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Abstract

Many arthropods use filiform hairs as mechanoreceptors to detect air motion. In common house crickets (Acheta domestica) the hairs

cover two antenna-like appendages called cerci at the rear of the abdomen. The biomechanical stimulus–response properties of individual

filiform hairs have been investigated and modeled extensively in several earlier studies. However, only a few previous studies have

considered viscosity-mediated coupling between pairs of hairs, and only in particular configurations. Here, we present a model capable of

calculating hair-to-hair coupling in arbitrary configurations. We simulate the coupled motion of a small group of mechanosensory hairs

on a cylindrical section of cercus. We have found that the coupling effects are non-negligible, and likely constrain the operational

characteristics of the cercal sensory array.

r 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many terrestrial arthropods, including crickets, cock-
roaches, caterpillars, spiders and scorpions, use filiform
hairs as mechanoreceptors to detect the direction and
magnitude of air flow. In the common house cricket (Acheta

domestica) the receptor organs for this modality are two
antenna-like appendages called cerci at the rear of the
abdomen, see Fig. 1. Each cercus is covered with
approximately 1000 filiform mechanosensory hairs, ranging
in length from less than 50mm to almost 2mm (Landolfa
and Miller, 1995). Each hair is innervated by a single spike-
generating mechanosensory receptor neuron. Deflection of
a hair by air currents changes the spiking activity of the
associated receptor neuron at the base of the hair.

The cercal system encodes information about the
direction and dynamic properties of air currents with great
accuracy and precision, and represents that information

internally as a neural map (Bacon and Murphey, 1984;
Jacobs et al., 1986; Jacobs and Nevin, 1991; Jacobs and
Theunissen, 1996, 2000; Kamper and Kleindienst, 1990;
Kanou and Shimozawa, 1984; Miller et al., 1991; Palka
et al., 1977; Paydar et al., 1999; Shimozawa and Kanou,
1984a, b; Theunissen and Miller, 1991; Theunissen et al.,
1996). The interneurons that read out the information from
the cercal afferent map mediate the detection, localization,
discrimination and identification of signals generated by
predators, mates and competitors (Boyan et al., 1986;
Camhi, 1980; Gnatzy and Heusslein, 1986; Heinzel and
Dambach, 1987; Huber et al., 1989; Kamper and Klein-
dienst, 1990; Steiner, 1968; Stout et al., 1983). The cercal
system is crucial for the cricket’s survival: on the basis of
the information captured by this sensory system, the
animal must make decisions rapidly and reliably.
The cercal system has been shown to be of critical
importance for a variety of behaviors including oriented
escape responses (Boyan et al., 1986; Camhi, 1980) and
jumping (Hoyle, 1958). However, it is a considerable
oversimplification to class this system as an ‘escape system’,
just as it would be an oversimplification to categorize our
own visual system that way.
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The functional characteristics of the cercal receptor
array are determined by its structural features. The
extremely low degree of interanimal variability of all
observable structural aspects of the cerci is remarkable. It
has even been suggested (though not demonstrated
conclusively) that every single filiform hair may be
reidentifiable (Landolfa and Jacobs, 1995; Landolfa and
Miller, 1995; Walthall and Murphey, 1986), i.e., that every
adult cricket with undamaged cerci has the same number of
filiform hairs, and that each hair can be catalogued with a
specific relative length, position and directional movement
axis differing by at most 5% across different animals.
These biophysical parameters are of substantial functional
importance: the mechanical filtering of stimulus informa-
tion in the cercal system is determined solely by the lengths
and orientations of the hairs, and by the interactions
between the hairs in the array (Kanou and Shimozawa,
1984; Kumagai et al., 1998a; Osborne, 1996; Shimozawa
and Kanou, 1984a, b; Shimozawa et al., 1998). The
importance of the cerci for the animal’s survival,
the coupling between cercal structure and function
and the extremely low interanimal variability of cercal
receptor array structure are all consistent with the
conjecture that these structural attributes have been subject
to selective pressure.

The main goal of this paper is to provide a computa-
tionally efficient framework to model the interaction of the
cercal system with the air. This is a necessary step toward
understanding the functional significance of the cercal
system and the evolutionary constraints imposed by the
physics of air flow at a low Reynolds number. Computa-
tional efficiency is crucial, since each cercus contains about
1000 hairs of different lengths whose movements affect the
air flow and, hence, the movement of other hairs. Previous
work in this area was concerned with modeling the
response of a single hair to the motion of the air and only
recently has the focus shifted to the analysis of the
viscosity-mediated coupling between hairs (Bathellier
et al., 2005) and characterization of a total canopy
response (Magal et al., 2006).

One of the first models of single hair motion was
introduced by Shimozawa and Kanou (1984a), which
assumed periodic air flow and modeled the hair as an
inverted pendulum. This work has been extended by
Humphrey et al. (1993), Shimozawa et al. (1998) and

Osborne (1996). More recently, Bathellier et al. (2005)
studied viscosity-mediated coupling between pairs of hairs
aligned with the direction of air motion on the leg of the
spider Cupiennius salei. Their experimental results indicate
limited interaction between these hairs, but, as the authors
note, their results do not preclude significant hair interac-
tions in other arthropods. In another recent article, Magal
et al. (2006) attempts to characterize the response of the
entire collection of hairs on the cerci of the sand cricket
Gryllus bimaculatus. The response characteristic and
position of each cercal hair is combined to form the
canopy response. The viscosity-mediated interaction be-
tween the hairs is not taken into account.
Our work builds upon these previous investigations and

continues to model the hair motion using equations
describing the motion of a linear oscillator. However, our
model allows the simulation of an arbitrary configuration
of a group of hairs. We present a significant extension to
these earlier studies by enabling the computation of the
mutual interaction between hairs mediated through their
interaction with the surrounding air.
In this paper we concentrate on the description of our

model and numerical procedures being used, and leave the
investigation of a biologically realistic model to a future
paper. Section 2 contains a model of the driving air flow
that stimulates the cercus. Section 3 describes the inverted
pendulum model of the filiform hairs and how the hairs
resist the driving air flow presented in Section 2. Section 4
contains the full system of equations that determines the
motion of a population of hairs given a particular stimulus.
More technical aspects of the derivation in Section 4 are
located in Appendices A and B. In Section 5, we compare
the performance of this model to the work of other
researchers and present numerical simulations of multiple
hairs. Conclusions are in Section 6.

2. Model of the air flow

We assume that the cercal system is driven by a periodic
far-field air flow with amplitude U0 and angular frequency
o. The no-slip condition at the cercal surface causes a
boundary layer to form that has a smaller amplitude than
the oscillatory far-field flow and is phase shifted with
respect to the flow. The height of the boundary layer is on
order of the lengths of the filiform hairs and thus has a
non-negligible effect on hair motion. We compute the
boundary layer, which we denote by ub, for axial flow along
an infinite cylinder using the work of Humphrey et al.
(1993).
We model the total air velocity v as a sum of the

boundary layer velocity ub and a perturbation velocity u:

v ¼ uþ ub. (1)

The velocity u is caused by the resistance of the hairs to the
air motion ub and can be thought of as a disturbance of
the boundary layer due to the presence of the hairs.
The perturbation velocity u is modeled by the Stokes
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Fig. 1. A typical cercus of Acheta domestica. Total length ¼ 1 cm.
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equations, which we take as a good approximation of the
Navier–Stokes equations, since the Reynolds number
ranges from 10�4 to 10�2 (see Section 2.2).

2.1. The boundary layer flow

The Navier–Stokes equations can be solved explicitly
both for a periodically driven flow over an infinite plane
(Stokes, 1851) and axial flow over a bi-infinite cylinder
(Humphrey et al., 1993). Since each cercus is approximately
a long finite cone, Shimozawa and Kanou (1984a, b)
and Shimozawa et al. (1998) argued that both infinite
planar and cylindrical approximations can be used
successfully. This assumption is reasonable for hairs
distributed in a line along the long axis of the cercus.
However, we are interested in modeling groups of hairs
with lateral as well as longitudinal spread. In the case of
lateral spread, the curvature of the cercus effectively
increases the distance between hairs and decreases viscous
coupling between them. In order to capture this effect, we
choose to model the cercus as a cylinder.

In this section, following Humphrey et al. (1993) and
Osborne (1996), we solve the Navier–Stokes equations in
cylindrical coordinates for axial flow over a bi-infinite
cylinder, and assume that this is a reasonable approxima-
tion to the boundary layer over a finite cylinder. First allow
ub ¼ ½ ur uy uz � to be the representation of the boundary
layer in cylindrical coordinates, where the z-axis extends
length-wise through the center of the cylinder. Since the
far-field air flow is axial along a bi-infinite cylinder, we
expect that ub is radially symmetric and independent of the
variable z at all points in space. Thus ub ¼ ½0 0 uzðt; rÞ� and
the Navier–Stokes equations simplify to

r
quz

qt
þ

qp

qz
¼ m

1

r

q
qr

r
quz

qr

� �� �
, (2)

where r is the density and m is the dynamic viscosity of air,
p is the fluid pressure and t is time. The boundary
conditions are uz ¼ 0 at the surface of the cylinder and
uz ! U0 sin ot as r!1, which is the far-field flow.

We convert (2) into a dimensionless equation using the
following factors: D is the diameter of the cylinder, U0 is
the peak far-field air velocity, o is the angular frequency of
the air motion, Re is the Reynolds number and St is
analogous to the Strouhal number. We set

r ¼
DR

2
; p ¼

rU2
0P

2
; uz ¼ U0U ; z ¼

DZ

2
;

t ¼
t
o
;

1

Re
¼

2m
DU0r

; St ¼
oD

2U0
:

Then, through a substitution and a short computation (see
Humphrey et al., 1993; Osborne, 1996) Eq. (2) becomes

St
qU

qt
þ

1

2

qP

qZ
¼

1

Re

1

R

q
qR

R
qU

qR

� �� �
, (3)

U ¼ 0 at R ¼ 1;

U ! sin t as R!1:

The solution of (3) involves a modified Bessel function of
the second kind, K0:

uz ¼ U0Bcðt; rÞ ¼ U0 sin otþR ieiot K0ðl2r=DÞ

K0ðlÞ

� �� �
,

(4)

where l ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
iðReÞðStÞ

p
¼

ffiffiffiffiffiffiffi
i=2

p
bD, b ¼

ffiffiffiffiffiffiffiffiffiffiffi
o=2n

p
, n ¼ m=r is

the kinematic viscosity of air and ub ¼ ½0 0 uz�.

2.2. The perturbation velocity

The Reynolds number of a fluid dynamical system gives
the ratio between inertial and viscous forces in that system
and is defined as

Re ¼
jUjd

n
,

where d is a typical length scale of the problem, jUj is the
magnitude of a typical velocity of the air flow, and n is the
kinematic viscosity of the fluid. If Re51, then the inertial
forces in the system are negligible and the Navier–Stokes
equations can be simplified to the Stokes equations
(Landau and Lifschitz, 1959). When considering the Re

of air flow around cercal hairs, we take d to be a typical
hair diameter, which is approximately 5� 10�6 m and we
let n ¼ 1:568� 10�5 m2=s, which is the kinematic viscosity
of air at 27 �C. If we limit the amplitude of the far-field
flow to fall between 0:001 and 0:1m=s, which are speeds of
biological relevance, then Re ranges between 3:2� 10�4

and 3:2� 10�2.
Although a small Reynolds number is necessary to

justify modeling fluid flow using the Stokes approximation
to the Navier–Stokes equations, it is not always sufficient.
In the case of oscillatory flow, there are independent time
and velocity scales, which require the application of the
unsteady Stokes equations. Methods needed to apply the
unsteady Stokes equations to our model system have not
yet been developed, so we approximate the perturbation
velocity u using the Stokes equations. We can define a
viscous penetration length Lv ¼

ffiffiffiffiffiffiffiffi
n=o

p
, where o is the

angular frequency of the far-field air flow. Lv is the distance
over which viscosity dominates on the time scale of the
driving frequency o. As long as the distance between points
of interest is less than Lv, then the solutions given by the
steady Stokes equations are a reasonable approximation to
those of the unsteady Stokes equations (Pozrikidis, 1997).
For larger distances, unsteady effects may be significant.
We compute the perturbation velocity u of the boundary

layer ub by solving the Stokes equations using the method
of regularized Stokeslets (Cortez, 2001). We follow an
exposition by Cortez (2001) and refer the reader to the
original paper for details. The 3-D Stokes flow equations
take the form

Du ¼ rp�G; r � u ¼ 0 (5)
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with applied force GðxÞ. One special but useful example of
G is that of a concentrated point force GðxÞ ¼ Fdðx� x0Þ

at location x0, where F is the applied force amplitude and
dðx�x0Þ is the Dirac delta function. The flow generated by
such a force is called a Stokeslet (Batchelor, 2000). By
superimposing Stokeslet velocity fields for a distribution of
point forces, it is possible to find the flow generated by the
forcing of more complicated structures, e.g., 1-D filaments.
However, Stokeslet velocity fields are singular at points
where concentrated forces are applied. To avoid these
singularities, Cortez (2001) applies a force in a d-
neighborhood of a singularity by using a radially sym-
metric blob function fd, where d is a small parameter. Then
Eqs. (5) take the form

Du ¼ rp� Ffd; r � u ¼ 0, (6)

where F is a constant vector (for derivations of the forces F
that we use in Eqs. (6), see Sections 2.3, 3.2 and 3.3). The
blob function that we use to calculate the regularized
Stokeslets in our model is

fdðrÞ ¼
15d4

8pðr2 þ d2Þ7=2

from Cortez et al. (2005). To solve Eqs. (6), we take the
divergence of the first equation and use the second
equation to obtain

Dp ¼ r � Ffd ¼ ½fdðr � FÞ þ rfd � F� ¼ rfd � F,

where the last equality follows from the fact that F is a
vector of constants implying r � F ¼ 0. Let Gd be the
solution to DGd ¼ fd. Then through an easy calculation we
have that

p ¼ rGd � F.

Now put p back into the first equation in (6) to obtain

Du ¼ ½ðF � rÞrGd � Ffd�.

Let Bd be the solution to DBd ¼ Gd. A straightforward
calculation yields the solution

u ¼ F � rð ÞrBd � FGd½ �.

Notice that this equation is linear in applied force F. The
linearity allows us to compute the velocity at any point x
resulting from a force applied at any point y, where the
points x and y may coincide. If we fix a discretized set of
points at which we compute the velocity, and a set of points
where we apply the force, then we can represent the linear
solution map by a matrix M

u ¼MF.

In the cercal model, we represent the velocity induced at
the ith hair by forces at the jth hair by the following
notation:

uðiÞ ¼M ði;jÞFðjÞ, (7)

where uðiÞ and FðjÞ represent concatenations of 3-D vectors,
since the cercal hairs are discretized (see Section 3.1). This
concept of concatenating vectors, one row vector for each

point on a hair, is used often in this paper. We will attempt
to distinguish between 3-vectors and concatenations of
vectors whenever the notation is ambiguous.
If the matrix M is invertible and we have a predeter-

mined set of velocities at some collection of points, then we
can compute the forces at another (possibly identical) set of
points that produce those velocities. We denote the
calculation of such an inverse problem by

F:¼M�1u. (8)

2.3. Boundary conditions

The boundary layer ub is zero at the surface of the cercus,
but the perturbation velocity u can cause non-zero
velocities at the surface. We enforce the no-slip condition
on the cercus by imposing a discretization scheme and
using the inverse computation for regularized Stokeslets (8)
derived in the last section.
We discretize a portion of the cylinder representing the

cercal surface and let P be the collection of all discretiza-
tion points p on the cylinder. At each point p we wish to
impose a force F

ðpÞ
bc that will cause the velocity of the air to

be zero at each point p 2 P. We denote the collection of
boundary forces F

ðpÞ
bc by F

ðPÞ
bc and we denote a perturbation

velocity at a point p by uðpÞ. Let uðPÞ:¼ðuðp1Þ; uðp2Þ; . . . ; uðpnÞÞ

be a concatenation of the perturbation velocities at all
points pi 2 P. We want the total resulting velocity on the
cercus to be zero, so we want to know what forces F

ðPÞ
bc will

induce velocities of �uðPÞ. Thus we solve

F
ðPÞ
bc :¼ðM

ðP;PÞÞ
�1
ð�uðPÞÞ ¼ �ðM ðP;PÞÞ

�1uðPÞ. (9)

The forces F
ðPÞ
bc calculated in this manner are then used to

compute a further perturbation of the boundary layer.

3. Model of the hair

Each filiform hair is supported at its base by a
viscoelastic socket membrane that enables the hair to pivot
within its socket, rather than bending along its shaft
(Thurm, 1964, 1965a, b, 1983; Thurm and Kuppers, 1980).
Therefore, we model each hair as a rigid rod that swings in
its socket as a linear, inverted pendulum (Humphrey et al.,
1993; Shimozawa and Kanou, 1984a, b; Kumagai et al.,
1998a, b; Osborne, 1996). The trajectory of each hair is
described by the angle yðtÞ that the hair makes with its
resting position as it moves in response to the driving flow.
The primary determinants of each hair’s response proper-
ties, and hence its motion yðtÞ, are its length, mass and the
viscoelastic properties of its socket. These properties in
turn determine the linear oscillator parameters of the hair:
the moment of inertia I, the spring stiffness S and the
torsional resistance coefficient R. In addition, each hair has
a preferred plane of motion determined by the properties of
its cuticular socket and defined by a unit normal n. The
four parameters I, R, S and n modulate how each hair
resists the flow through the effects of two forces: Fcon is the
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force that constrains the hair to move rigidly in a plane and
FIRS is the force that dynamically resists the flow within the
plane of motion. In this section, we describe the calculation
of these forces, which are used in the computation of the
perturbation velocity u, Eqs. (6).

3.1. Parameter selection

The population of hairs is indexed by i ¼ 1; . . . ;N and
each hair is discretized into ni equidistant points, denoted
by x

ðiÞ
j , j ¼ 1; . . . ; ni. The distance between the neighboring

points is s,

jx
ðiÞ
j � x

ðiÞ
j�1j ¼ s.

These points can be thought of as vectors that start at the
base of the ith hair and end at x

ðiÞ
j . We will denote r

ðiÞ
j ¼

jx
ðiÞ
j j ¼ js to be the length of this vector.
The length of a hair, LðiÞ, determines the values of several

other hair parameters through allometric relationships.
Shimozawa et al. (1998) performed regression analyses on
hair length and the torsional resistance constant RðiÞ and
restoring constant SðiÞ. According to their work,

SðiÞ � 1:90� 10�11ðLðiÞ � 103Þ1:67, (10)

RðiÞ � 2:88� 10�14ðLðiÞ � 103Þ2:77, (11)

where LðiÞ is the length of the ith hair in meters. The inertial
parameter I ðiÞ is also related to hair length via mass, which
is calculated using the shape and basal thickness of a hair.
Kumagai et al. (1998b) found the following relationship
between the base diameter d

ðiÞ
0 of a hair and its length:

d
ðiÞ
0 � 8:34� 10�4ðLðiÞÞ0:67, (12)

where LðiÞ is again in meters. In the same paper, Kumagai
et al. (1998b) describe the shape of the hair as a paraboloid
with a diameter dðiÞðlÞ that is determined at each height l

along hair i by the formula

d ðiÞðlÞ ¼ d
ðiÞ
0 1�

l

LðiÞ

� �0:52

, (13)

where d
ðiÞ
0 is the base radius of hair i and LðiÞ is the length of

hair i.
Each point x

ðiÞ
j on the ith hair is associated with a mass

m
ðiÞ
j . We assign an approximate value to the mass m

ðiÞ
j by

combining (13) with the density of the cuticle, rc ¼

1:1� 103 kg=m3. We suppose that each point on the hair
is centered in a cylinder with radius determined by Eq. (13)
and height s, where s is the distance between points on a
hair. So the mass of point x

ðiÞ
j is given by

m
ðiÞ
j ¼ p

d
ðiÞ
j

2

 !2

src,

where d
ðiÞ
j =2 is radius of the ith hair at a distance r

ðiÞ
j from

the base of the hair. Then the inertial parameter I ðiÞ can

be calculated as follows:

I ðiÞ ¼
Xni

j¼1

m
ðiÞ
j ðr
ðiÞ
j Þ

2. (14)

As mentioned earlier, each hair has a preferred plane of
motion. For ease of computation, we make the stricter
assumption that each hair is constrained to move only in its
preferred plane. We characterize this plane by a unit
normal nðiÞ. The orientation of nðiÞ is selected in such a way
that nðiÞ � x

ðiÞ
j gives the positive direction of the motion of

the hair, defined as having a positive z-coordinate. The
motion of the hair will be described by the angle yðtÞ with
the positive x-axis, see Fig. 2. More generally, the rest
position of a hair need not be vertical, but for now we
consider only this simplified case.

3.2. Dynamic resistive forces

As in previous studies (Bathellier et al., 2005; Humphrey
et al., 1993; Magal et al., 2006; Shimozawa et al., 1998), we
assume that the ith cricket hair resists the motion of the air
with a torque of

t ¼ �I ðiÞ €y
ðiÞ
ðtÞ � RðiÞ _y

ðiÞ
ðtÞ � SðiÞyðiÞðtÞ, (15)

where I ðiÞ is the moment of inertia, RðiÞ is the torsional
resistance coefficient, SðiÞ is the spring constant and yðiÞðtÞ is
the angular position of the ith hair. In this section, we
consider only a single hair, so we will drop the superscript
indicating the identity of the hair. We want to convert the
above torque into force. However, since t ¼ F� x, we can
only recover the magnitude of the force that acts
perpendicular to the hair from (15). We recover the
direction of the force when we take into account the
centripetal force necessary for the hair to remain attached
to the surface of the cercus.
It is most convenient to consider each of the three terms

on the right-hand side of (15) separately. We can write
t ¼ IðaI þ aR þ aSÞ, where each a� is the angular accelera-
tion corresponding to �I €yðtÞ, �R_yðtÞ or �SyðtÞ. Let FI ;j,
FR;j and FS;j represent the amplitude of the inertial force,
of the torsional resistance force and of the restoring force
at point j of a hair, respectively. Then, we have the
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Fig. 2. The coordinate system is centered at the root of the hair. In this

example, the vector nðiÞ points in the direction of the negative y-axis and

thus the hair moves in the ðx; zÞ-plane. The angle y is the angle of the hair

with the positive x-axis.
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corresponding total torques along the hair to be

Xn

j¼1

FI ;jrj ¼ IaI ¼ �I €yðtÞ, (16)

Xn

j¼1

FR;jrj ¼ IaR ¼ �R_yðtÞ, (17)

Xn

j¼1

FS;jrj ¼ IaS ¼ �SyðtÞ, (18)

where rj is the distance from the base of the hair to point xj.
Using these formulae, we can solve for each of a� and
hence for F�;j, where � ¼ I , R, S.

First consider the inertial forces FI ;j. By Eq. (16),
aI ¼ �

€yðtÞ, and hence the force at the jth point, F I ;j, must
be mass times linear acceleration or

FI ;j ¼ mjrjaI ¼ �mjrj
€yðtÞ.

Now consider FR;j, the magnitude of the torsional
resistance forces along the hair. From Eq. (17), we see
that aR ¼ ð�R=IÞ_yðtÞ. Thus we obtain

FR;j ¼ mjrjaR ¼ �R_yðtÞ
mjrj

I
.

An analogous argument using Eq. (18) leads to the formula
for the amplitude of the restoring force:

FS;j :¼� SyðtÞ
mjrj

I
.

So the amplitude of the total force with which a point xj

resists the moving air is

F p;j ¼ FI ;j þ FR;j þ F S;j

¼ �mjrj
€yðtÞ � R_yðtÞ

mjrj

I
� SyðtÞ

mjrj

I
.

Here the subscript p stands for ‘perpendicular’ since
direction of this force is perpendicular to the shaft of the
hair and in the direction that opposes the motion of
the hair. If r is a unit vector representing the position of the
hair, then this direction can be expressed as h:¼n� r (see
Fig. 3). Therefore Fp;j ¼ F p;jh:

To compute the centripetal force, consider an element at
location rj along the hair. Since the hair is attached to the
cercus, the jth point on the hair moves along an arc of a
circle of radius rj with position ðrj cosðyðtÞÞ; rj sinðyðtÞÞÞ in
the hair’s plane of motion. The acceleration of the jth point

is therefore

rj
€yð� sinðyÞ; cosðyÞÞ � rj

_y
2
ðcosðyÞ; sinðyÞÞ.

The second term is the centripetal acceleration, therefore
the centripetal force acting on the jth point is

Fcent;j :¼�mjrjj
_yj2r,

where r is a unit vector along the hair, r ¼ ðcosðyÞ; sinðyÞÞ.
The force Fcent;j does not contribute to the torque t, since it
points along the hair, but it does determine the final
direction of the force at each point on the hair, and
therefore affects viscosity-mediated coupling between
hairs.
The total force FIRS;j at the jth point on the hair is the

sum

FIRS;j ¼ FI ;j þ FS;j þ FR;j þ Fcent;j

¼ �mjrj
€yðtÞ þ

R_yðtÞ
I
þ

SyðtÞ
I

 !
hþ j_yj2r

" #
. ð19Þ

In the text we will occasionally refer to FIRS for an entire
hair. FIRS is the concatenation of FIRS;j over all points j of
the hair.

3.3. Constraining forces

Each hair is modeled as a collection of points that are
constrained to move as a rigid rod within a particular plane
of motion. So the jth point of hair i moves at a linear speed

of _y
ðiÞ

r
ðiÞ
j hðiÞ, where r and h are defined in Sections 3.1 and

3.2, respectively. To ensure that the effect of this collection
of points on the surrounding fluid mimics that of a rigid
rod, we must implement a no-slip condition about hair i.
First we find the difference between the linear velocity of
the point and the perturbed boundary layer at that same

point. This difference is v
ðiÞ
j �

_y
ðiÞ

r
ðiÞ
j hðiÞ, where v

ðiÞ
j ¼ u

ðiÞ
j þ

u
ðiÞ
b;j from Eq. (1). Then we calculate the collection of forces

FðiÞcon along the ith hair required to negate all the velocities

v
ðiÞ
j �

_y
ðiÞ

r
ðiÞ
j hðiÞ. For ease of notation, allow r

ðiÞ
h and vðiÞ to be

the concatenations of r
ðiÞ
j hðiÞ and v

ðiÞ
j along hair i,

respectively. Then using expression (8), we can write

FðiÞcon:¼� ðM
ði;iÞÞ
�1
ðvðiÞ � _y

ðiÞ
r
ðiÞ
h Þ, (20)

where we follow the notation convention mentioned in the
discussion of regularized Stokeslets (7).
The constraining forces acting along the ith hair, FðiÞcon,

can have an effect on other hairs through viscosity-
mediated coupling. As an example, consider the extreme
case when the plane of motion of the hair is perpendicular
to the direction of the ambient flow. In this case the hair
does not move since no component of the driving air
velocity lies in the plane of motion of the hair. All resistive
forces (Section 3.2) will be zero, since they are derived from
y, _y and €y, which are zero when the hair is stationary. If we
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do not take into account the forces FðiÞcon, then this
stationary hair would have no effect on other hairs. This
contradicts the observation that since the hair is a solid
obstacle to the flow, its presence must affect the motion of
other hairs in close proximity.

The forces FðiÞcon are summed with the previously

calculated forces F
ðiÞ
IRS and F

ðPÞ
bc to calculate the perturba-

tion velocity u via Eqs. (5):

mDuðiÞ ¼ rpðiÞ �
XN

j¼1

F
ðjÞ
IRS þ

XN

j¼1
jai

FðjÞcon þ F
ðPÞ
bc

0
BB@

1
CCA, (21)

r � uðiÞ ¼ 0. (22)

4. Equations of motion

Now that we have calculated the perturbed velocity field,
v ¼ ub þ u, we can derive the system of differential
equations that governs the hair motion, yðtÞ, from the
relationship between angular velocity and angular momen-
tum.

4.1. Angular velocity

In this section we compute the angular velocity _y
ðiÞ
of the

ith hair, i ¼ 1; . . . ;N, from the total air velocity vðiÞ along
the hair. The angular momentum XðiÞ imparted to the ith
hair from the moving air is the cross-product of position
and momentum summed over all of the points along the
hair:

XðiÞ ¼
Xn

j¼1

x
ðiÞ
j � ðmjv

ðiÞ
j Þ,

where v
ðiÞ
j is the velocity of the air at the point x

ðiÞ
j . In the

remaining part of this section we consider only a single
hair, so we drop the superscript indicating the identity of
the hair.

Since we constrain the hair to planar motion perpendi-
cular to unit vector n, the vector X points along n and we
obtain

X ¼
Xn

j¼1

ðxj � ðmjvjÞÞ � n

" #
n.

We assume that the hair is completely rigid. Therefore, the
angular momentum X imparted by the flow has magnitude

jXj ¼ I j_yj,

where I is the moment of inertia of the discretized hair (see
Eq. (14)). Thus, we have that

j_yj ¼
jXj
I
¼
j
Pn

j¼1xj � ðmjvjÞ � nj

I

) _y ¼

Pn
j¼1ðxj � ðmjvjÞÞ � n

I
. ð23Þ

4.2. The system of differential equations

The Eqs. (4), (9), (19)–(23) describe the model cercal
system, and are listed below for reference. We rescale these
equations (see Appendix A) before solving them:

ub ¼ U0Bcðt;xÞ,

mDuðiÞ ¼ rpðiÞ �
XN

j¼1

F
ðjÞ
IRS þ

XN

j¼1
jai

FðjÞcon þ F
ðPÞ
bc

0
BB@

1
CCAfd,

r � uðiÞ ¼ 0,

F
ðiÞ
IRS;j ¼ �m

ðiÞ
j r
ðiÞ
j

€y
ðiÞ
ðtÞ þ

RðiÞ _y
ðiÞ
ðtÞ

I ðiÞ
þ

SðiÞyðiÞðtÞ

I ðiÞ

 !
hðiÞ

"

þj_y
ðiÞ
ðtÞj2rðiÞ

#
,

FðiÞcon ¼ � ðM
ði;iÞÞ
�1
ðvðiÞ � _y

ðiÞ
r
ðiÞ
h Þ,

F
ðPÞ
bc ¼ � ðM

ðP;PÞÞ
�1
ðuðPÞÞ,

_y
ðiÞ
¼

Pni

k¼1ðx
ðiÞ
k �m

ðiÞ
k v
ðiÞ
k Þ � n

ðiÞ

I ðiÞ
. ð24Þ

The core of our computation is the last equation above,
Eq. (24), because we wish to solve for the angular position
of each hair as a function of time. However, an explicit
method of solution where angular acceleration is computed
from angular velocity by a straightforward numerical
differentiation exhibits instability. This occurs because
the right-hand side of (24) depends on the perturbation

velocity u, which in turn depends on the force F
ðiÞ
IRS. Since

F
ðiÞ
IRS is calculated from €y

ðjÞ
and _y

ðjÞ
for j ¼ 1; . . . ;N, we seek

to rewrite Eq. (24) with €y
ðjÞ
, j ¼ 1; . . . ;N, on the left-hand

side and _y
ðjÞ
, j ¼ 1; . . . ;N, on the right-hand side.

At every position, the velocity v has four components,
three of which make up the perturbation velocity:

v ¼ uþ ub ¼ uIRS þ ucon þ ubc þ ub, (25)

where uIRS is the velocity induced by all dynamic resistive

forces, F
ðiÞ
IRS, on all hairs; ucon is the velocity induced by all

forces that ensure a no-slip condition about a rigid hair,
FðiÞcon; ubc is the velocity caused by all forces that ensure a no-
slip boundary condition on the cercus, F

ðPÞ
bc ; and ub is the

boundary layer or driving velocity. Our goal is to explicitly

compute €y
ðjÞ

for j ¼ 1; . . . ;N in the expression of the
velocity v on the right-hand side of (24). Note that uIRS

depends directly on €y
ðjÞ

since uIRS is a function of F
ðjÞ
IRS,

which depends on €y
ðjÞ

(see (19)). Since ubc and ucon depend

on v, these velocities depend on €y
ðjÞ

as well. Furthermore,
through this dependence on v, the computation of ubc

depends on ucon and vice versa. In order to be able to solve
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for €y
ðjÞ

explicitly, we make an assumption that, in a given
time step, Fbc and Fcon are computed only from uIRS þ ub,
rather than from v given by Eq. (25). With this assumption,
the fifth and sixth equations above (Eqs. (20) and (9)) take
the form

FðiÞcon ¼ �ðM
ði;iÞÞ
�1
ðu
ðiÞ
IRS þ u

ðiÞ
b �

_y
ðiÞ
r
ðiÞ
h Þ,

F
ðPÞ
bc ¼ �ðM

ðP;PÞÞ
�1
ðu
ðPÞ
IRSÞ,

where u
ðiÞ
IRS and u

ðiÞ
b are to be taken as concatenations of

velocity vectors along hair i and u
ðPÞ
b is dropped from the

second equation since ub ¼ 0 at all points in P. Since ubc

and ucon are calculated directly from Fbc and Fcon,
respectively, they too depend only on uIRS þ ub. This
imposes an ordering within a time step, where uIRS and ub

are calculated first, then ubc and ucon are calculated
simultaneously from uIRS þ ub. The effects of the neglected
velocities in the computations will be transmitted indirectly
by numerically integrating the above system of equations.

After some algebra (see Appendix B for the derivation),
we find a linear relationship equivalent to the above system
of equations:

A€h ¼ b,

where €h is a vector containing the angular acceleration for
each hair, A is a mass matrix that depends on ðt; yÞ and b is
a vector that depends on ðt; y; _yÞ. By adding the trivial
equations ðd=dtÞyðiÞ ¼ _y

ðiÞ
, we have a system of 2N first

order differential equations in unknown variables _y
ðiÞ

and
yðiÞ for i ¼ 1; . . . ;N. This system is well behaved numeri-
cally and we solve it using the stiff ODE solver ode15s in
Matlab to advance the hair motion.

5. Results

5.1. Comparisons to previous work

To validate our model, we compared our numerical
simulations to the work of other researchers. We first tested
our model by simulating the motion of a single hair using
the parameter set given in Humphrey et al. (1993, Figure
12a, b). The purpose of Figure 12 in Humphrey et al.
(1993) is to demonstrate the remarkable sensitivity of the
hair response on the torsional damping and restoring
constants (R and S) exhibited by the motion of the filiform
hair. Three different R and S pairs are applied to an
identical hair and the resultant maximum deflection and
angular velocity are plotted versus frequency. Our results
are pictured in Fig. 4 for the same set of parameters: hair
length ¼ 500mm, hair diameter ¼ 7mm, cercus diame-
ter ¼ 2mm, and magnitude of far-field air flow ¼ 5mm/s.
Following the line styles in Figure 12 of Humphrey et al.
(1993), the solid lines labeled A in Fig. 4 correspond to R

and S values of 1� 10�15 and 4� 10�12 Nm=rad, respec-
tively, the dashed lines labeled B correspond to R ¼ 0 and
S ¼ 4� 10�12 Nm=rad and the dotted lines labeled C
correspond to R ¼ 0 and S ¼ 3� 10�12 Nm=rad. The
discretization scheme for the cylindrical section used to
model the cercus (see Section 2.3) is described in the figure
caption. Larger portions of a cylindrical cercus add
computation time without affecting results more than a
few percent (results not shown) and also may add
unnecessary error given the assumptions of our model
(see Sections 2.2 and 5.2).
Our results are qualitatively similar to those of Hum-

phrey et al. (1993). The relative positions of the lines
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Fig. 4. Comparison to Figure 12 of Humphrey et al. (1993): hair length ¼ 500mm, cercus diameter ¼ 2mm and magnitude of driving flow ¼ 5mm/s. A

(solid line): R ¼ 1� 10�15 Nms=rad, S ¼ 4� 10�12 N m/rad, hair diameter ¼ 7mm; B (dashed line): R ¼ 0, S ¼ 4� 10�12 Nm=rad, hair

diameter ¼ 7mm; C (dotted line): R ¼ 0, S ¼ 3� 10�12 Nm=rad, hair diameter ¼ 7mm; D (dot-dash line): R � 4:2� 10�15 Nms=rad,
S � 6:0� 10�12 Nm=rad, hair diameter � 5mm. The cercus is modeled as a 200mm long length of cercus with p=4 rad on either side. The discretization

scheme consists of 15mm spacing between hair points and 28mm spacing between cercal points. (A) Maximum excursion in degrees as a function of

frequency. (B) Maximum velocity in radians/second as a function of frequency.
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representing the displacement and velocity of the hair with
different R and S pairs are identical to those in Figure 12 of
Humphrey et al. (1993), and the shapes of the curves are
similar, although the slopes in Fig. 4 are less steep and the
location of the peaks in the graphs disagree by as much as
25Hz. The largest differences in amplitude between
Fig. 4A and Figure 12a do not exceed 13% and these
differences are most evident below 100Hz. Likewise, the
largest differences in amplitude between the curves in
Fig. 4B and Figure 12b are between 10% and 20% at
50Hz, with the differences rapidly falling off to well below
5%, allowing for the peak shift. Given that our model relies
on a discretization of the cercal system and the model of
Humphrey et al. (1993) does not, we believe that Fig. 4 is a
reasonable match to the results presented in Figure 12 of
that paper. Additionally, most of the differences are seen in
the lower half of the frequency values examined, which
may be partly explained by the fact that the theoretical
analysis in Humphrey et al. (1993) applies to frequencies
greater than 80Hz and the results of our model are most
accurate at lower frequencies (see Section 5.2).

Like Humphrey et al. (1993), we see a strong dependence
on the parameters R and S in determining the motion of a
filiform hair. Therefore, we use the experimentally deter-
mined values of R and S from Shimozawa et al. (1998),
which are allometrically related to hair length (see Eqs. (10)
and (11)). We also use an allometric relationship between
hair length and base diameter (Kumagai et al., 1998b) (see
Eq. (12)). This work from Shimozawa et al. (1998) and
Kumagai et al. (1998b) indicates that, on average, a 500mm
hair will have a diameter of 5mm, an R value of 4:2� 10�15

and an S value of 6:0� 10�12. Using these changed
parameters, our model predicts that a 500 mm hair on a
2mm cercus driven by a 5mm/s oscillating flow exhibits
maximum displacement and velocity as seen in Fig. 4,

line D. Under these values of R and S, the maximum
displacement and velocity curves are greatly depressed, the
maximum displacement is about 60% of line A in the left
half of Fig. 4A and the maximum velocity is about 50% of
line A when it peaks in Fig. 4B.
We also compared our model to data collected by

Kumagai et al. (1998a), who studied the mobility of cricket
filiform hairs ranging in length from 160 to 1484mm.
Shimozawa et al. (1998) used this data to dynamically fit
the pendulum parameters of the hair, I, R, and S, and then
reconstructed the movement of the hairs in Figure 6 of
their paper. Fig. 5 compares to Figure 6.D in Shimozawa
et al. (1998). For this figure, we used the longest set of hairs
observed by Kumagai et al. (1998a). We assigned basal hair
diameter using Eq. (12) and calculated the hair inertia I

from Eq. (14). We estimated R and S values for each hair
from Figures 4 and 5 of Shimozawa et al. (1998). Since the
cercal diameter was not provided, we assigned the diameter
to be 500mm based on the work of Osborne (1996). In the
discretization scheme, we allowed a 200mm long section of
cercus with p=4 rad to either side, 10mm spacing between
hair points and 28 mm spacing between cercal points.
The maximum deflections predicted by our model in

Fig. 5A are a good match to the reconstructions and data
in Figure 6.D1 of Shimozawa et al. (1998) for frequencies
below 200Hz. Most of the differences between our model
and the reconstructions in this region are below 10%,
which means that we also match the data from Kumagai
et al. (1998a) reasonably well. The slight differences may be
caused by our use of a discretized system. The largest
discrepancies occur at frequencies of 200Hz or higher,
where the deflection from our model is 0:25 to 5 times
lower than the reconstructions, and therefore 0:50 to 10
times lower than the data. These differences demonstrate
that the assumptions we have made in our model may limit
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Maximum excursion in degrees as a function of frequency. (B) Phase shift in multiples of p as a function of frequency.
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its utility in a high-frequency regime (see Section 5.2 for a
discussion).

The phase offsets in Fig. 5B are a good match to the
reconstructions and data in Figure 6.D2 of Shimozawa
et al. (1998). The variance in our point spread is a little
greater and we find that the longest hairs have a phase
offset 10–15% higher at 400 and 500Hz, but otherwise the
graphs are nearly identical.

We simulated all the hair lengths shown in Figure 6.A-C
of Shimozawa et al. (1998) and compared our results to the
reconstructions and data in those figures. The comparisons
did not significantly differ from what we found above (data
not shown).

5.2. Coupling

The coupling coefficient k introduced by Bathellier et al.
(2005) gives a measure of how much an isolated hair’s
response to a driving air flow changes when it moves in the
presence of other hairs. It is defined as

k:¼
yref � y
yref

, (26)

where yref is the maximal excursion of an isolated hair
under a given driving velocity and y is the maximal
excursion when the hair is driven in the presence of one or
more hairs under the same conditions.

Bathellier et al. (2005) plot theoretically predicted values
of k for a pair of long hairs of the same length in their
Figure 7B. They vary the distance between the hairs and
whether or not the second hair is freely moving,
mechanically forced or stationary. Bathellier et al. (2005)
found significant coupling between hairs when the second

hair was stationary or mechanically forced in still air up to
a normalized distance (hair spacing/hair diameter ¼ s=d) of
20 or 30, depending on frequency. However, they found no
significant coupling between freely moving hairs of the
same length at any distance from frequencies of 50–200Hz.
Freely moving hairs are the biologically relevant case, and
knowing whether or not coupling occurs is fundamental to
understanding the function of the biological sensor.
To compare our model to the results in Figure 7B of

Bathellier et al. (2005), we performed numerical simulations
at frequencies of 50, 100 and 200Hz to produce the coupling
coefficient k for pairs of hairs of lengths 700 and 1400mm,
where the second hair is either freely moving or stationary.
The diameters of the hairs and R and S are calculated as in
Eqs. (10), (11), and (12). The cercus is modeled by a
cylindrical section of length 700mm and angular extent p=2,
and the discretization spacing is 10mm for the hairs and
28mm for the cercus. The reference hair is placed 100mm
from one edge of the cercus, and the second hair is placed at
increasing distances away from it along the cercal axis.
The results of these coupling simulations are shown in

Fig. 6A (700mm hairs) and B (1400mm hairs). As in
Bathellier et al. (2005), we notice that the effect of a
stationary hair on the reference hair is much stronger than
that of freely moving hair. We also similarly find that the
effect of a second freely moving hair decreases with
frequency. However, there are some differences between
our Fig. 6 and Figure 7B of Bathellier et al. (2005). First,
we do find significant coupling between freely moving hairs
across all distances tested. Second, in Figure 7B of
Bathellier et al. (2005), the tails of the graphs of the effect
of the fixed secondary hair fall off sharply to zero before
s=d ¼ 50, but in our Fig. 6 remain shallowly sloped and
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well above zero. Third, the effect of a stationary hair
increases with frequency, rather than the decrease found-
by Bathellier et al. (2005). The source of these discrepan-
cies has to do with the differences between our modeling
assumptions and those made by Bathellier et al. (2005).

As explained in Section 2.2, we model the viscosity-
mediated coupling between hairs and the effect of the
perturbation velocity at the cercal surface on the hairs
using the steady Stokes approximation to the Navier–
Stokes equations. This approximation is theoretically
justified when the distances between points of interest fall
within Lv ¼

ffiffiffiffiffiffiffiffi
n=o

p
meters of each other (Pozrikidis, 1997).

For example, we expect that hair coupling in an oscillating
flow of 50Hz is well specified by our approximation when
Lv ¼ 223mm. Because of this assumption, we are most
confident of our results when we model short hairs that are
closely spaced in a driving air flow of low-to-moderate
frequency. For some distance beyond the theoretical radius
Lv, the approximation may be adequate as well; for
example, we did not notice significant change in the
comparison between our model and the reconstructions
and data in Shimozawa et al. (1998) when we looked at

isolated long hairs versus isolated short hairs at frequencies
below 200Hz. However, we do notice a large difference
when we compare our simulation of two identical hairs of
medium to long length with the theoretical predictions of
Bathellier et al. (2005). This is likely due to an incompat-
ibility between our simplifying assumptions and those of
Bathellier et al. (2005). We have chosen to explore coupling
in a short range, low-to-medium frequency regime, and
Bathellier et al. (2005) have chosen a long hair, higher
frequency regime. Given these constraints, we choose not
to model long hairs at large distances and instead we model
groups of densely packed short hairs.

5.3. Interaction between the hairs

As mentioned in the introduction, many previous
modeling approaches (Humphrey et al., 1993; Kumagai
et al., 1998a; Shimozawa et al., 1998; Shimozawa and
Kanou, 1984a, b) did not include the interaction between
hairs mediated by fluid coupling. Our main objective was
to develop a modeling framework that would allow us to
determine the extent of these interactions and thus extend
naturally the results of the motion of a single hair. The
model we have developed allows us to calculate the
movement of a number of hairs distributed over a patch
of cercus. Because of the theoretical constraints of our
assumptions, we have chosen to demonstrate the capability
of our model on a patch of short hairs with a density
similar to that of hairs near the base of the cercus, where
they are closely packed. Additionally, we look at frequen-
cies no higher than 200Hz.
We have simulated the movement of a patch of seven

hairs with heights from 100 to 400mm that all have planes
of motion aligned with the axial driving air flow. Fig. 7
shows the layout of these hairs as though the cercus is
flattened and the observer is looking down from above.

ARTICLE IN PRESS

Fig. 7. The layout of the patch of seven hairs as viewed from above. The

numbers are the heights of the hairs in mm. The color coding identifies

hairs of similar height in symmetric positions with respect to the oscillating

hair flow.
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Fig. 8. Change in hair response when individual hairs are simulated in a group. The hair lengths are listed in the legend, other hair parameters are

calculated according to allometric relationships, see Eqs. (10)–(12), the peak air flow is 5 cm/s, the cercal diameter is 500mm and the discretization scheme

is described in the text. (A) The coupling coefficient k introduced in Eq. (26) versus frequency. (B) The difference in phase shift (degrees) between isolated

and grouped hairs as a function of frequency.
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The color coding relates hairs that are in roughly
symmetric positions with respect to hair length and
position within the group. The air flow is a sinusoid with
a peak velocity of 5 cm/s and frequencies varying from 2 to
200Hz. The interhair distance is 40mm, which is consistent
with hair densities at the basal end of the cercus (Osborne,
1996). The cercus is modeled as a 280mm long and 2

3
p wide

portion of a cylinder of diameter 500mm. The 500mm
diameter is consistent with cercal measurements (Osborne,
1996). The discretization scheme consists of 10 mm between
points representing the hairs and 17:5mm between cercal
points. Each of the individual hairs was simulated alone
under the same conditions to quantify the changes
produced by placing the hair in a group.

The results from this simulation are pictured in Fig. 8.
Fig. 8A plots the coupling coefficient k against frequency.
We find that hair response to near neighbors is not linearly
related to hair length, since intermediate hairs were the
most affected by the presence of other hairs. The hairs of
intermediate length experience an amplitude change of
75% to nearly 100%, whereas the shortest and longest
hairs have their amplitudes damped by 59–70%. One
possible explanation is that individual hair response is
more dependent on position within a group of hairs than
on hair length. There is some limited evidence for this
hypothesis. The color coding in Fig. 7 denotes hairs in
symmetric positions within the group that have similar
lengths. These ‘most similar’ pairs have roughly parallel,
close-set curves in Fig. 8A, although the trend is not
repeated in Fig. 8B except for the longest pair of hairs. This
suggests that position within a group of hairs along with
coarsely quantized hair length may be the best predictor of
viscous coupling effects.

Fig. 8B plots the change in phase between the isolated
and grouped hairs, yref � y. We cannot distinguish phase
differences smaller than 4:5� because our time steps are 1

80

of a period apart. Also, phase shifts that differ by only 4:5�

are likely numerical artifacts, so the non-smoothness in the
phase graphs caused by 4:5� jumps should be ignored.
Again, the intermediate length hairs are most affected by
the presence of near neighbors. Interestingly, the 200mm
hair is phase shifted nearly p rad at low frequencies, which
suggests that a significant stagnation in the air flow can
occur in a dense forest of hairs.

6. Conclusion

We have developed a framework that allows us to model
and quantify the interaction between filiform hairs, which
is mediated by the fluid medium. Our results demonstrate
that the interaction between hairs in a group is substantial
at biologically relevant distances, lengths of hairs and air
velocities. In principle, we can extend our current modeling
capability from a small cercal patch to the entire array of
hairs on the cercus in periodic air flow. Modeling the whole
cercus is a crucial step in our investigation of the function
of the cercal sensory system of the cricket. We are

interested in how the information about the air currents
is represented by the motion of the filiform hairs, translated
into the neural activity of the hair-attached afferent
neurons and processed by the small set of interneurons in
the terminal ganglion, before being passed on to higher
processing stages. Apart from understanding the entire
information pathway, we are also interested in uncovering
operational principles that may be common with those in
the auditory system in humans, or may be applicable to
design of MEMS-based hair flow sensors (Krijnen et al.,
2006). Since the cercal system evolved under the physical
constraints imposed by the interaction with air at a low
Reynolds number, it is likely that its operational char-
acteristics reflect these constraints. We believe that the
modeling framework presented in this paper will allow the
simulation of a significant portion of the cercal sensory
system and thus help us uncover these constraints.
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Appendix A. Scaling

In this Appendix, we rescale the system of equations in
Section. 4.2. Let T be a time scale and L be a length scale.
Define the dimensionless variables t̂, x̂ and r̂ by

t̂ ¼
1

T
t; x̂ ¼

1

L
x; r̂ ¼

1

L
r.

Recall that t is time, x is position and r is the magnitude of
x. These choices for scaling terms define a velocity scale
given by U ¼ L=T such that a dimensionless velocity is
û ¼ ðT=LÞu. For convenience define dimensionless pressure
and force as

p̂ ¼
1

P
p; F̂ ¼

1

F
F.

We choose T ¼ 1=f ¼ 2p=o so that the dimensionless
period of oscillation of the hair and the far-field flow is 1.
We select the length scale L to be the length of the longest
hair. We set the pressure scale to be P ¼ m=T and choose
F ¼ I s=T2, where Is:¼maxi;jðm

ðiÞ
j r
ðiÞ
j Þ is the maximum of the

inertial factors over all positions on all hairs. These choices
for scaling terms lead to a natural scaling for mass,
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m̂ ¼ ðL=FT2Þm ¼ ðL=IsÞm, for inertia, Î ¼ I=I sL, and for
the inertial force constants, m̂r̂ ¼ mr=Is.

With these choices the equation for the resistive forces
has the form

F̂
ðiÞ

IRS;j ¼ � m̂
ðiÞ
j r̂
ðiÞ
j y00ðiÞðt̂Þ þ

RðiÞT

I ðiÞ
y0ðiÞðt̂Þ þ

SðiÞT2

I ðiÞ
yðiÞðt̂Þ

� �
hðiÞ

�

þ jy0ðiÞðt̂Þj2rðiÞ
�
.

The boundary layer equation in dimensionless form is
given by

ûb ¼
T

L
U0BcðTt̂;Lx̂Þ ¼

2p
Lo

U0Bcð2pt̂=o;Lx̂Þ,

and the total scaled velocity is the sum of the scaled
perturbation velocities and the scaled boundary layer,
v̂ ¼ ûþ ûb, where the scaled version of u is derived below.

We scale the Stokes equation, where

F:¼
XN

i¼1

F
ðiÞ
IRS þ

XN

j¼1
jai

FðiÞcon þ F
ðPÞ
bc .

Note that the Laplacian is scaled by 1=L2, the gradient

by 1=L and fd̂ ¼ L3fd, because our particular choice of

fd has units ðlengthÞ�3. Therefore the first equation has
the form

Dû ¼
PT

m
rp̂�

FT

L2m
F̂fd̂ ¼ rp̂� CF F̂fd̂, (A.1)

where we set CF :¼FT=L2m ¼ I so=2pL2m. Repeating the
calculations in Section 2.2 with expression (A.1) and using
r � û ¼ 0, we observe that the constant CF factors out of
the matrix equation:

û ¼ CF MF̂.

Thus, the scaled inverse problem is

F̂ ¼
1

CF

M�1û.

And the angular velocity equation scales to be

y0ðiÞðt̂Þ ¼
Pni

k¼1ðx̂
ðiÞ
k � m̂

ðiÞ
k v̂
ðiÞ
k Þ � n

ðiÞ

Î
ðiÞ

.

Therefore, the our scaled equations are as follows:

Dû ¼ rp̂� CF F̂fd̂,

r � û ¼ 0,

ûb ¼
2p
Lo

U0 Bcð2pt̂=o;Lx̂Þ, (A.2)

y0ðiÞðt̂Þ ¼

Pni

k¼1ðx̂
ðiÞ
k � m̂

ðiÞ
k v̂
ðiÞ
k Þ � n

ðiÞ

Î
ðiÞ

,

F̂
ðiÞ

IRS;j ¼ � m̂
ðiÞ
j r̂
ðiÞ
j y00ðiÞðt̂Þ þ

RðiÞT

I ðiÞ
y0ðiÞðt̂Þ þ

SðiÞT2

I ðiÞ
yðiÞðt̂Þ

� �
hðiÞ

�

þ jy0ðiÞðt̂Þj2rðiÞ
�
,

F̂
ðiÞ

con ¼ �
1

CF

ðM ði;iÞÞ
�1
ðv̂
ðiÞ
� _y
ðiÞ
ðt̂Þr̂
ðiÞ
h Þ, (A.3)

F̂
ðPÞ

bc ¼ �
1

CF

ðMðP;PÞÞ
�1
ðû
ðPÞ
Þ. (A.4)

Appendix B. Solving for angular acceleration

In this Appendix, we solve the system of equations in

Section 4.2 for €y
ðjÞ
, j ¼ 1; . . . ;N. Using (25) we write (24)

as

_y
ðiÞ
¼

Pni

k¼1ðx
ðiÞ
k �m

ðiÞ
k ðu

ðiÞ
IRS;k þ u

ðiÞ
con;k þ u

ðiÞ
bc;k þ u

ðiÞ
b;kÞÞ � n

ðiÞ

I ðiÞ
,

i ¼ 1; . . . ;N. ðB:1Þ

Observe that

u
ðiÞ
IRS ¼

XN

j¼1

M ði;jÞð€y
ðjÞ
C
ðjÞ
I Þ þ

XN

j¼1

M ði;jÞF
ðjÞ
rest

¼
XN

j¼1

€y
ðjÞ
ðM ði;jÞC

ðjÞ
I Þ þ

XN

j¼1

M ði;jÞF
ðjÞ
rest,

where C
ðjÞ
I is a concatenation of the terms �m

ðjÞ
‘ r
ðjÞ
‘ for all

the points ‘ along hair j and F
ðjÞ
rest ¼ F

ðjÞ
R þ F

ðjÞ
S þ F

ðjÞ
cent (these

force terms are also concatenations along hair j).
The velocity uðiÞcon, caused by the collection of forces Fcon,

is

uðiÞcon ¼
XN

l¼1
lai

Mði;lÞFðlÞcon.

Since by (20) FðlÞcon ¼ �ðM
ðl;lÞÞ
�1
ðvðlÞ � _y

ðlÞ
r
ðlÞ
h Þ we obtain

uðiÞcon ¼ �
XN

j¼1
jai

M ði;lÞðM ðl;lÞÞ
�1
ðvðlÞ � _y

ðlÞ
r
ðlÞ
h Þ. (B.2)

Using the simplifying assumptions in Section 4.2, the
velocity uðiÞcon will be given by

uðiÞcon ¼ �
XN

l¼1
lai

M ði;lÞðM ðl;lÞÞ
�1
ðu
ðlÞ
IRS þ u

ðlÞ
b �

_y
ðlÞ
r
ðlÞ
h Þ

¼ �
XN

l¼1
lai

M ði;lÞðM ðl;lÞÞ
�1

XN

j¼1

€y
ðjÞ
ðMðl;jÞC

ðjÞ
I Þ

 

þ
XN

j¼1

M ðl;jÞF
ðjÞ
rest þ u

ðlÞ
b �

_y
ðlÞ
r
ðlÞ
h

!
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¼ �
XN

l¼1
lai

Mði;lÞðM ðl;lÞÞ
�1

XN

j¼1

€y
ðjÞ
ðM ðl;jÞC

ðjÞ
I Þ

 !

�
XN

l¼1
lai

Mði;lÞðM ðl;lÞÞ
�1

XN

j¼1

M ðl;jÞF
ðjÞ
rest þ u

ðlÞ
b �

_y
ðlÞ
r
ðlÞ
h

 !

¼ �
XN

j¼1

€y
ðjÞXN

l¼1
lai

M ði;lÞðMðl;lÞÞ
�1
ðMðl;jÞC

ðjÞ
I Þ � f ðiÞ,

where we defined

f ðiÞ:¼
XN

l¼1
lai

M ði;lÞðMðl;lÞÞ
�1

XN

j¼1

M ðl;jÞF
ðjÞ
rest þ u

ðlÞ
b �

_y
ðlÞ
r
ðlÞ
h

 !
.

Again using the simplifying assumptions in Section 4.2,
we compute u

ðiÞ
bc

u
ðiÞ
bc ¼Mði;PÞðMðP;PÞÞ

�1
ð�u

ðPÞ
IRSÞ

¼ Mði;PÞðMðP;PÞÞ
�1
�
XN

j¼1

€y
ðjÞ
ðMðP;jÞC

ðjÞ
I Þ �

XN

j¼1

M ðP;jÞF
ðjÞ
rest

 !

¼
XN

j¼1

€y
ðjÞ

M ði;PÞðM ðP;PÞÞ
�1
ð�M ðP;jÞC

ðjÞ
I Þ þ gðiÞ,

where we defined

gðiÞ:¼Mði;PÞðM ðP;PÞÞ
�1
�
XN

j¼1

MðP;jÞF
ðjÞ
rest

 !
.

To simplify, let

aði;kÞ:¼M ði;kÞC
ðkÞ
I ,

bði;kÞ:¼
XN

l¼1

Mði;lÞðM ðl;lÞÞ
�1
ðM ðl;kÞC

ðkÞ
I Þ,

cðiÞ:¼
XN

j¼1

Mði;jÞF
ðjÞ
rest � f ðiÞ þ gðiÞ þ uðiÞb .

Then,

vðiÞ ¼ uðiÞIRS þ uðiÞcon þ uðiÞbc þ uðiÞb

¼
XN

j¼1

€y
ðjÞ
ðaði;jÞ � bði;jÞ �Mði;PÞðM ðP;PÞÞ

�1aðP;jÞ þ cðiÞ.

Substituting into the original equation (B.1) we are left
with

where Aij and Bi are defined as follows:

Aij:¼

Pni

k¼1xðiÞk �m
ðiÞ
k ða

ði;jÞ � bði;jÞ �M ði;PÞðM ðP;PÞÞ
�1aðP;jÞÞ

I ðiÞ
� nðiÞ

 !

and

Bi:¼

Pni

k¼1x
ðiÞ
k �m

ðiÞ
k cðiÞ

I ðiÞ
� nðiÞ.

Let A be a matrix with elements Aij and b a vector with
elements _y

ðiÞ
� Bi. Then (B.1) can be written as a system

A€h ¼ b.
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