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a b s t r a c t

We introduce a regularization method that gives a smooth formulation for the fundamen-
tal solution to Stokes flow driven by an infinite, triply-periodic array of point forces. With
this formulation, the velocity at any spatial location may be calculated, including at and
very near the point forces; these locations typically lead to numerical difficulties due to
the singularity within the Stokeslet when using other methods. For computational effi-
ciency, we build upon previous methods in which the periodic Stokeslet is split into two
rapidly decaying sums, one in physical space and one in reciprocal, or Fourier, space. We
present two validation studies of our method. First, we compute the drag coefficient for
periodic arrays of spheres with a variety of concentrations of sphere packings; and second,
we prescribe a force density onto a periodic array of spheres, compute the resulting nearby
velocity field, and compare these velocities to those computed using an immersed bound-
ary method formulation. The drag coefficients computed with our method are within
0:63% of previously published values. The velocity field comparison shows a relative error
of about 0:18% in the L2-norm. We then apply our numerical method to a periodic arrange-
ment of sinusoidal swimmers. By systematically varying their spacing in three directions,
we are able to explore how their spacing affects their collective swimming speed.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

Substantial effort has been directed to developing analytical and computational techniques for simulating fluid flow dri-
ven by a periodic array of point forces. In the limit of zero Reynolds number, the inertial acceleration and advection terms in
the Navier–Stokes equations can be neglected, and the resulting fluid motion can be described using the simpler Stokes
equations. Examples of applications can be found in many physical and biological systems, including the creeping flow
through model filters [1], porous media [2], and periodic suspensions of solid particles and liquid droplets [3–5].

Numerical methods based on boundary integrals are frequently used to compute Stokes flow. However, for flow driven by
a periodic array of point forces, the development of efficient numerical methods involves a number of challenges. In partic-
ular, in three spatial dimensions, flow arising from a single point force, as given by the Stokeslet, decays as 1=r, where r de-
notes the distance from the point force. Thus, a direct summation over a periodic array diverges. Hasimoto overcame this
challenge by solving the periodically-forced Stokes equations with appropriate boundary conditions, instead of using a direct
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summation, and derived the pressure and velocity in the form of Fourier series [6]. This approach, while convergent, is some-
what problematic for practical computations due to the slow convergence of the Fourier series.

A method of circumventing this challenge stems from problems in electrostatics where the governing equation is Poisson
rather than Stokes, but the fundamental solution decays similarly, as 1=r. Ewald summation was first introduced in 1921 [7]
as a technique to sum long-range Coulomb interactions efficiently. The idea is to recast a slowly and conditionally conver-
gent series into a sum of two exponentially decaying series: one in real space (short-range interactions) and one in Fourier
space (long-range interactions). Furthermore, the convergence of each series is controlled by one single parameter [7].

Ewald sums may be computed explicitly using a strict cutoff for each series or tuning the convergence parameter so that
only the real space series is summed, but these methods are slow computationally; a sum over the N particles and all of their
periodic images gives OðN2Þ complexity. Fourier-based particle-mesh methods have been introduced to decrease the com-
plexity of the problem. In these methods, the real space sum is evaluated explicitly using a cutoff, but the reciprocal sum
is computed over reciprocal vectors (via interpolation to a 3D grid) more efficiently by using FFT. This reduces the complexity
to OðN log NÞ. Excellent reviews of these methods for the Poisson problem can be found in [8,9].

Hasimoto incorporated Ewald’s summation into the problem for periodic Stokes flow by replacing the Stokes velocity
(Fourier series solution) with two complementary, rapidly converging series, one in real space and the other in Fourier space
[6]. Slightly different forms of these series were later introduced by Beenakker [10] and then summarized and extended by
Pozrikidis [11]. Techniques adapting the particle-mesh method have been developed for the triply periodic Stokes flow prob-
lem [12,13]. More recently, Lindbo and Tornberg [14] developed a spectrally accurate method (all errors decay at least as fast
as e�aK2

as K grows) in which they avoid interpolation and instead use convolutions with suitably scaled Gaussians.
While the methods discussed above deal with point forces, we are interested in simulating Stokes flow driven by forces

singularly supported along a surface C. Although one may numerically integrate the Stokeslet over C, the Stokeslet, both in
free space and for periodic flow, has a singularity. Owing to that singularity, if fluid pressure and velocity values are desired
near the surface, where the integrals are nearly singular, the pressure and velocity values computed by means of a standard
quadrature (e.g., the trapezoidal rule) may be highly inaccurate.

To reduce quadrature errors, the Stokeslet can be regularized via the introduction of a small cutoff parameter in the ker-
nels. That is the basis of the method of regularized Stokeslets for free-space Stokes flow [15,16]. In this study, we first trans-
form the periodic Stokeslet using an Ewald summation formulation from [11]. We do not focus on reducing the OðN2Þ
complexity of the Ewald sum, but rather introduce a mesh-free regularization method that gives a smooth formulation
for the Ewald sums which allows for pressure and velocity to be calculated on or very near a surface C.

2. Green’s function for Stokes flow

At zero Reynolds number, the motion of an incompressible viscous fluid due to a concentrated point force is governed by
the singularly forced Stokes equations

�rpþ lDu ¼ �gdðx̂Þ; ð1Þ
r � u ¼ 0; ð2Þ

where p and u are the hydrostatic pressure and velocity of the fluid, l is the viscosity of the fluid, g is an arbitrary constant
external force acting on the fluid, and x̂ ¼ x� x0. The Green’s function for the Stokes equations is the Stokeslet, which rep-
resents solutions to (1) and (2) at location x. One can think of x as a point of observation and x0 as the location of a point
source where the distance between them is defined by r ¼ jjx� x0jj. In free space with three spatial dimensions, the Stokeslet
is defined by

Sðx̂Þ ¼ I
r
þ x̂x̂

r3 : ð3Þ

The solution to Eqs. (1) and (2) is then given by

uðxÞ ¼ 1
8pl

Sðx̂Þg:

Another form of the Stokeslet can be written using the following derivation. Note that the Green’s function of the Laplacian
operator in three dimensions is GðrÞ ¼ � 1

4pr and solves the equation DGðrÞ ¼ d. Similarly, the Green’s function for the
Biharmonic operator is BðrÞ ¼ � r

8p and solves the equation D2BðrÞ ¼ d. First replace d in Eq. (1) with the equivalent form of
G. Taking the divergence and enforcing incompressibility gives a Poisson equation for pressure. Using this solution, one finds

rp ¼ � 1
4p
r g � r 1

r

� �� �
:

Substituting the expressions for rp and d into Eq. (1) gives

lDu ¼ � 1
4p
�Dþrrð Þ 1

r

� �
g:

Inverting the Laplacian operator on the left hand side and commuting operators on the right hand side leads to

188 K. Leiderman et al. / Journal of Computational Physics 236 (2013) 187–202



Author's personal copy

u ¼ 1
l
�Dþrrð ÞD�2dðx̂Þg:

Recalling the definition of B from above, we see that in addition to Eq. (3), the Stokeslet may also be written as

Sðx̂Þ ¼ 8pð�DIþrrÞBðrÞ:
The Stokeslet describes the velocity field induced by the point source anywhere except at the location of the source point.
This restriction is due to the singular behavior that emerges as the observation point approaches the point source. Given a
distribution of point sources on a surface in three dimensions, since the Stokes equations are linear, one may describe the
induced velocity field by simply integrating the contributions of each point source over the surface. Computing the velocity
on or very near the surface again leads to singularities or near singularities.

The method of regularized Stokeslets, developed by Cortez and collaborators [15,16], provides a way to circumvent these
singularities by smoothing out the concentrated forces. Mathematically this is achieved by solving the modified equations:

�rpþ lr2u ¼ �g/�ðx̂Þ;
r � u ¼ 0:

where the Dirac delta function in Eq. (1) is replaced with a radially symmetric blob function, /�ðrÞ, which has the property
that

R1
0 r2/�ðrÞdr ¼ 1=4p. For a given blob function, one can derive the corresponding Green’s functions, G�ðrÞ and B�ðrÞ, such

that D2B�ðrÞ ¼ DG�ðrÞ ¼ /�ðrÞ. The smooth force leads to the regularized Stokeslet

1
8pS�ðx̂Þ ¼ ð�DIþrrÞB�ðrÞ;

¼ H1ðrÞIþ H2ðrÞx̂x̂;

where H1ðrÞ and H2ðrÞ are defined as

H1ðrÞ ¼ �
B0�ðrÞ

r
� B00�ðrÞ; H2ðrÞ ¼

rB00�ðrÞ � B0�ðrÞ
r3 : ð4Þ

Although H1ðrÞ and H2ðrÞ look singular, the form of B�ðrÞ ensures that they are not and thus, the velocity may be defined
everywhere. Eqs. (22) and (23) in Section 4.1 are examples of two blobs and their corresponding functions H1ðrÞ and
H2ðrÞ. The first example clearly shows H1ðrÞ and H2ðrÞ to be nonsingular. In the second example, after a Taylor series expan-
sion about r ¼ 0, one can see that H1ðrÞ and H2ðrÞ are also nonsingular.

3. Green’s function for periodic Stokes flow

Our work is an extension of the formulation presented in [11], which is summarized in this section. Consider the steady
motion of a Stokes fluid past a triply-periodic array of point forces located at the vertices of a three-dimensional lattice de-
fined by the vectors

Xn ¼ i1a1 þ i2a2 þ i3a3 ði1; i2; i3 ¼ 0;�1;�2; . . .Þ; ð5Þ

where a1; a2, and a3 are the basis vectors that determine the shape of the lattice. The motion of the fluid is governed by the
periodically forced Stokes equations:

�rpþ lDu ¼ �
X

n

gdðx̂nÞ;

r � u ¼ 0:

where x̂n ¼ x� x0 � Xn and a summation over n represents the summation over the infinite lattice extending in all periodic
directions. We note that one point force is located at x0, the nth force is located at xn ¼ x0 þ Xn, so that x̂0 ¼ x� x0. The
velocity at any spatial location x is the sum of the contributions from every point force in the lattice:

uðxÞ ¼ 1
8pl

X
n

Sðx̂nÞg: ð6Þ

The fundamental difficulty with the summation in Eq. (6) is the 1=r decay so that the direct sum over the lattice is divergent.
However, there are ways around a direct summation. Following the method of Pozrikidis [11], to find a rapidly convergent
form of Eq. (6) the Stokeslet, S, may be decomposed in the following way: Sðx̂Þ ¼ 8pð�DIþrrÞBðrÞ ¼ Hðx̂Þ þUðx̂Þ where

Hðx̂Þ ¼ 8pð�IDþrrÞ BðrÞerfcðnrÞ½ �; ð7Þ
Uðx̂Þ ¼ 8pð�IDþrrÞ BðrÞerfðnrÞ½ �;

and n is an arbitrary positive splitting parameter whose value dictates the contribution from each sum. As n tends to zero,
there is a larger contribution from Hðx̂Þ and as n grows larger than 1, there is a larger contribution from Uðx̂Þ. The purpose of
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this splitting is so that the sum over H exhibits Gaussian decay in real space and performing the sum over U in Fourier space
results in exponential decay. This is seen by directly applying the operator in (7):

Hðx̂Þ ¼ CðnrÞ
r

Iþ DðnrÞ
r3 x̂x̂;

where

CðxÞ ¼ erfcðxÞ þ 2xffiffiffiffi
p
p 2x� 3ð Þ expð�x2Þ

and

DðxÞ ¼ erfcðxÞ þ 2xffiffiffiffi
p
p ð1� 2x2Þ expð�x2Þ:

One can see the Gaussian decay of the contributions of H. The slow 1=r decay of the Stokeslet S is contained in the U term.
However, since this term is smooth, an alternative is to sum the Fourier transform of U over the reciprocal lattice in Fourier
space where k, the transform variable, is defined as:

k ¼ j1b1 þ j2b2 þ j3b3; k � al ¼ jl; ðl ¼ 1;2;3Þ;

and a1; a2, and a3 are the same as in (5). The vectors b1;b2, and b3 are the basis vectors for the reciprocal lattice defined by

b1 ¼ 2pa2 � a3

s ; b2 ¼ 2pa3 � a1

s ; b3 ¼ 2pa1 � a2

s ; ð8Þ

where s is the volume of a lattice cell in physical space: s ¼ a1 � ða2 � a3Þ. It is useful to now consider Poisson’s formula for
summation on an infinite lattice of points, which states that:X

n

FðXnÞ ¼
1
s
X

m

bF ðkmÞ: ð9Þ

The three-dimensional Fourier transform of U with respect to X is

Ûðk; x̂0Þ ¼
8p
jkj2

kk

jkj2
� I

 !
1þx2

4
þx4

8

� �
exp �x2

4

� �� �
expðik � x̂0Þ;

where x ¼ jkj=n. The sum of this function over the reciprocal lattice, which leads to an expression for the sum in physical
space as defined in (9), exhibits Gaussian decay. Therefore, the Green’s function for the periodic problem is then a sum of
Gaussian terms over all point forces:X

n

Sðx̂nÞ ¼
X

n

Hðx̂nÞ þ
1
s
X
jkm j–0

Ûðkm; x̂0Þ;

but with one sum in physical space and one sum in reciprocal space. Note that the sum of U in Fourier space contains no
singularity and that H contains the entire 1=r singularity. In practice these sums are truncated and upper bounds are usually
given in terms of the number of periodic layers or shells around a main lattice cell that are included in the sums. Truncation
error estimates are given in [14] as functions of number of layers in physical and reciprocal space and the splitting param-
eter, n.

4. Regularization method

Consider the velocity due to a periodic collection of smoothed point forces placed on an infinite lattice in three dimen-
sional Stokes flow:

�rpþ lDu ¼ �
X

n

g/�ðx̂nÞ; ð10Þ

r � u ¼ 0: ð11Þ

The summation over n again represents the summation over the infinite lattice extending in all periodic directions. At first
glance, it may seem that this problem may be solved by simply choosing any blob function, deriving the regularized Stokeslet
and decomposing it in the same way as in Section 3. We now consider the ramifications of this choice. The direct decompo-
sition of the regularized Stokeslet would be S�ðx̂Þ ¼ 8pð�DIþrrÞB�ðrÞ ¼ H�ðx̂Þ þU�ðx̂Þ where

H�ðx̂Þ ¼ 8pð�IDþrrÞ B�ðrÞerfcðnrÞ½ �;
U�ðx̂Þ ¼ 8pð�IDþrrÞ B�ðrÞerfðnrÞ½ �:
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For any choice of blob, the sum of H� converges with Gaussian decay due to the derivatives of erfcðnrÞ. When calculating the
direct sum of U� in physical space, we again have a 1=r term that decays very slowly. Moreover, to determine the conver-
gence rate of the sum of U� in Fourier space requires the calculation of complicated integrals, even with a careful choice
of blob. However, this can be avoided altogether.

Instead of this direct decomposition, we consider splitting Eqs. (10) and (11) into:

�rp1 þ lDu1 ¼ �
X

n

gdðx̂nÞ;

r � u1 ¼ 0;

and

�rp2 þ lDu2 ¼ �
X

n

g /�ðx̂nÞ � dðx̂nÞ½ �;

r � u2 ¼ 0:

By linearity of the Stokes equations, u ¼ u1 þ u2 with a Green’s function Sp and p ¼ p1 þ p2. Observe that u1 and p1 are
known quantities with expressions given in [11]. We note here again that in the expression for u1, the singularity is entirely
contained within the physical space calculation (H), while there is no singularity within the Fourier space calculation since U
is smooth. Our goal is to remove the singularity and replace it with a regularized term, all within the physical space sum, which
allows for calculation of the velocity anywhere in the fluid including at the location of the point force, without any modifi-
cation to the summation in Fourier space. The solutions for u and p are given by

u ¼ u1 þ
1

8pl
X

n

½S�ðx̂nÞ � Sðx̂nÞ�g; ð12Þ

p ¼ p1 þ
1

8p
X

n

½rG�ðx̂nÞ � rGðx̂nÞ� � g:

Now consider the periodic Green’s function Sp for u in this framework:

Spðx̂Þ ¼
X

n

Hðx̂nÞ þUðx̂nÞ þ S�ðx̂nÞ � Sðx̂nÞð Þ;

¼
X

n

Hðx̂nÞ þ S�ðx̂nÞ � Sðx̂nÞð Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Hp

þ 1
s
X
jkm j–0

Ûðkm; x̂0Þ: ð13Þ

For a particular x0 within the main lattice cell (represented by n ¼ 0), the singularity is entirely contained within that cell, so
to get an estimate on the difference in singularities between H and S, we now split Hp into the n ¼ 0 cell and all other lattice
cells:

Hp ¼
X

n

CðnrnÞ
rn

Iþ DðnrnÞ
r3

n
x̂nx̂n þ 8pH1ðrnÞIþ 8pH2ðrnÞx̂nx̂n �

1
rn

I� x̂nx̂n

r3
n

� �
¼
X

n

CðnrnÞ
rn

Iþ DðnrnÞ
r3

n
x̂nx̂n þ EðrnÞIþ FðrnÞx̂nx̂n

� �
¼
X
n–0

CðnrnÞ
rn

Iþ DðnrnÞ
r3

n
x̂nx̂n þ EðrnÞIþ FðrnÞx̂nx̂n

� �
þ Cðnr0Þ � 1

r0
Iþ Dðnr0Þ � 1

r3
0

x̂0x̂0 þ 8pH1ðr0ÞIþ 8pH2ðr0Þx̂0x̂0

� �
ð14Þ

where EðrÞ ¼ 8pH1ðrÞ � 1=r; FðrÞ ¼ 8pH2ðrÞ � 1=r3 and H1 and H2 are given by Eq. (4). To restrict the addition of S� � S to
physical space requires that the decay of S� � S be at least as fast as the decay of H, i.e., Gaussian. Note that
S� � S ¼ 8pð�DIþrrÞðB�ðrÞ � BðrÞÞ, so we can ensure this behavior with the right choice of blob function. We describe
the choice of blob in the next section. First we prove that we indeed have a smooth solution.

Our claim is that the expression for Hp does not contain any singularities. The singularity is restricted to the main lattice
box where n ¼ 0 and H1ðr0ÞIþ H2ðr0Þx̂0x̂0 is nonsingular by construction, so the only term left to consider is
½ðCðnr0Þ � 1Þ=r0�Iþ ½ðDðnr0Þ � 1Þ=r3

0�x̂0x̂0. These remaining expressions are also nonsingular. To explore this, consider the
following:

lim
r!0

CðnrÞ � 1
r

¼ lim
r!0

�erfðnrÞ þ 2ffiffiffi
p
p ð2nr � 3Þnr expð�n2r2Þ

r
¼ �8nffiffiffiffi

p
p :
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Since r0 ¼ jx̂0j and

lim
r!0

DðnrÞ � 1
r

¼ lim
r!0

�erfðnrÞ þ 2ffiffiffi
p
p ð1� 2n2r2Þnr expð�n2r2Þ

r
¼ 0;

we have that

lim
r0!0

Cðnr0Þ � 1
r0

Iþ Dðnr0Þ � 1
r3

0

x̂0x̂0

� �
¼ �8nffiffiffiffi

p
p I;

and the term does not contain a singularity. Eq. (13) together with the expression in Eq. (14) can be used to directly compute
the solution. The main benefits of this formulation are its smoothness and the fact that it can be used to calculate the velocity
anywhere in the domain, including at and very near the point forces. Furthermore, we point out the expression for the Û
needs no modification from that given in [11].

4.1. Choosing the blobs

To ensure that the only corrections necessary are those in the Hp function in Eq. (13), we must use a blob function such
that S� � S ¼ 8pð�DIþrrÞðB�ðrÞ � BðrÞÞ decays with at least Gaussian behavior. This will be accomplished as long as the
terms in Eq. (14) containing EðrÞ ¼ 8pH1ðrÞ � 1=r and FðrÞ ¼ 8pH2ðrÞ � 1=r3 exhibit Gaussian decay.

One possibility is to define a blob function /�ðrÞ with compact support in r 6 � with the property that EðrÞ ¼ FðrÞ � 0 for
r > �. This would ensure that the only difference in the computation of the regularized velocity and the singular velocity is
contained in the local term (within the main lattice box) contained in the last term of Eq. (14). A more general class of blob
functions is one that includes non-compactly supported C1 blobs such that EðrÞ and FðrÞ exhibit Gaussian decay. This would
allow the same truncation of the sum to compute Hp. We describe blob functions that guarantee these decay conditions for
EðrÞ and FðrÞ.

Second moment theorem. Let /�ðrÞ be a continuous bounded function that satisfies the following conditions:

1. /�ðrÞ is radially symmetric
2. /�ðrÞ has the decay property j/�ðrÞj 6 Crm expð�n2r2Þ for some integer m P 0 and some constants C > 0 and n > 0.
3.
R1

0 r2/�ðrÞdr ¼ 1
4p

4.
R1

0 r4/�ðrÞdr ¼ 0

Then

jEðrÞj ¼ j8pH1ðrÞ � 1=rj 6 C1rm expð�n2r2Þ
jFðrÞj ¼ j8pH2ðrÞ � 1=r3j 6 C2rm�2 expð�n2r2Þ

for large enough r and for some constants C1 > 0;C2 > 0.

Proof. Define Mn ¼
R1

0 rnþ2/�ðrÞdr for n ¼ 0;1;2. Consider the functions G�ðrÞ and B�ðrÞ defined as the solutions of DG� ¼ /�
and DB� ¼ G� in R3. Since /� is radially symmetric, the functions satisfy the following ordinary differential equations

G00�ðrÞ þ
2
r

G0�ðrÞ ¼
1
r

rG�ðrÞð Þ00 ¼ /�ðrÞ; ð15Þ

B00�ðrÞ þ
2
r

B0�ðrÞ ¼
1
r

rB�ðrÞð Þ00 ¼ G�ðrÞ; ð16Þ

with G�ð0Þ and B�ð0Þ bounded and satisfying the following conditions

lim
r!1

G�ðrÞ þ
1

4pr
¼ 0; ð17Þ

lim
r!1

B�ðrÞ þ
r

8p
¼ 0: ð18Þ

Eqs. (15) and (16) are solved by integrating rG�ðrÞ and rB�ðrÞ twice and using repeated integration by parts. The result is

G�ðrÞ ¼ �
1
r

M0 �
Z 1

r
s/�ðsÞdsþ 1

r

Z 1

r
s2/�ðsÞds;

B�ðrÞ ¼ �
r
2

M0 �
r2

6

Z 1

r
s/�ðsÞdsþ r

2

Z 1

r
s2/�ðsÞds

� 1
2

Z 1

r
s3/�ðsÞds� 1

6r
M2 �

Z 1

r
s4/�ðsÞds

� �
: ð19Þ
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For G� and B� to satisfy the conditions at infinity, Eqs. (17) and (18), we require 4pM0 ¼ 1 (condition 3 of the theorem state-
ment). All integrals in these expressions inherit a decay rate from the function /�. However, B�ðrÞ includes the slowly-decay-
ing term M2=6r, regardless of the decay properties of /�ðrÞ. Condition 4 eliminates this slow decay by requiring M2 ¼ 0.

We now establish the bound on the decay rate of EðrÞ and FðrÞ. By definition, EðrÞ ¼ 8pH1ðrÞ � 1=r and
FðrÞ ¼ 8pH2ðrÞ � 1=r3. From Eq. (4), these are

EðrÞ ¼ �8pB00�ðrÞ �
8pB0�ðrÞ

r
� 1

r
;

FðrÞ ¼ 8pB00�ðrÞ
r2 � 8pB0�ðrÞ

r3 � 1
r3 :

Using the expression for B�ðrÞ in Eq. (19), we get

EðrÞ ¼ 16p
3

Z 1

r
s/�ðsÞds� 4p

r

Z 1

r
s2/�ðsÞds� 4p

3r3

Z 1

r
s4/�ðsÞds; ð20Þ

FðrÞ ¼ �4p
r3

Z 1

r
s2/�ðsÞdsþ 4p

r5

Z 1

r
s4/�ðsÞds: ð21Þ

Note that for an integer n P 1, condition 2 implies thatZ 1

r
sn/�ðsÞds 6 C

Z 1

r
snþm expð�n2s2Þds ¼ Cn�ðnþmþ1Þ

Z 1

nr
znþm expð�z2Þdz 6 ~Cn�2rnþm�1 expð�n2r2Þ:

This inequality along with Eqs. (20) and (21) indicate that

EðrÞj j 6 C1n
�2rm expð�n2r2Þ;

FðrÞj j 6 C2n
�2rm�2 expð�n2r2Þ:

Finally, we mention that for the case of blob functions /� with compact support in ½0; ��, all integrals in Eqs. (20) and (21) are
zero when r > � and we have that for r > �; EðrÞ ¼ FðrÞ ¼ 0. h

4.1.1. Examples of blobs
In the formulas below, we use the notation z ¼ r=�. A blob with compact support in ½0; �� satisfying the conditions of the

Second Moment Theorem, along with the associated functions H1ðrÞ and H2ðrÞ, is given by

/�ðrÞ ¼
3465ð5�13z2Þð1�z2Þ3

1024�3p ; 0 6 z < 1
0; 1 6 z

(
ð22Þ

H1ðrÞ ¼
1

8p�þ
ð1�z2Þð378z8�1547z6þ2413z4�1745z2þ565Þ

1024p� ; 0 6 z < 1
1

8pr ; 1 6 z

(

H2ðrÞ ¼
1

8p�3 � ð1�z2Þð315z6�1225z4þ1745z2�1027Þ
1024p�3 ; 0 6 z < 1

1
8pr3 ; 1 6 z

(

Note that in Eq. (14), the terms containing the functions C and D decay as Gaussians in r. The terms containing EðrÞ and
FðrÞ depend on the decay of the blob. For the blob in Eq. (22), these terms are identically zero for n – 0. However, as long as
the terms with EðrÞ and FðrÞ decay as Gaussians, their addition in Eq. (14) can be computed without affecting the truncation
of the series. An example of a blob that leads to expressions for E and F that decay as Gaussians is:

/�ðrÞ ¼
1

2p3=2�3 ð5� 2z2Þ expð�z2Þ ð23Þ

H1ðrÞ ¼
1

8pr
þ 1

4p3=2�
expð�z2Þ � erfcðzÞ

8pr

H2ðrÞ ¼
1

8pr3 �
1

4p3=2�r2 expð�z2Þ � erfcðzÞ
8pr3

5. Validation studies and application

We present two validation studies of our numerical method as well as an application. The first problem is to compute the
drag coefficient of a fixed bed of spheres with varying concentration and packings. Drag coefficients are compared to previ-
ously known results from the literature. For the first numerical test, we use two different blobs but for the second test and
application, we limit the experiments to a single one. The second problem is to compute the velocity field near a bed of
spheres whose motion is driven with a given force density. The velocities are compared to those computed using an
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immersed boundary method for Stokes flow. Finally, we use the method presented in this study to investigate optimal spac-
ing of a periodic arrangement of sinusoidal swimmers.

5.1. Standardizing blobs for performance comparison

The choice of regularization parameter � for a given blob often seems ad hoc. A principal reason for this is that different
(unscaled) blobs have different shapes. We propose a systematic way of comparing different blobs by first defining a stan-
dardized blob /�ðrÞ as one that satisfies /1ð0Þ ¼ 1; that is, the blob at r ¼ 0 has unit height when � ¼ 1. Following this def-
inition, the standardized forms of the blobs in Eqs. (22) and (23) are

~/�ðrÞ ¼
1
�3 1� 13

5 d2
az2

� 	
1� d2

az2
� 	3

; 0 6 z < 1
0; 1 6 z

(
ð24Þ

~w�ðrÞ ¼
1
�3 1� 2

5
d2

bz2
� �

e�d2
b z2 ð25Þ

where da ¼
ffiffiffiffiffiffiffiffiffiffi
17325
1024p

3
q

; db ¼
ffiffiffiffiffiffiffiffiffi

5
2p3=2

3
q

and z ¼ r=�. Note that ~/�ð0Þ ¼ ~w�ð0Þ ¼ 1=�3. These are the blobs we use in this section.

5.2. Drag coefficients of cubic array of spheres

Our first test problem involves a periodic array of spheres that moves with a uniform velocity in the positive x-direction.
We will compare the drag coefficient of the array using the total drag force on the spheres. We consider a sphere of radius a
and discretize its surface using Spherical Centroidal Voronoi Tessellation (SCVT) and the package STRIPACK [17,18]. Using
SCVT, a specified number of points are positioned on a unit sphere so that the points are well separated. Then, the Delaunay
triangulation of these same points on the unit sphere is obtained using STRIPACK. We then use the centroid of each triangle as
the location of the N point forces, gi/�, where i ¼ 1;2; . . . ;N. The velocity of all points on the surface of the sphere is set to a
constant vector U ¼ ð1;0;0Þ and we use Eq. (12) to solve for the forces. We choose the radius a ¼ 0:25; � based on the discret-
ization, and use three different packings for the array: simple cubic, body-centered, and face-centered, which are displayed in
Fig. 1. The sphere packings are defined in terms of the basis vectors for physical and reciprocal space. There is one central
sphere, always in the same location for all three packings, and the location of the surrounding spheres is defined by the basis
vectors. For a simple cubic packing, the basis vectors in physical space are a1 ¼ ðd;0;0Þ; a2 ¼ ð0; d;0Þ; a3 ¼ ð0;0; dÞ, where d is
the center-to-center distance between the spheres, the reciprocal space vectors, b1;b2, and b3 are defined in Eq. (8), and the
volume of one lattice cell is s ¼ d3. Body-centered packing is defined by the vectors

a1 ¼ d=
ffiffiffi
3
p
ð1;1;�1Þ; b1 ¼ p

ffiffiffi
3
p

=dð1;1; 0Þ;
a2 ¼ d=

ffiffiffi
3
p
ð�1;1;1Þ; b1 ¼ p

ffiffiffi
3
p

=dð0;1;1Þ;
a3 ¼ d=

ffiffiffi
3
p
ð1;�1;1Þ; b1 ¼ p

ffiffiffi
3
p

=dð1;0;1Þ;

where the volume of one periodic box is s ¼ 4d3
=3

ffiffiffi
3
p

. Face-centered packing is defined by the vectors

a1 ¼ d=
ffiffiffi
2
p
ð1;1;0Þ; b1 ¼ 2p=

ffiffiffi
2
p

dð1;1;�1Þ;
a2 ¼ d=

ffiffiffi
2
p
ð0;1;1Þ; b1 ¼ 2p=

ffiffiffi
2
p

dð�1;1;1Þ;
a3 ¼ d=

ffiffiffi
2
p
ð1;0;1Þ; b1 ¼ 2p=

ffiffiffi
2
p

dð1;�1;1Þ;

where the volume of one periodic box is s ¼ d3
=
ffiffiffi
2
p

. The drag coefficient K is defined by the following equation for the drag
force on each sphere in a cubic array [19,6,2]:

Fig. 1. Three different packings of the array of spheres: simple cubic (a), body-centered (b), and face-centered (c).
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F ¼ 6plaKV ;

where l and V are the viscosity and average velocity of the fluid at the sphere surface, respectively. We calculate the drag
coefficients, K, for arrays of spheres with simple cubic packing with five different concentrations and also for the other two
packings with just one concentration. The concentration is defined by c ¼ 4pa3=3s. We use the two different blob functions
from Eqs. (22) and (23) and compare these values to the values from Zick and Homsy [19], Kz. The results are shown in Tables
1 and 2 where we report the relative difference given by jK � Kzj=maxðjKj; jKzjÞ.

By prescribing the velocity at the points on the sphere and solving for the forces at those same locations, we can find the
velocity at any location in the domain. To provide insight into what the flow fields look like in each situation, in Fig. 2 we
show the velocity field in the z ¼ 0 plane, through the middle of the central sphere.

These comparisons show that the numerical method performs well for a variety of geometric arrays of objects with an �
properly chosen from the discretization and two different types of blob functions. The discretization that we use does not
give identically-sized patches on the surface of the sphere that represent each force point. For the given sphere radius,
we can find the average area of one of these patches. Assuming the shape of each patch is either square or circular, we
can find the length of the diagonal and a radius, respectively, from the surface area of the sphere and the number of points
used to discretize that surface. We find that if we choose an � close to the radius of the circle (�0.0213) and half the diagonal
of the square (�0.0267), we get good results. Tables 1 and 2 show the relative difference between our drag force and those
from the literature. The difference tables correspond to the blobs in Eqs. (24) and (25). For all cases, we use
� ¼ 0:0213; 0:0240 and 0:0267. We find that for concentrations below 0.125, the choice of � near the radius of the circle gives
relative differences less than 1%. For all other concentrations and values of �, we find the relative differences to be less than
3%.

To ensure that we are including enough terms in our sums, we systematically checked the relative difference in drag coef-
ficients as we increased the number of layers summed in physical and reciprocal space (see Table 3). We found that summing
beyond two layers in either space gives a relative difference in the value of the drag coefficient by at most 7.3 � 10�8. There-
fore, for all values reported in Table 1, we sum exactly 2 layers in each space.

5.3. Velocity comparison with immersed boundary method

In the next example, we validate our method by comparing its solution to the solution computed by the immersed bound-
ary method [20], which is a popular numerical method for computing fluid motion driven by immersed structures. In this
example, we compute the Stokes solution driven by forces singularly distributed over the surfaces of the spheres. Each
sphere has radius a ¼ 0:25 and is centered at ð0:5;0:5;0:5Þ of a unit box with periodic boundary conditions. This setup gives
simple cubic packing with a concentration of 0.0654. The total surface force density g over the entire sphere is set to one in
the positive z-direction. The sphere is discretized using the same method as in the previous sphere example except here we
use 1600 points and each point force carries approximately (since the discretization is quasi-uniformly distributed) the same
force density and in the same direction.

The immersed boundary method solves the Stokes Eqs. (1) and (2), with the Dirac delta function dðx̂Þ on the right-hand
side of Eq. (1) replaced by a discrete (or, smoothed) delta function dhðx̂Þ given by

dhðx̂Þ ¼
1

h3 /IB
x̂1

h

� �
/IB

x̂2

h

� �
/IB

x̂3

h

� �

/IBðrÞ ¼
1
4 1þ cos pr

2

� 	� 	
; jrj 6 2

0; otherwise

(
where x̂1; x̂2, and x̂3 are the x-, y- and z-components of x̂, respectively. The discretized form of Eq. (1), with smoothed Dirac
delta function dh, and Eq. (2) is then reduced into a sequence of Poisson problems, one for each variable [21]

Dp ¼ r � gdhðx̂Þ; Du ¼ rp:

The immersed boundary solution was computed using a 256� 256� 256 spatial grid.

Table 1
Drag coefficients for periodic arrays with three different sphere packings and various concentrations, � ¼ 0:0214; 0:0228 and 0:02425, with blob from Eq. (24).
Here N ¼ 553 and n ¼

ffiffiffiffi
p
p

=s. P = packing, c = concentration, and RD = relative difference between K� and Kz .

P c Kz K�¼0:0213 RD K�¼0:0240 RD K�¼0:0267 RD

SC 0.000125 1.0960 1.0944 0.0015 1.1012 0.0047 1.1064 0.0095
SC 0.008 1.5250 1.5204 0.0030 1.5250 0.0056 1.5437 0.0123
SC 0.027 2.0080 1.9987 0.0046 2.0080 0.0067 2.0391 0.0155
SC 0.064 2.8100 2.7852 0.0088 2.8100 0.0072 2.8653 0.0197
SC 0.125 4.2920 4.2019 0.0210 4.2920 0.0040 4.3954 0.0239
BC 0.125 4.4470 4.3564 0.0204 4.4671 0.0045 4.4470 0.0242
FC 0.125 4.4460 4.3557 0.0203 4.4665 0.0046 4.5542 0.0243
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The z-component of u, computed by the regularized periodic Stokeslet method using N ¼ 1600 quasi-uniformly distrib-
uted point forces, is evaluated in the z ¼ 0:5 plane and exhibited in Fig. 3. Our solution agrees well with the immersed
boundary solution; cross-sections of the computed velocities, evaluated at y ¼ 0; y ¼ 0:25, and y ¼ 0:5 and at z ¼ 0:5, appear
indistinguishable in the left side of Fig. 3. Results at other locations and for other components of the velocities are similar
(not shown). The relative differences of the z-component of u, given by juz � uzIBj=maxðjuzj; juzIBjÞ, where uIB denotes the

Table 2
Drag coefficients for periodic arrays with three different sphere packings and various concentrations, � ¼ 0:0214;0:0228 and 0:02425, with blob from Eq. (25).
Here N ¼ 553 and n ¼

ffiffiffiffi
p
p

=s. P = packing, c = concentration, and RD = relative difference between K� and Kz .

P c Kz K�¼0:0213 RD K�¼0:0240 RD K�¼0:0267 RD

SC 0.000125 1.0960 1.0969 0.0008 1.1030 0.0064 1.1074 0.0104
SC 0.008 1.5250 1.5253 0.0002 1.5371 0.0097 1.5455 0.0135
SC 0.027 2.0080 2.0071 0.0004 2.0276 0.0097 2.0422 0.0170
SC 0.064 2.8100 2.8019 0.0029 2.8423 0.0115 2.8713 0.0218
SC 0.125 4.2920 4.2533 0.0090 4.3502 0.0136 4.4201 0.0299

(a) (b)

(c)

Fig. 2. Slice of the velocity field through the middle of the central sphere at z ¼ 0 in the direction of the flow. The concentration is 0.125, sphere radius is
0.25, and � is 0.04. The sphere consists of 553 point forces. (a) Simple cubic packing; (b) body-centered packing; (c) face-centered packing

Table 3
Number of shells to sum in physical (N) and reciprocal (M) space.

n ¼ 2:2, Concentration = 0.125 n ¼ 0:88, Concentration = 0.008

N,M N,M Relative difference N,M N,M Relative difference

1,1 1,2 4:1� 10�5 1,1 1,2 4:9� 10�4

1,1 2,1 8:9� 10�3 1,1 2,1 1:8� 10�4

1,2 2,2 8:9� 10�3 1,2 2,2 1:8� 10�4

2,1 2,2 4:1� 10�5 2,1 2,2 4:9� 10�4

2,2 2,3 1:5� 10�12 2,2 2,3 3:3� 10�12

2,2 3,2 7:3� 10�8 2,2 3,2 1:5� 10�10
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immersed boundary velocity solution, are evaluated at selected cross-sections and shown in the right side of Fig. 3. As noted
above, the discretization that we use here does not give identically-sized patches on the surface of the sphere that represent
each force point. Using 1600 points on a sphere with radius 0.25, circular patches would have a radius of 0.0125 and square
patches would have a length of 0.0222. With intuition from the last example and through some trial and error, we find that
� ¼ 0:015 gives the best agreement with the immersed boundary solution. Furthermore, we also sum two layers in physical
and reciprocal space, as in the last example. The relative difference of the two velocity solutions, measured in L2-norm, is
1.8 � 10�3.

The velocity in the plane x ¼ 0:5 was also computed, and is displayed in Fig. 4, to give insight into what the velocity field
looks like around and through the sphere. In this example, the array of spheres has a concentration of 0.0654 with a simple
cubic packing and so the velocity field has similar characteristics to the one depicted in Fig. 2(a).

5.4. Periodic array of sinusoidal swimmers

As an application, we consider the motion of an undulating flagellum, similar to the waveform often observed in sea-urch-
in spermatozoa, for example. The purpose of this example is to investigate the fluid flow around the flagellum and its swim-
ming speed as the flagellum undulates in proximity to its periodic copies. In our simulations, we are able to change the
periodic box dimensions independently so as to modify the proximity of the flagella in one or more coordinate directions.

The flagellum is represented by a single curve in space given parametrically by

xðs; tÞ ¼ as; yðs; tÞ ¼ bs sinðas� tÞ; zðs; tÞ ¼ 0

for 0 6 s 6 Smax and t P 0. In the simulations of this section we use the parameters a ¼ 2p=Smax; b ¼ 0:4;a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� b2

q
and

Smax ¼ 0:75. Given the flagellum shape at any value of time, t, its motion is given by the velocity
uf ¼ ð@x=@t; @y=@t; @z=@tÞ ¼ ð0;�bs cosðas� tÞ;0Þ. The following simulations are all performed at time t ¼ 0. At this pre-
scribed time and choice of b, the shape of the swimmer limits the size of the periodic box to a minimum of about 0.5 in

Fig. 3. Left: z-component of the velocity along the x-axis at the locations y ¼ 0 (outside the sphere), y ¼ 0:25 (partially through sphere), and y ¼ 0:5
(directly through center of sphere), and in the plane z ¼ 0:5. The dashed gray lines are the velocities computed with the method described in this paper, the
black lines are velocities computed with the immersed boundary method. Right: Relative difference between the two methods used to calculate the
velocities seen in the left plot.

Fig. 4. Slice of the velocity field through the middle of the central sphere at x ¼ 0:5 in the direction of the flow. The concentration is 0.0654 with sphere
simply packed, the sphere radius is 0.25, and � is 0.015. The sphere consists of 1600 point forces.
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the y-direction and 0.75 in the x-direction. Because the flagellum oscillates in the z ¼ 0 plane, the box length in z is
unrestricted. The flagellum is discretized into 60 equidistant points and we use a value of � equal to the distance between
the points and the blob function in Eq. (22).

The flagellum must move in an environment where the net force and net torque are zero, so we set the body velocity to be
the sinusoidal velocity plus a rigid body translation and rotation

uðxÞ ¼ uf ðxÞ þ U0 þ ðX0 � xÞ ð26Þ

for constant vectors U0 and X0 (which are unknown). Then we obtain all the forces gk;U0 and X0 simultaneously by solving

uf ðxkÞ ¼ gkSpðxkÞ � U0 � ðX0 � xkÞ; k ¼ 1;2; . . . ;N

0 ¼
XN

k¼1

gk zero net force

0 ¼
XN

k¼1

xk � gk zero net torque

Note that for each k, the formula for uf ðxkÞ represents 3 equations for a total of 3N equations. The last two equations intro-
duce a total of 6 more equations. The unknowns are 3N force components plus the 6 components of U0 and X0. Each point
moves with velocity given in Eq. (26).

Our first test is to determine the swimming velocity, U0, as we increase the length of periodic box in the x; y, and z direc-
tions simultaneously; these lengths are denoted Lx; Ly, and Lz, respectively. To gain intuition about what the velocity fields
around the swimmers look like, the swimmer and the surrounding velocity field in the z ¼ 0; x ¼ 0, and y ¼ 0 planes are
shown in Figs. 5–7, respectively. The two plots in each of these figures depict the velocity field when the main lattice box
has dimension Lx ¼ Ly ¼ Lz ¼ 0:75 (left) and Lx ¼ Ly ¼ Lz ¼ 1:5 (right). The velocity vectors are similarly scaled in each indi-
vidual figure. We can see that the influence of the periodic copies of the swimmer decreases noticeably as the length of the
periodic box increases from 0.75 up to 1.5.

We also report the resulting swimming velocities in the x-direction. As the swimmer goes through a periodic oscillation, it
does not maintain a constant swimming speed; rather, the forward speed also oscillates between a minimum and a maxi-
mum value of the same sign (see Fig. 10). The dashed line in Fig. 8 shows the instantaneous swimming speed at t ¼ 0 as a
function of the side length of a cubic periodic box. These results indicate that as the box length is increased equally in all
directions, the swimming velocity decreases, so that as the swimmers move closer to each other, they help each other swim
faster. To begin to parse out which swimmers help to increase the collective speed, we ran a second test in which we fix the
length in the x-direction, Lx, to be 0.75 and increase Ly and Lz in equal amounts. The solid line in Fig. 8 presents these veloc-
ities and shows that in this case as we increase Ly and Lz, the swimming velocity increases. The combined results of these first
two tests indicate that as swimmers move closer to each other (side-to-side) and stay fixed (end-to-end) their speed will
collectively slow. However, if they move closer to each other, staying an equal distance apart in all directions, until they
are almost touching end-to-end, then their speed will collectively increase. We ran this same test using Lx ¼ 1 and found
similar behavior (not shown).

Our next tests are to independently change the length of the box in the y- and z-direction to find out which direction is
more important in terms of increasing the collective speed of the swimmers. We discuss two cases: (i) Lx ¼ 1, three values of
Lz (0.5, 0.75 and 1), and we vary Ly in small increments, and (ii) Lx ¼ 1, three values of Ly (0.5, 0.75 and 1) and we vary Lz in
small increments. The resulting swimming velocities for these two cases are reported in the left and right plots of Fig. 9,
respectively.

Fig. 5. Velocity field in the plane z ¼ 0 with box lengths Lx ¼ Ly ¼ Lz ¼ 0:75 (left) and Lx ¼ Ly ¼ Lz ¼ 1:5 (right). Velocity vectors scaled by 0.03 in each plot.

198 K. Leiderman et al. / Journal of Computational Physics 236 (2013) 187–202



Author's personal copy

The left plot in Fig. 9 shows that in case (i), no matter what the fixed length of Lz, as swimmers get very close to one an-
other in the y-direction, the general trend is that their collective speed slows. Moreover, when Lz is increased they collec-
tively swim a little slower. In case (ii), we see that the swimming velocity is not as significantly increased or decreased
by changing Lz as much as it was when changing Ly in case (i), however, we can still say something about these small
changes. We see that as swimmers get closer to one another in the z-direction, they will only slow the collective speed if
they are already relatively close to each other in the y-direction (the curve dips down at small values of Lz), otherwise, they
slightly increase the collective speed. Furthermore, the length of Ly seems to play an important role in the speed, no matter

Fig. 6. Velocity field in the plane x ¼ 0 with box lengths Lx ¼ Ly ¼ Lz ¼ 0:75 (left) and Lx ¼ Ly ¼ Lz ¼ 1:5 (right). Velocity vectors scaled by 0.015 in each plot.

Fig. 7. Velocity field in the plane y ¼ 0 with box lengths Lx ¼ Ly ¼ Lz ¼ 0:75 (left) and Lx ¼ Ly ¼ Lz ¼ 1:5 (right). Velocity vectors scaled by 0.01 in each plot.

Fig. 8. The x-component of the swimming velocity, U0, as a function of box diameter. The dashed line represents the velocity with Lx; Ly , and Lz changing by
equal amounts. The swimming velocity in this case decreases as Lx; Ly , and Lz increase. The solid line represents the velocity with Ly and Lz changing by equal
amounts while Lx is a fixed value of 0.75. The swimming velocity in this case increases as Ly and Lz increase.
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what the length of Lz. In case (i), when Lz is increased from 0.5 up to 0.75 and when the box dimensions are greater than 1 in
the y-direction, the swimming speed decreases by about 1% (the relative difference between the solid and dashed lines in the
left side of Fig. 9) whereas when Ly is increased from 0.5 up to 0.75, the swimming speed increases by about 5% (the relative
difference between the solid and dashed lines in the right side of Fig. 9). Our data implies that the distance between swim-
mers in the y-direction, that is, in the plane in which they oscillate, has a larger impact on their collective swimming speed.

Finally, we kept the value of b fixed and computed the swimming speed U0 at various times to see if the implications of
our previous test hold true for all waveforms during one oscillation. We found that during times when the swimming veloc-
ity is highest (near t ¼ 0 and t ¼ p) is when the distance between swimmers seems to matter the most. Fig. 10 shows the
swimming velocity as a function of time (here we only plot t ¼ 0 to t ¼ p since from t ¼ p to t ¼ 2p is identical) for three
different periodic arrangements. The solid line depicts the swimming velocity in the case that Lx ¼ Ly ¼ Lz ¼ 0:75. The swim-
ming velocity is decreased by about 5% at all times if the swimmers move further apart as Lx; Ly, and Lz change equally
(dashed line). Keeping Lx fixed and increasing Ly and Lz equally produces only minor changes in the swimming speed,
increasing it slightly near t ¼ 0 and t ¼ p while decreasing it slightly near t ¼ p=2 (dash-dot line). Overall, this causes the
average swimming speed over a time period to remain equal to the average speed depicted by the solid line (when
Lx ¼ Ly ¼ Lz ¼ 0:75).

The simulations show that the end-to-end distance between swimmers has a significant effect in the swimming speed of
the periodic array of flagella. As the end-to-end distance decreases, the swimming speed increases. On the other hand, if the
end-to-end distance Lx is kept fixed, decreasing the distance in the y-direction (the amplitude direction) has the effect of
slowing down the swimmer. The distance Lz has negligible effect.

In these examples, since the periodic boxes were not always cubic, the number of layers needed to sum in reciprocal space
had to be adjusted. For all of the results shown in this section, we summed 2 layers in physical space and 3 layers in reci-
procal space. We did this because we found the relative difference to be on the order of 10�3 between 2 and 3 layers and 10�6

between 3 and 4 layers. Since the swimming speeds were on the order of 10�2 and changed in our tests on the order of 10�4 ,

Fig. 9. The x-component of the swimming velocity, U0, as a function of box diameter. The lines represent different box lengths: Lz ¼ 0:5 (solid), Lz ¼ 0:75
(dashed), and Lz ¼ 1 (dotted) with Ly varying from 0.5 up to 3.0 in smaller increments (left) and Lx is a fixed value of 1 and Ly ¼ 0:5 (solid), Ly ¼ 0:75
(dashed), and Ly ¼ 1 (dotted) with Lz varying from 0.5 up to 3.0 in smaller increments (right).

Fig. 10. Swimming velocities as a function of time. Box lengths Lx ¼ Ly ¼ Lz ¼ 0:75 (solid), Lx ¼ Ly ¼ Lz ¼ 2 (dashed), Lx ¼ 0:75; Ly ¼ Lz ¼ 2 (dash-dot).
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we chose to increase the number of layers from 2 to 3 in reciprocal space. We did not find a significant difference when
increasing the number in physical space.

6. Conclusions

In this paper, we have introduced a regularization method that gives a smooth formulation for the fundamental solution
to Stokes flow driven by an infinite, triply-periodic array of point forces. With this formulation, the velocity at any spatial
location may be calculated, including at and very near the point forces; these locations typically lead to numerical difficulties
due to the singularity within the Stokeslet. We built upon methods in [11] in which the periodic Stokeslet is split into two
rapidly decaying sums, one in physical space and one in reciprocal, or Fourier, space. The formulation within the reciprocal
space sum is smooth while a singularity is contained within the physical space sum. In our method, we carefully remove this
singularity and replace it with a regularized expression, all within the physical space sum. The benefit of this is that one need
only modify the expression for this one sum while using the expression for the reciprocal sum exactly as given in [11]. The
replacement of the singularity in ensured to be within the physical space with the right choice of blob function. The blob
functions that we introduce in this paper are different from blob functions used for previous methods [15,16] in that they
have the additional property that their second moment is identically zero. We give two examples of the functions that
can be used in practice.

Another benefit to this method is the fact that it is mesh free. That is, one need not compute the velocity at all points on a
regular grid of points as with the typical finite difference or finite volume methods. Here once the forces are known at the
locations of the point sources (either calculated with some input velocity or prescribed), the velocity may be simply com-
puted at any location in the domain.

We have validated our method using two numerical tests. In the first test we compute the drag coefficient for periodic
arrays of spheres with a variety of concentrations of sphere packings. Here we prescribed the array of spheres with an aver-
age velocity and computed the resulting drag forces on each sphere. We show that we get very good agreement with drag
coefficient values from the literature in all cases using intuitive choices for our blob parameters and with a relatively small
number of periodic layers to sum in physical and reciprocal space. In our second test we prescribe a force density onto a
periodic array of spheres, compute the resulting nearby velocity field, and compare these velocities to those computed using
an immersed boundary method formulation. Again, we have very good agreement when we compare our solutions.

Finally, we have applied our numerical method to specific periodic arrangements of sinusoidal swimmers. By systemat-
ically varying their spacing in three directions, we were able to explore how their spacing affects their collective swimming
speed. If a faster collective swimming speed is desired in this periodic arrangement, our data imply that swimmers should be
closest in the end-to-end configuration and then spread out in other directions, specifically in the y-direction. Furthermore,
we found that over the timespan of one oscillation, the spacing affects the swimming velocity the most when that velocity is
the highest. On average, keeping the end-to-end distance fixed and spreading out in y and z will slightly increase the collec-
tive swimming velocity whereas spreading out equally in x, y, and z will slightly decrease the collective swimming speed.
Our method also provides a framework for investigating the effect of different parameter values, such as b, to determine
how smaller or larger flagellar oscillations affect swimming speed.
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