60Þ
Here we have used the vector identities thatr� ðrgÞ ¼ 0 for any scalar function g andr� ðr� AÞ ¼ rðr � AÞ � r2A for
any vector field A.

As an example, we make a particular choice of the cutoff function we given by
weðrÞ ¼
15e4

8pðr2 þ e2Þ7=2 ;
which satisfies
4p
Z 1

0
r2weðrÞdr ¼ 1:
Then Ge is given as
GeðrÞ ¼ �
3e2 þ 2r2

8pðe2 þ r2Þ3=2 ;
where
G0eðrÞ ¼
2r3 þ 5re2

8pðe2 þ r2Þ5=2 ; B0eðrÞ ¼ �
r

8pðe2 þ r2Þ1=2 ;

G00eðrÞ ¼
5e4 � 14r2e2 � 4r4

8pðe2 þ r2Þ7=2 ; B00eðrÞ ¼ �
e2

8pðe2 þ r2Þ3=2 :
The explicit form of the linear velocity and the fluid pressure are as follows:
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luðxÞ ¼ fo H1ðrÞ þ ½fo � ðx� XoÞ�ðx� XoÞH2ðrÞ þ
1
2
½no � ðx� XoÞ�QðrÞ; ð61Þ

pðxÞ ¼ ½fo � ðx� XoÞ�QðrÞ; ð62Þ
where
H1ðrÞ ¼
B0eðrÞ

r
� GeðrÞ ¼

2e2 þ r2

8pðe2 þ r2Þ3=2 ; ð63Þ

H2ðrÞ ¼
rB00eðrÞ � B0eðrÞ

r3 ¼ 1

8pðr2 þ e2Þ3=2 ; ð64Þ

QðrÞ ¼ G0eðrÞ
r
¼ 5e2 þ 2r2

8pðe2 þ r2Þ5=2 ; ð65Þ
and the explicit form of the angular velocity is given as
lwðxÞ ¼ 1
2
½fo � ðx� XoÞ�QðrÞ þ

1
4

no D1ðrÞ þ
1
4
ðno � ðx� XoÞÞðx� XoÞ D2ðrÞ; ð66Þ
where
D1ðrÞ ¼ weðrÞ �
G0eðrÞ

r
¼ 10e4 � 7e2r2 � 2r4

8pðe2 þ r2Þ7=2 ; ð67Þ

D2ðrÞ ¼
G0eðrÞ

r3 � G00eðrÞ
r2 ¼ 21e2 þ 6r2

8pðe2 þ r2Þ7=2 ; ð68Þ
and QðrÞ is the same as in Eq. (65).
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