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A new finite difference numerical method for modeling the interaction between
flexible elastic membranes and an incompressible fluid in a two-dimensional domain
is presented. The method differs from existing methods in the way the forces exerted
by the membranes on the fluid are modeled. These are described by a collection of
regularized point forces, and the velocity field they induce is computed directly on
a regular Cartesian grid via a smoothed dipole potential. Comparisons between this
method and the immersed boundary method of Peskin and McQueen are presented.
The results show that the method proposed here preserves volumes better and has a
higher order of convergence. 2000 Academic Press

Key Wordsimmersed boundaries; projection method.

1. INTRODUCTION

A high-order numerical method for the solution of two-dimensional immersed bounde
problemsis presented. Inthis context, immersed boundaries refer to thin, flexible membre
within a constant density, incompressible fluid. The key feature of these problemsis that
the fluid and the immersed boundary motions must be computed simultaneously, accour
for the interaction between the forces developed along the boundaries and the motio
the fluid surrounding them. Existing numerical methods for immersed boundary proble
can be placed into two general categories: methods that determine the jump in the varia
that are discontinuous across the boundaries (see, e.g., [16]) and methods that regu
the same variables to smooth out the jumps. The immersed boundary method introdt
by Peskin and developed further by Peskin and McQueen fits into the second categ
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[17, 19, 18]. This method has been applied to many physiological and biological proble!
including blood flow in the heart, flows in collapsible tubes [21], sperm motility and othe
flagellar motions [12, 9, 11], platelet aggregation, and others [13].

The immersed boundary method represents moving boundaries with Lagrangian mar
at which boundary forces are computed. These forces are then transferred to an under
Cartesian grid upon which the Navier—Stokes equations are solved. This approach
two advantages: the method is relatively simple to implement even in the presence
complicated boundaries and it allows in principle the use of any grid-based fluid solv
However, the immersed boundary method displays only first-order convergence prope
near the boundaries in spite of second-order computational procedures for the forces an
fluid motion. The reason for this is the manner in which the membrane forces are regulari
and transferred to the grid. An overview of the immersed boundary method is presente
Section 2 as well as a new version of the method designed to improve its accuracy w
holding to the same force regularization methodology. This is accomplished by design
higher-order procedures for representing the boundary forces and for modeling the f
motion.

In Section 3, a new way of dealing with the boundary—grid communication is offer:
which leads to a practical high-order numerical scheme. The new method, the blob |
jection method, is based on ideas taken from vortex and impulse methods [3, 4, 6, 7]
which a cutoff function, or blob, is used to regularize the force field. While the numeric
parameters must satisfy certain constraints for stability and accuracy, the support of the
is decoupled from the other numerical parameters in the method. This important prop
gives it flexibility and allows one to scale the size of the blob support in a way that balan
the various errors in the method.

In Section 4, a careful study of the accuracy and convergence rates for the diffel
approaches is presented. We first examine the convergence properties of the imme
boundary method and verify that the improved version of the immersed boundary met
does yield somewhat higher convergence rates. For the improvements achieved, how
the cost associated with this method is high, making it impractical in some situations.
then show that the blob projection method yields even better accuracy and convergence
than the improved immersed boundary method at a reasonable cost. Finally we identify
step in these methods that reduces the convergence rate below what might be expectec
considering only the accuracy of the fluid solver.

2. THE PROBLEM STATEMENT
The incompressible Navier—Stokes equations are
U=—-U-V)u-Vp+vAu+F, V.u=0. 1)

Forimmersed boundary problems in two dimensions, the féaréses along the curves that
define the immersed boundariesz{f, t) is a parametric representation of the immersec
boundary at time, then one can write

L
Fx,t) = / flo, 1)6 (X — z(a, 1)) dev, (2)
0
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where the force densitf(w, t) is problem-specific but is typically a function of the local
curvature of the membrane and includes tensile and bending components. This force
is singular since it is given by the line integral of a two-dimensional delta function.

We are interested in the dynamics of the boundary which is assumed to move with
fluid velocity according to

dz(a, t)
dt

= u(z(a, t),t) = / ulx, t)s(x — z(a, t)) dx. 3)
RZ

2.1. The Projection Formulation

The numerical method proposed in this paper is based on the projection formulatior
the Navier—Stokes equations. The following standard decomposition theorem is neede
order to state the formulation.

THEOREM 2.1. A vector fieldw in a bounded domairD € R? can be decomposed
uniquely intow = u + V&, whereu satisfiesV - u = 0in D and appropriate boundary
conditions.

The proof of this theorem also indicates the numerical procedure used for implement
projections. One is interested in findingwhich plays the role of the fluid velocity. Taking
the divergence ofv = u + V¢ yields

AE =V .w, in D

B . (4)
(¢6,w) =0, onaD,

whereB(&, w) represents the appropriate boundary conditions consistent with the definiti
of the decomposition. The field = w — V¢ is the projection ofv onto the space of zero-
divergence vector fields and is denoteduy Pw.

In two dimensions the field satisfyingV - u = 0 can be written in an equivalent manner
using the stream functiot asu = (yy, —¥x). Using this variable the decomposition is
W = (Yy, —¥x) + (&, &), wherey is the solution of

—AY =V xw, in D

B )
(¥, w) =0, onaD,

where againB(y, w) represents the original boundary conditions diowritten in terms
of .
Using projections, one can write the incompressible Navier—Stokes Eg. (1) as

U =P[—(u-V)u—Vp+vAu+F]. (6)
When periodicity is imposed as the boundary condition, the pressure term on the right o

not contribute to the projection and can be eliminated altogether.

2.2. The Immersed Boundary Method

A brief description of the immersed boundary method is presented in this section. M
detailed treatments can be found in [18]. Consider a two-dimensional curve that repres
a membrane immersed in the fluid. The membrane is discretizeM tpoints, z for
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N h

FIG. 1. Immersed boundaries are described by a Lagrangian collection of points embedded in a fluid don
covered by a regular grid. The grid cells drex h and the initial point spacing along boundarieai&

k=1, ..., M. Let A¢ denote the separation between points along the immersed bound:
Suppose that the fluid occupies the unit squardJ& [0, 1] covered with a grid of size
h=1/Nasin Fig. 1.

Let u{fj represent the velocity at the grid poitit j) at time stem, and{iy denote the
velocity at thekth particle position at time steq. At every time step, giveay, u;’ i and
Gy, the goal is to compute new particle pos|t|c11{j§l and grid veIomnesm”Jrl and then to
interpolate the latter to find{™* at the new particle locations. For S|mpI|C|ty we describe
one step of the time integration based on forward Euler’s method, although in practice

use a Runge—Kutta method. The boundary position and grid velocities are updated wit

Zgt =z + Atd]

utt =l + AP[—(ul; - Va)ulj + vAUl; + F
whereV;, and Ay, represent discrete operators acting on grid functions.

The new boundary positions can be computed first from the veloéiti€Eo update the
grid velocities one must evaluate the fordgy at each grid point in the domain so that
the Navier—Stokes equations can be solved on the grid. This requires first the computz
of the force densitief(«) given the current boundary configuration. A typical feature o
immersed boundary problems is that the forces are evaluated at the membrane ma
which do not necessarily coincide with grid nodes. To represent the forces at the grid no
the immersed boundary method makes use of an approximation of the delta fulgtjon,
and Eq. (2) to spread the forces to the grid. The result is

M
Fy =Y feDn(xij — Z7) A, 7
k=1
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wherex; j is the grid node(i, j) andfy is the force density at the boundary pojt
The approximate delta function is the product of one-dimensional discrete delta functic
Dh(x) = dn(X)dn(y). There are various possible choices digtx); a typical one that has
been used extensively is

60 — {41h [1+cog(%¥)], x| <2h @
0, IX| > 2h.

This function isC1(R), has unit mass, and satisfi§§°OO xth(X) dx = 0. Note that the

support of this function is always an interval of length equal to four grid cells regardless

the grid size. In other words, the supportdafscales linearly witth.

Once the forces are computed along the immersed boundaries and spread to the gric
can use any appropriate numerical method to update the grid velocities, since all quanti
including the forces, have now been computed on the grid. Once the boundary posi
and grid velocities have been updated, the last remaining step is to interpolate the upd
velocities from the grid back to the immersed boundary points. This is done by discretiz
Eg. (3) using the same approximate delta function

agtt Zu 'Dn(xi,j — z¢™)h% (9)

A version of the immersed boundary method which uses second-order time integration
finite differencing in space leads to a scheme whose accuracy is formally second order
will be seen in the numerical results of Section 4 the observed convergence rate of
method is lower than 2. A version which is formally fourth order can also be designed. T!
is explained next.

2.3. A Formally Fourth-Order Immersed Boundary Method

One might expect that a version of the immersed boundary method which uses fou
order procedures for the fluid solver, the time integration, the force spreading, and
velocity interpolation would yield higher convergence rates than the method outlined abc
To investigate this, a fourth-order approximate delta function is required. Following t
design of previous functions one choice is

L1+ 2(m2—6)codZX) + 2272 —3)cog2X)],  |x| < 4h
dn(X) = {8h[ o )+ )] (10)
0. IX| > 4h

which isC*(R), has unit mass, and satisfif§_xPdn(x) dx = 0 for p = 1, 2, 3. Although
the support of this function remains a fixed multiplehoih each direction (B x 8h), the
support is wider than the previous function. This form carries a substantial computatio
cost which is discussed in Section 2.4.

One can also define the order of an approximate delta function based on discrete mot
conditions rather than the integrals mentioned above. Examples of second- and fourth-c
functions of this type appear in [19, 22], respectively. Appropriately scaled, those functic
agree qualitatively with the ones used here. To our knowledge, no significant difference
the results have been reported from the use of those functions as a substitute for the
defined here.
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The discrete delta function described above is coupled with standard fourth-order cent
differences for the advective and diffusive derivatives in Eq. (6). The temporal integrati
for the formally fourth-order immersed boundary method is done with the standard Run
Kutta method. The discretization for the projection is disussed below.

2.4. The Projection on the Grid

In the immersed boundary method, the discrete projection is implemented via the s
tion of Eq. (4). This requires a choice of discretization of the Laplacian, divergence, &
gradient operators. Since this choice affects the accuracy properties of the method, se
different projections are used here for comparison. In each case, the same finite differ
approximations used to define the gradient operatorVsay: (Dy, Dy), are also used to
compute the divergence. Moreover, the Lapladian= D2 + D§ is used to solve Eq. (4).
In order for this procedure to define an exact projection, i.e., one for which the discr
divergence of the projected field is identically zero, the gradient and divergence opera
must satisfy an adjoint condition [5]. An approximate projection results if this is not tr
case.

In this paper the immersed boundary method was implemented with three different ty
of projections: an exact projection wit,, computed using standard centered difference:s
an approximate projection with, as suggested by Peskin and Printz [20], and an exa
projection withV}, defined spectrally as the square root of a compact second-derivat
operator [8]. As an example of the latter case, the second-order spectral representati
Dy is

Dy (k) = v/(—2+ 2 cog2rkh))/ h2.

The projection proposed by Peskin and Printz uses a gradient stencil derived from
approximate delta function. The operat@rgandDy derived from Eq. (8) were developed
in [20] and require a 5-by-5 stencil. For the formally fourth-order immersed bounda
method a new gradient operator must be derived based on the function in Eq. (10). -
new gradient requires a dense 9-by-9 stencil which results in a substantial computati
expense since the right-hand side of Eq. (4) and the gradientirothe last step of the
projection are computed in physical space at every grid point. For periodic domains,
could alternatively evaluate the divergence and gradient in Fourier space, which wc
make the cost independent of the stencil size. However, there would be an increased
associated with performing an additional FFT and inverse FFT.

3. THE BLOB PROJECTION METHOD

The new approach is based on the observation that, depending on the boundary condi
for the velocityu, the projection in Eq. (6) is a linear operator. This is certainly true in th
case of periodic boundary conditions so that the linearity of the projection implies

Ur = P[—(u- V)u + vAu] + PF. (11)

This representation separates the quantities that are evaluated on the grid (the velocities
those evaluated at the immersed boundary points (the forces). One can use a regula
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form of the forces along the boundary to find an explicit expression that represents
projection of these forces without first transferring the forces to the grid. A recipe for doi
this is explained below.

3.1. The Numerical Method

Consider a finite difference numerical method based on Eq. (11) with doubly perioc
boundary conditions. Using the notation of previous sections, the equation is then
un-}—l — uinJ n n n n
T ZP[—(Ui’]— 'vh)ui,j +VAhui,j} + (PF )ij- (12)
All quantities containingi" are known on the grid so the first term on the right-hand sid
can be readily evaluated with any number of existing numerical methods. On the other h:
the forces are given by a discretization of Eq. (2) at the immersed boundary points
The approach proposed here is motivated by the regularizations used in Lagran
methods such as vortex and impulse methods. The cutoffs are smooth functions design
satisfy certain conditions in order to formally give high-order convergence to the meth
One advantage of this approach is that the cutoff rasligsa numerical parameter that is
not fixed a priori as a multiple df but can be chosen separately.
Consider the approximation to Eq. (2) given by

M
FOO = ALY fis(x — 20), (13)

k=1

where the cutoff ighs(X) = §72¢(|x|/8) and¢ is a radially symmetric function satisfying
appropriate moment conditions.

The projection of the regularized force field in Eq. (13) evaluated at an arbitraryxpoin
can be found explicitly to be (see [4, 6])

rE'(r) — 2F ()

2r2 (14)

. M1 1 o o
PROO = ALY S fis(r) + o—[fic = 2(fic- K%l
k=1

wherer = |X — |, Xk = (X — z)/r, andF(r) = 2n for s¢s(s) ds. Each term in this sum
represents a regularized dipole field which is oriented in the dire€tiodn example of
this dipole field is shown in Fig. 2.

In principle, the expression in Eq. (14) can be evaluated at any locatiblowever,
since the method requires the velocity at every grid point, it would be inefficient to use tl
equation directly. The success of the method depends on the fast evaluation of this proje
field, which is explained in the next section. In summary, the algorithm is

1. compute the new forcd§ at the membrane poingy;

computeu; = AtP[j(uﬂj . Vh)uﬂj + vAhuﬂj] using finite differences;
evaluatel, = At(PF); j at the grid points (see next section);

update the grid velocity with"** = u" 4+ u; + uy;

update the position of boundary points#}y* = 2 + At{y; and

update the velocity at the membrane points by interpoldtjon = 1 (ul'%).

o0 s N
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FIG. 2. Velocity field due to a single force blob of strengh 1) located at the origin. The value= 1 was
used for this illustration.

For step 2, centered finite difference operators are used to calculate the advective
diffusive derivative termsin Eq. (12). Second- or fourth-order versions of these operators
be made for this method. While the description above was made using Euler's methoc
the temporal integration, in practice a standard Runge—Kutta algorithm is used. A form:
second-order method uses second-order finite differencing and Runge—Kutta. A form
fourth-order method uses fourth-order versions.

For the problems presented here, the stiffness of the boundary forces is the domi
restriction on the time step; hence the restriction on the time step imposed by the exp
differencing of advective and diffusive terms is not an issue. The implementation of in
grators for problems where the stiffness in the boundary makes the time step unreasor
small (see, e.g., [10, 15]) is a topic of future work.

The interpolation procedure in step 6 is not tied to the spreading operator, as is the
in the immersed boundary method. Here,a 4 patch of grid surrounding each immersed
boundary point is used to compute its velocity with a bi-cubic polynomial interpolant. Tl
resulting approximation is fourth-order accurate.

3.2. Evaluation of PF at Grid Points

The third step in the algorithm requires some explanation. The projected field in Eq. (
does not have compact support; instead, it decays Jiké fbr larger . A direct evaluation
of this equation at all grid points would requi@ M N?) amount of work, wheré/ is the
number of points defining the immersed boundary ahi$ the number of grid points in
each spatial direction. Additional work would be required to account for the periodicity
the problem. This would be prohibitively expensive for even a moderate valMe bénce
a fast procedure, which is similar in spirit to Anderson’s method of local corrections [1],
used to effect the evaluation.
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The fast evaluation procedure utilizes the curﬁi()t) which is equal to the curl (ﬁ’f:(x).
Since the latter field is a regularized vortex dipole, the curl is concentrated in a reg
near the immersed boundary poigts The cutoff function in Eq. (13) controls the size of
this region and the rate at which the curl decays. In two dimensions Eq. (5) can be sol
to find the stream function representing the projection of the boundary fBfees. The
right-hand side is formed by evaluating and summing the curl of all contributions due
thefy’s on a small patch of grid centeredztand setting it to zero outside this patch. The
patch of grid on which the curl is evaluated must be large enough to include the suppor
the cutoff function. In the case of cutoffs with infinite support, the neighborhoagdmofist
be sufficiently large so that any discontinuities in the projection field at the edge of the g
patch are comparable in magnitude to other error terms. For the cutoff functions used h
a patch of grid of size 8is sufficient.

In practice it is not necessary to solve a separate Poisson problem for the stream func
representin@F (x). By linearity, a single Poisson problem for both the projections in Eq. (12
can be solved simultaneously. The curfgk) (which is given analytically) is simply added
to the curl of the sum of the advective and diffusive terms (which is calculated by fini
differences) to form the right-hand side of Eq. (5). Standard centered differences are
for the discrete derivatives, resulting in a method readily adaptable to more complica
grid geometries.

In three dimensions the stream function is no longer a scalar; hence this procedure wi
require the solution of three Poisson problems rather than one. However, a similar proce
based on the solution of Eq. (4) rather than Eq. (5) could also be used. This would req
evaluating both the force and the divergence of the force on grid patches near the boun
but only one Poisson problem would need to be solved in either two or three dimensic
In two dimensions, the method based on Eq. (5) is more economical since only the cut
the force is evaluated on the grid (but not the force itself).

4. NUMERICAL RESULTS

The numerical results presented in this section are for both the immersed bounc
method and the new blob projection method proposed in this paper. First, an analysi
the conservation of volume for the methods will be presented. Two convergence studies
also presented. The first one is used to test and compare the convergence properties |
methods, and the second to isolate the cause of the differences in observed converg
rates.

4.1. A Perturbed Ellipse

The initial conditions for the first example consist of a perturbed elliptical membrar
immersed in a fluid at rest in the unit square. The curve can be described in polar coordin

by
Z(0) = (r(8) cogB — ), r (9) sin(@ — 6p)),
where

r2(0) = a?cof(0) + b?sirP(9) + e(— 2e730—" _ g 500" | g-80-%)%)



BLOB PROJECTION METHOD 437

time =0.0 time =0.3125

08

0.6

04

0.2

0 0.2 0.4 0.6 0.8 1
X

FIG. 3. The initial configuration of the immersed boundary for the perturbed ellipse convergence tests
the solution at time 0.3125.

and0< 6 < 2. The parametersused are- 0.2, b=0.25, ¢ =0.012 6y =7/3,0, =47 /5,
anded, = 2x /3. The reason for the perturbation is to induce immediate motion of all points
the boundary and to eliminate any symmetries in the problem. The initial particle spacin
approximately equal in arc length, although this will not remain true as the boundary mov
The initial position of the boundary as well as a the solution at a later time are showr
Fig. 3.

The force density for this problem depends on the curvature and is given by

f(0) = ok (6)N,

wherefi is the outward unit normal of the curve,is a fixed stiffness constant, ardd)
is the curvature at(0). In this example the stiffness was sebte= 1/5. The curvature is
computed in polar coordinates by

r242r'r — (r'")?

O T

The derivatives of with respect t@ are approximated by fitting a sixth-order polynomial
in 6 to seven boundary points and evaluating the derivatives of this polynomial at the mid
point.

4.1.1. Volume Conservation

The first set of results compares the volume conservation for different versions of
immersed boundary method and the blob projection method. First, results were compi
with the immersed boundary method. Second-order projection and time-integration si
were used and the approximate delta function was the one derived from Eq. (8). The me
was run using a 128 128 grid and a time step @dft = 0.1h. The membrane was discretized
using 400 points so that the initial point separation along it was less than the maxim
empirical value oh/2 (to keep fluid from leaking across the membrane). The fluid viscosi
used was = 0.005. Figure 4 shows the conservation of the volume inside the membra
using three different projection operators.

The discrete Laplacian operator derived from center differences is a wide 5-point ste
which decouples the grid into four subgrids. This operator has been reported as ha
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x107° Conservation of volume error for 128x128 grid
2 T T T T T T T T T
-2 —
g -4F 1
|
2 -sr .
5
g _8 T T T —
_10 = —
_12 - -
—14 1 ] 1 l ! 1 1 1 1
0 0.1 0.2 0.3 04 0.5 06 07 08 0.9 1
time

FIG. 4. Volume conservation using the immersed boundary method and three different projection opera
with a 128x 128 grid and 400 boundary points. The most accurate conservatjasdchieved with the projection
operator in Peskin and Printz. The least accurate conservajjaegults from using the decoupled five-point
Laplacian operator.

poor volume conservation properties which is confirmed by the steepest curve in the fig
The difference operator for improved volume conservation proposed by Peskin and Pr
in [20] is a dense stencil on a 5-by-5 patch of grid and is derived from the approxime
delta function. The volume conservation using this operator is represented in the fig
by the top curve and gives the best conservation. The figure also shows the results u
a second-order version of the spectral operator described in Section 2.4. The applice
of this operator results in an exact projection with a stencil that does not decouple

grid values of the projected field. Itis also unrelated to the approximate delta function us
Although the volume is not preserved as well as the operator derived from the delta funct
the improvement over the decoupled operator is significant.

Refining the grid and the membrane discretization reduces the errors and improves
volume conservation. Reducing the numerical parameters by a factor of 2 gives the res
in Fig. 5. The volume conservation using any of the three projection operators improves
about a factor of 2, indicating linear dependence on the numerical parameters. This i
spite of using second-order numerical methods in space and time.

Conservation of volume error for 256x256 grid

relative error

FIG. 5. Volume conservation using the immersed boundary method and three different projection opera
with a 256x 256 grid and 800 boundary points. The most accurate conservatjasdchieved with the projection
operator in Peskin and Printz. The least accurate conservajaegults from using the decoupled five-point
Laplacian operator.
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x 107 Conservation of volume error for 128x128 grid
2 T T T i T T T T

relative error

_12 1 1 1 1 i 1 K l I3
0 o1 02 03 04 05 06 07 08 09 1

time

FIG.6. Volume conservation using the fourth-orderimmersed boundary method and three different projec
operators with a 128 128 grid and 400 boundary points. The most accurate conservatjos échieved with
the projection operator in Peskin and Printz. The least accurate conservgti@s\flts from using a standard
centered projection operator.

Next, the same problem was run using the formally fourth-order method outlined
Section 2.3. The volume conservation results are shown in Fig. 6. The conservation p
erties have in fact improved by a factor of 10 over the corresponding second-order res
of Fig. 4. As in the first case, the worst performance is observed when using a stanc
centered difference projection despite the fact that the fourth-order stencil for the Laplac
does not decouple.

The same problem was then solved using the blob projection method. Here again, sec
order projection and time integration were employed. The regularizations used were bz
on the fourth-order cutoff

1
dar) = ~@2~1He™ (15)
and the eighth-order cutoff
Ps(r) = 5(24— 362+ 124 — r8e "’ (16)

with § = 4h. The order of the blob refers to the number of moment conditions it satisfie
The cutoff radiuss is not locked as a fixed multiple df as in the immersed boundary

method so$ can be chosen in different ways. Figure 7 shows a comparison between

best conservation plot obtained with the second-order immersed boundary method an
blob projection method. The results from the blob projection method are at least 10 tir
better than the immersed boundary result with comparable parameters.

The details of the volume conservation are appreciated better in Fig. 8, which shows
results using a 128 128 grid and 400 boundary points. These results were obtained usi
the two blobs mentioned earlier and the cutoff parameter set@h ands = 2h.

While the cutoff functions are formally of high order, the rest of the numerical methc
being used is second order. In this sense the conservation properties displayed by the mi
are extremely satisfying. Regardless of the choice of cutoff functionyst be chosen larger
thanh in order to regularize the velocities over a region spanning several grid nodes. -
results also suggest that there is nothing to be gained in terms of volume conservatio
using an eighth-order cutoff versus a fourth-order one.
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x10™* Conservation of volume error for 128x128 grid
1 v T T T T T T T T
05k RN
s By
® : :
g 0.5 P PN i
=
O gl 4
I ] N 4
3
_2 1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 07 08 0.9 1
x10~° Conservation of volume error for 256x256 grid
2 T T T T T T T T T
2" —
§ _2 - - PPN -
]
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T S S P U TR S ST 4
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0 0.1 02 0.3 0.4 05 0.6 0.7 08 0.9 1

time

FIG. 7. Volume conservation using the second-order version of the blob projection method and the immer
boundary method. Results for a 12828 grid with 400 points are shown in the top frame, and those for &
256 x 256 grid with 800 points in the bottom. The different curves represent the second-order immersed bc
dary method %), the second-order blob projection method with fourth-order blobs &nd with eighth-order
blobs ©).

Finally, the blob projection method using fourth-order spatial and temporal accuracy v
implemented and used for the same problem. Figure 9 shows a comparison betweel
immersed boundary and the blob projection methods using fourth-order differencing. |
these results the immersed boundary method was run with the improved volume conse
tion projection which yielded the best results. Looking at the scales along the axes tf
are two conclusions that one can draw. One is that the blob projection method yields be
volume conservation than the immersed boundary method. The second one is that a
grid and boundary are refined, the error in the blob projection method is reduced by a lal
factor (about 6) than the error in the immersed boundary method (about 2).

x107° Conservation of volume error for 128x128 grid

relative error

0.1 02 0.3 0.4 o5 0.6 0.7 0.8 0.9 1
time
FIG. 8. Volume conservation using the second-order version of the blob projection method onxal?33
grid with 400 points. The results of four runs are shown. Two of them use a fourth-order cutoff function and cut
parametes = 4h and 2 (denoted byx andO). The other two use an eighth-order cutoff function with the same
choices of5 (denoted by andx). These results should be compared to Fig. 4.
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x10° Conservation of volume error for 128x128 grid

relative error

relative error
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time

FIG. 9. \Wolume conservation using the fourth-order version of the blob projection method and the immer
boundary method. Results for a 128128 grid with 400 points are in the top frame, and those for a: 2266
grid with 800 points in the bottom. The different curves represent the fourth-order immersed boundary met
() and the fourth-order blob projection method witk: 4h (x) and withs = 2h (O).

4.1.2. Convergence Rates

Next we explore the convergence rates of the immersed boundary and blob projec
methods on the perturbed ellipse problem. Convergence rates forimmersed boundary {
lems can be calculated in different ways with varying results. Several procedures are
ployed here to illustrate this fact.

Estimating convergence rates forimmersed boundary problems is more complicated
for standard problems for incompressible flow. In the blob projection method, there are tr
separate numerical parameters which can be varied in a convergence test: the drid si
the initial particle separation along the boundar, and the cutoff radius. The first two
are generally of the same size or witif somewhat smaller tham while § must be larger
thanA¢ but is free to vary. In the immersed boundary method, the analogs of these three
rameters are necessarily scaled linearly. Therefore, convergence rates will first be prese
for this scaling. Later, convergence tests for the blob projection method where the three
merical parameters are not reduced together will be presented in order to examine diffe
parts of the numerical error.

Several quantities can be examined to estimate convergence rates. First, the positi
and velocity at the immersed boundary points can be measured. Convergence rates c
calculated for each individual point yielding a vector of convergence rates of which a no
can be taken. This will be referred to as therm of the ratesAlternatively, the entire
boundary can be considered a vector of positions or velocities and a convergence rate
be calculated by computing the norm of errors of this vector. This will be referred to as
rate of the normLastly, the velocity on the grid can be used to calculate convergence ra
as well. Since the velocities at immersed boundary points are already being conside
convergence rates for the velocity on the grid will only be computed on patches of grid w
separated from the immersed boundary.
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The convergence rates themselves are computed in two different ways. Richardsor
trapolation using three numerical runs of different resolution is one way to estimate ra
Here grids of sizéN x N with N = 256, 384, and 576 are used with corresponding bounc
aries of 600, 900, and 1350 points. For examplejfrepresents the velocity of thé x N
run, then one estimate of the convergence rate would be

rate— IN(||U256 — Usgallp/ |Uzga — Uszell p) '
In(3/2)

A different way to estimate the error in a given calculation is by comparing the result tc
highly resolved solution. For this, a solution was computed on a 353636 grid using
4800 boundary points and a time step ddZh. We will call this solution the reference
solution and the reported error in a given calculation is the deviation from the referer
solution. Two coarser runs using grids of site= 256 and 512 with 800 and 1600 boundary
points respectively were then used to estimate the convergence rate.

For instance, leh be the grid size of the reference solution, iles1/1536. Then
assuming that the error is of the fol@hP, one can compute

_ C@hP—ChP 6P —1
fTCc@wr—_che 3 _1’

from which p can be estimated.

Point rates 256-512 grids
25 T T

0.5 L I I L I L
0 0.005 0.01 0.015 0.02 0.025 0.03

Paint velocity rates 256-512 grids
25 T T

05 ; ‘ ; ; ; ;
0 0.005 0.0t 0.0]5 0.02 0.025 0.03
time
FIG. 10. Convergence rates for the immersed boundary method computed by comparison with a refere
solution. The top graph shows the rate of thgx), L, (O), andL, (x) norms of the boundary particle positions.

The bottom graph shows the same for the boundary patrticle velocities.
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The first set of results refers to the solution of the perturbed ellipse problem using
(formally second-order) immersed boundary method. The solutions were computed to 't
1/32 using a time stept = 0.1h and compared to a reference solution at time intervals ¢
1/640. Figure 10 shows the computed convergence rates of the velocitiehusiag256
andh = 1/512 and reducing\¢ linearly with h. The top plot shows the rate of the norms
for the particle positions using the one, two, and infinity norms. The bottom plot shows
rate of the norms for the velocities at the immersed boundary points. Note that the rates
all approximately 1.5.

Figure 11 shows three additional measures of convergence rates. The top graph shov
L1 andL, norms of the rates of individual particle positions, while the middle graph shov
the same for the patrticle velocities. The discrepancy between the two curves in the mic
graph indicates that there is a large variation in the velocity rates computed at each p
The velocity at some particles may display a convergence rate higher than 2 while ot
a rate less than 1. This is perhaps an expression of noise in the solutions. The bottom
shows the observed convergence rates on a patch of grid away from the immersed bour
All norms show agreement.

The immersed boundary method shows convergence rates of order about 1.5 for
immersed boundary variables andz despite being formally second order. The reason fo
this is conjectured to be the treatment of the forces. In particular, spreading the forces tc

L1 and L2 of point rates
T

25

L L L L L L
o 0.005 0.01 0.015 0.02 0.025 0.03

L1 and L2 of point velacity rates
T T

%1_57 WW

! ! r ! L !
0 0.005 0.01 0.015 0.02 0.025 0.03

Velocity rates on grid patches
T T

0 0,(;05 0.‘01 0.615 0,‘02 0,625 0,63
time
FIG. 11. Convergence rates for the immersed boundary method computed by comparison with a refere
solution. The top graph shows the andL, norms of the rates of individual particle positions; the middle graph
shows the same for the particle velocities. The bottom graph shows convergence rates on a patch of grid
from the immersed boundary.
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Point velocity rates 256512 grids
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FIG. 12. Convergence rates for the fourth-order immersed boundary method computed by comparison
reference solution. The top graph shows the rate of.the,, andL ., norms of the boundary particle positions.
The bottom graph shows the same for the boundary patrticle velocities.

grid with an approximate delta function with small suppott ¢d4h) and then performing a
projection appear not to resolve the flow accurately enough near the immersed bounda
The flow away from the boundaries is also affected, showing a convergence rate betw
1.5and 2.

The same experiment was then performed with the version of the immersed bounc
method which uses fourth-order differencing and the improved volume conservation
erators derived for the new approximate delta function in Eq. (10). Figures 12 and 13
the analogues of Figs. 10 and 11 for this method. In all cases the convergence rates
improved to a number between 2 and 2.5 for the boundary variables and to 2.5 for the
velocity.

The next set of figures shows the same information as in the previous set for the fou
order blob projection method. Figures 14 and 15 should be compared with Figs. 12 and
The figures show that the new method is converging at a rate between 2.5 and 3. In tl
examples, the size @fwas set to A and hence decreased at the same rate &esults
usingé = 2h are very similar and therefore not shown.

Figures 16 and 17 show the convergence rates computed by Richardson extrapol:
for the blob projection method. The length of these runs is five times that of the previc
runs. Although the convergence rates show increased variability at longer times, the ove
size of the rates is roughly the same as previously computed.

Inspection of the norm of the rate plots for the previous two examples shows a mt
smaller discrepancy between the and L, norms of the individual point rates for the
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L1 and L2 of point rates
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L1 and L2 of peint velocity rates
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FIG. 13. Convergence rates for the fourth-order immersed boundary method computed by comparison
reference solution. The top graph shows theand L, norms of the rates of individual particle positions; the
middle graph shows the same for the particle velocities. The bottom graph shows convergence rates on a pa
grid away from the immersed boundary.

blob projection method than for the immersed boundary method (see the middle graph
Figs. 15 and 13). This indicates that the rates at which the individual boundary parti
positions converge have less variation in the blob projection scheme. This is seen in Fig
where the convergence rates of individual particle positions from both methods were ca
lated at time 132 by comparison with the reference solution. Here itis clearly seen that t
convergence rates for the blob projection method are much more consistent and less r
The largest oscillations are due to cancellation error at points that are nearly stational
this instant and are not meaningful.

4.1.3. Convergence Rates for Fixed Regularization

In the context of Lagrangian methods for Euler flow, such as vortex methods and |
pulse methods, one defines the cutoff radiug§a<hd, for q in therange cq <1 (e.g.,
see [14]). In the present context it is not obvious what the optimal scaling should be si
the Lagrangian elements discretize a curve embedd@&f.iOne choice of scaling that
is easily achieved with the blob projection method is the one associated|with This
corresponds to a fixed regularization which may be justified by the physical thickne
of the tissue being represented by the immersed boundary in a particular applicat
As h, A¢ — 0 the convergence rate is expected to reflect the order of the finite differer
method used.
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FIG.14. Convergence rates for the blob projection method computed by comparison with a reference solut
The top graph shows the rate of the, L,, andL ., norms of the boundary particle positions. The bottom graph
shows the same for the boundary particle velocities.
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FIG.15. Convergence rates for the blob projection method computed by comparison with a reference solut
The top graph shows the; and L, norms of the rates of individual particle positions; the middle graph show:
the same for the particle velocities. The bottom graph shows convergence rates on a patch of grid away fror
immersed boundary.
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Point rates 256-384-576 grids
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FIG. 16. Convergence rates for the blob projection method computed by Richardson extrapolation. The
graph shows the rate of thg, L,, andL ., norms of the boundary particle positions. The bottom graph shows th
same for the boundary particle velocities.

A convergence test using the same initial conditions of the perturbed ellipse experime
was run using the fourth-order blob function witlset to 2256 regardless of the grid size.
The problem was run oN x N grids withN = 256, 384, and 576 to time= 10/64 using
a CFL number of 0.1 and viscosity= 0.002. The number of boundary points was again se
to 600, 900, and 1350 so thaand A¢ remain proportional. The convergence rates for the
position and velocity of membrane points were calculated using Richardson extrapola
at time intervals of 164. Figures 19 and 20 show the results of this experiment. In &
measures, the solution of this regularized problem is converging at about a fourth-or
rate, the formal accuracy of the fluid solver.

The fact that fourth-order convergence rates are observed when the regularization is fi
but lower rates are observed whers scaled linearly witth and A¢, indicates that there
must be a lower-order component of the overall error which depends ©his error is
identified and discussed in the following section.

4.2. Investigation of Boundary Errors

The convergence rates given in the previous section suggest that there is a sour
error in the blob projection method which dependssand is responsible for decreasing
the observed rates. A numerical experiment designed to illuminate this error will now
presented.

The experiment consists of investigating the error in computing the projection of t
boundary forces for a specific boundary configuration. In other words, only thePt@rm
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FIG. 17. Convergence rates for the blob projection method computed by Richardson extrapolation. The
graph shows thé&; andL, norms of the rates of individual particle positions; the middle graph shows the san
for the particle velocities. The bottom graph shows convergence rates on a patch of grid away from the imme
boundary.

is being computed for a single configuration. No dynamics are included. The membr:
shape is an ellipse, for which the curvature-dependent force density can be found exa
The fluid motion is ignored; hence only the error due to the discretization of the bounde
the projection of the boundary forces, and the interpolation of these forces to the bounc
points is relevant.

In order to estimate errors, a reference solution was computed on ax33T22 grid
using 9600 boundary points and the blob in Eq. (15) Witk 2h. In the first experiment,
the grid size was held fixed &t= 1/1536 and the dependence of the errorsand A¢
was examined. Three sets of runs were done using 400, 800, and 1600 boundary pc
respectively. For each boundary discretization, lthenorm of the errors at the boundary
locations was computed.

The results are shown in Fig. 21 which illustrates several points. For large valdes ¢
the error does not depend on the number of boundary points. This is due to the fact that
the regularization exceeds a threshold, the membrane resolution is enough to reduc:
discretization error well below the error due to the regularization, which has now becol
the leading term. Another observation is that for each boundary configuration, the error
a minimum at a point wheré is about the size oA¢. For smaller values aof the error
increases rapidly. For larger valueséate error depends approximately linearly &rro
see this, a line of slope 1 has been superimposed on the graph.
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FIG. 18. Individual point convergence rates for the blob projection (top) and formally fourth-order immerse
boundary method (bottom) takentat 1/32.
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FIG.19. Convergence rates for the blob projection method with fixed regularization computed by Richard:
extrapolation. The top graph shows the rate oflthel ,, andL ., norms of the boundary particle positions. The
bottom graph shows the same for the boundary particle velocities.
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FIG.20. Convergence rates for the blob projection method with fixed regularization computed by Richards
extrapolation. The top graph shows theandL, norms of the rates of individual particle positions; the middle
graph shows the same for the particle velocities. The bottom graph shows convergence rates on a patch o
away from the immersed boundary.
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FIG. 21. Errors in computind?(F) at the immersed boundary for varyidggResults for 1600+, 800 ©),
and 400 ¢) boundary points are shown. The size of delta is in units ef 1/1536.
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FIG. 22. Errorsin computind®(F) at a patch of grid at the center of the ellipse for varydinResults for 1600
(*), 800 ©), and 400 ¢) boundary points are shown. The size of delta is in units-6fl/1536.

The errors away from the influence of the blobs can also be considered. The error:
a patch of grid located in the center of the ellipse were computed next. The patch co
the square determined by the pointgZ11/2) and (916, 9/16) and errors are calculated
using theL; norm. Results are shown in Fig. 22. In this case, for each of the bounde
configurations, the error on the grid patch does not depend significantly on the size c
This is because the patch of grid is outside of the support of the blob at each point. N
however, that doubling the number of points on the boundary reduces the error roughly |
factor of 4; i.e., the error away from the immersed boundary depends quadraticail§. on

Finally, a set of runs was done whdreA¢, andé are all varied together. Grids of size
N x N were used withN = 128, 192, 256, 384, and 512. For each 8ug 2h, and the
number of boundary points was also scaled linearly Wwitfrom 400 forN = 128 to 1600
for N = 512. Errors were computed both at the boundary and on the grid patch and
displayed in Fig. 23. The error computed at the grid was multiplied by 1000 for ease

®

error on grid and at boundary
al
T

grid size h

FIG. 23. Errorsin computind®(F) on the boundary and at a patch of grid with all three numerical parametel
scaled linearly. The error at the boundary is given by the top line and the error on the grid (multiplied by 1000
the bottom. Lines of slope 1 and 2 are also superimposed.
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comparison and is clearly seen to depend quadratically hvéth would be expected from
Fig. 22. The error at the boundary decreases linearly as would be expected from Fig. 2

5. DISCUSSION AND CONCLUSIONS

The last set of results can help explain some features of the convergence properties ¢
blob projection method. Whetis kept fixed, the method displays fourth-order convergenc
rates which reflect the order of the finite differencing and the time integratiors. i8s
decreased there is a source of lower-order error which reduces the observed converg
rates to between 2.5 and 3. This error is concentrated in a small area of the domain nes
immersed boundary, the size of which decreases §vitthis is evident in the graphs that
show the convergence rates of boundary variables, especially for small valueSindée
at the beginning of all the simulations the fluid is at rest, the error at the first time ster
due almost entirely t&(F). Because this error is of lower order than the other errors in th
fluid solver, all of the convergence tests show convergence rates which begin lower the
observed later in the run.

The source of this error (it for the blob projection method and imfor the immersed
boundary method) is not specific to the numerical methods discussed here. It is du
the nature of the problem and appears as a result of computing a line integral in a t
dimensional domain. The standard moment conditions imposed on the cutoff function u
in the blob projection method are unable to improve the computed solution to the deg
expected. Recent work by Beale and Lai [2] suggests that more appropriate condition:
the blobs can be used to reduce the errors derived from the regularization of the bounda
addition, the weights associated with the trapezoid rule in Eq. (14), applied to an integr:
with large derivatives, can also be modified to increase the order of this discretization er
The correct procedure for reducing these errors in the context presented here is not kr
yet and work remains to be done in this direction. However, once these issues are f
understood, the blobs and quadrature corrections would be easily incorporated into the
projection method.

The results of the numerical experiments indicate that the convergence rates obta
with the blob projection method are higher than those observed previously. In additi
the method displays some attractive properties. For instance, the volume conservatic
excellent and no special stencils are required to achieve it. The motion of the immer
boundary shows little noise due to the nature of the regularization by the cutoff functic
This may be of importance when stresses or other quantities involving derivatives of
flow field are needed at the boundary. The decoupling of the cutoff parameter and
discretization parameters gives the method more flexibility to balance the different er
terms. Also, extensions to three dimensions appear to be straightforward.
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