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Abstract

The problem of reconstructing a smooth function or one of its derivatives from the func-
tion values at the nodes of a uniform grid is addressed. The approximations are given by a
linear combination of the grid values of the function, where the weights come from a piecewise
polynomial kernel. Two classes of compactly supported kernels are considered. The first one,
smooth kernels, consists of piecewise polynomials of degree ¢ whose derivatives up to £ — 1 are
continuous. QOur results show that for a given polynomial degree, there is a maximum accuracy
that can be achieved as long as the support of the kernel is larger than a minimum value. If
the support is equal to this minimum value, then the kernel is unique. The second class, nar-
row kernels, consists of kernels whose regularity is not enforced and all degrees of freedom are
used to provide as high an accuracy as possible in the approximation. In this case, given the
desired support of the kernel, there is a maximum accuracy that can be achieved as long as
the polynomial degree is larger than a minimum value. If the polynomial degree equals this
minimum value, the kernel is unique. We also show that although no regularity is enforced
for these kernels, they are continuous and even. Similar results are proven for kernels used to
approximate f'(z) given the values of f(z) on the uniform grid. Not all of the latter kernels are
derivatives of interpolation kernels and some are discontinuous. Numerical examples in one and
two dimensions are provided to illustrate the performance of the kernels.



1 Introduction

A common computational problem with practical applications is to establish the intermediate
properties of a function from a given discrete set of data. A typical situation is to use function
values at grid points to determine information about the function or its derivatives at intermediate
points. Some well known interpolation methods include polynomial approximations and splines,
which are used to approximate the function and sometimes its derivatives. Another approach is to
use a set of basis kernels and represent the function as a linear combination of the kernels centered at
different points. This technique is at the core of finite element methods and is also used in particle
methods for solving PDEs [13, 6, 25, 28, 29] as well as in other contexts such as Lagrangian vortex
methods for fluid flow [2, 16, 22, 14, 10|, particle strength exchange methods [12, 7, 9], smooth
particle hydrodynamics [20, 21], the diffusion velocity method [18], the impulse method [3, 5, 8],
the immersed boundary method [23, 27] and in fast summation methods like the method of local
corrections [1]. These methods seek to update variable values at arbitrary positions by solving a
set of PDEs on a grid, so there is a need to transfer information from the particle positions to the
grid and back. Overset grid methods face a similar challenge of communicating information from
one grid to another.

We focus our attention on the problem of approximating the value of a function or one of its
derivatives at an arbitrary point from the function values on a uniform grid of size h. Our approach
is to design a kernel Ay (z) so that the s-th derivative of the function can be approximated by
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where fj are the function values at the grid points yx. The kernel A, (x) is assumed to be piecewise
polynomial with compact support. One can interpret this formula as a quadrature rule where the
kernel provides the weights for the approximation. Alternatively, one can think of the kernel as
a smooth approximation of a distribution and the sum as the discretization of a convolution. We
concentrate on s = 0 most of the time because the results extend to the case s > 0 with some
modifications. This is explained in Section 6.

The principal issue we address is to determine how one can design kernels Ay (z) with a prescribed
degree of regularity and in such a way that the approximation above have a given order of accuracy.
For accuracy, the kernel must satisfy discrete moment conditions [4]. Our results show that regu-
larity and accuracy are coupled so that after imposing regularity, the kernel already meets some of
the accuracy conditions. Conversely, it has been observed that imposing accuracy conditions yields
a kernel that is continuous [24].

There is important work on piecewise polynomial kernels of the type considered here. In particular,
the Z-spline Z,,,(z) is a C™ (R) function made of polynomials of degree £ = 2m — 1. It is known
that Z,,(z) is an interpolation kernel with order of accuracy 2m—1 and support [—m, m]. The order
of accuracy and smallness of the support are optimal [26]. In other words, there is a unique spline
of degree £ = 2m —1 in C™ 1(R) with the minimum compact support [—m, m] which approximates
a function f(r) with error O(h?™1).

We concentrate on either even or odd kernels consisting of piecewise polynomials of an arbitrary
degree on a uniform grid. This choice in turn avoids the global complications faced when considering
the general polynomial approximation and the Runge example [11]. We investigate interpolation
kernels in two extreme cases: (1) when the maximum amount of regularity is enforced first and



any remaining degrees of freedom are used to enforce as many moment conditions as possible; and
(2) when no regularity is enforced, only moment conditions. In the latter case, the kernels may
be discontinuous at the grid points. Both cases are important. In a typical interpolation problem,
where the kernel simply provides the weights for the approximation, the regularity of Aj is not
a concern and one can achieve a given accuracy with a more compact kernel than if regularity is
required. On the other hand, the interpolation is often one step within a larger problem for which
a minimum regularity of the interpolation may be necessary.

In the current work, we discuss the tradeoff between accuracy and regularity for a given support
size and polynomial degree. We establish the moment preserving properties of the kernels and the
accuracy they achieve. We also perform numerical tests to verify the analytical results and work a
few examples to illustrate the main points.

2 Preliminaries

Definition 1. Let f : R — R. Given h > 0 let yi be the points on a uniform grid yx = kh. Define
the function (Lsf) :R - R for s=0,1,..., as

(L@ =5 Y Fwhnle —uh,
k=—o00
1

where A is the kernel for Ly and Ay, is defined by Ap(z) = hA (z/h).

Definition 2. For h > 0 and y;, = kh, the p™* discrete moment of Ap(x) is the function given by

o0

My(Ansz) = Y (z—ye)PAn(z — ye)h.
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We mention that since A has compact support, the sum over k only has a finite number of nonzero
terms at the grid points near z. For this reason we can think of z € [0, h) without loss of generality.
It is easy to see by making the substitution = zh with 0 < z < 1, that M,(Ap;z) = hPMp(A; 2).

The function (Lsf)(z) can be written in terms of the moments of A by assuming f € C™(R) and
substituting the Taylor series

n=l () T . (n) (¢
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into the definition of (Lgf)(x),

n=1 .(j) 0o . - o
(Lsf)(z) = % f Jj'(w) Z (yx — )Y Ap(z — yi)h + % Z fT(‘Ck)(ylc ) Az — )b
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The last equation shows that in order for (L, f)(x) to approximate f(*)(z), the kernel must satisfy
M;(A;z) = (—1)° sl 655 for j=0,1,...,5,...,m<n—1

and the approximation will have an error O(h™*+1~%). Here 0,5 is the Kronecker delta. For example,
to interpolate f between grid points (i.e. s = 0), one should choose A so that M;(A;z) = d; for
7j=0,1,--- ,m <n—1. Then

(Lof) (@) = f(z) + O(R™).
Similarly, to approximate f’(z) with (L, f)(z), one should choose A such that M;(A;z) = —4;,; for
7=0,1,2--- ., m<n—1toget

(L1f)(z) = f'(z) + O(R™).
In this way the kernel A determines the properties of the operator. Throughout this paper, we

will refer to A as an interpolation kernel in the specific case s = 0, otherwise we will call it an
approximation kernel.

The Particle Strength Exchange (PSE) method [12, 7, 9] was developed for advection-diffusion
equations so that the kernel (in one dimension) is designed to approximate second derivatives,
satisfying M;(A;z) = 269 for j =0,1,--- ,m < n — 1. The only difference is that the PSE kernels
satisfy continuous moment conditions written in terms of integrals rather than discrete moments.

We conclude this section with a counting argument for an upper bound on the number of conditions
required for an interpolation kernel of order m 4+ 1. We assume that the kernel Ap is piecewise
polynomial of degree £. From the previous arguments, this requires M,(Ap;z) = 0 for 0 < p < m.
By Definition 2, M, (Ap; z) is a polynomial of degree (p+¢), and thus its (p+£+1) coeflicients must
be set to the appropriate values. To do this for 0 < p < m would require (£+1)(m+1)+ 3m(m+1)
conditions.

However, this number overestimates the number of independent constraints. We can see this by
considering
Np(A;2) =D KPA(z — k)
kEZ

which is motivated by the fact that we would like (Lo f)(z) = f(z) when f(z) = 2P and 0 < p < m.
The reason for this is that any smooth function can be expanded in a Taylor series and a kernel of
order m+1 would have to be exact for all polynomials of degree m or less. The following proposition
shows that there is a one-to-one correspondence between Nj,(A;z) and M,(A;2). In other words,
requiring Mp(A;z) = dp is equivalent to requiring Np(A;2) = 2P, but Np(A;z) is a polynomial
of degree ¢ so that a piecewise polynomial kernel of order m + 1 requires at most (£ + 1)(m + 1)
conditions.

Proposition 1. Let p > 0 and 0 < z < 1. Define
No(A;2) = ZA(Z —k) and Np(Ajz) = kaA(z — k) forp> 1.
ke kEZ
Then My(A; z) and Ny(A; z) satisfy the relations,

Mz = 3 (?)<—1>ij<A;z>zp-j

i=o M

Ny(A;z) = f:(?)(—anj(A;z)zp—j.

i=o M



Proof. To simplify the notation in the proof we write M, and N, for M, (A; z) and N,(A; z). Clearly,
My = Ny. The first identity follows by expanding (z — k)P in the definition of M,. The second
identity follows from the first.
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Based on this proposition and the preceding arguments we conclude that (L, f)(z) approximates
£©)(z) with order of accuracy O(h™) if and only if

0 fe 0<p<
Np(A;z)z{ B ops oS (1)

2P for s<p<m+s.

(p—s)!

3 Piecewise Polynomial Kernels

We now turn our attention to a class of compactly supported piecewise polynomial kernels that
satisfy the moment conditions mentioned above. First we introduce some notation. Let Sf-‘c be the
set of all functions A : R — R such that supp(A) = [-R, R] and A is piecewise polynomial of degree
£ with nodes at the integers. That is, for k= —R,1—R,...,R—1and z € [k, k+ 1)

V4
A(z) = Pi(z) = Z ay;(z — k)j. (2)
7=0

Here, £ and R can be taken as independent parameters although one is usually interested in the
smallest possible value of R for a given £. A third parameter is the regularity r of the kernel. For
instance, we are interested in a kernel A € S% N C7(R) and we ask: What is the highest order of
the approximation that can be achieved with a given set of parameters?

In [26], Becerra Sagredo discusses kernels called Z-splines. The Z-spline Zg(z) is the unique kernel
in S%R_l N CE=1(R) which produces an O(h?%£~1) interpolation. These functions have a certain



balance between the degree of regularity and the order of accuracy. In the next subsections we
consider two extreme cases. First, given £, we consider piecewise polynomial kernels of degree £
that are as smooth as possible (i.e. A € C*"1(R)). We show that the maximum order of accuracy
is O(ht*1) and the support of the kernel must satisfy R > 2|£/2] + 1. For a given degree £, these
functions are nearly twice as smooth as the Z-splines and slightly more accurate, but their support
is almost twice as large.

Next, we take up questions at the other extreme: Given a radius of support R, what is the maximum
order of accuracy that can be achieved? What is the smallest degree of the resulting kernels? How
smooth are they? We show that even though no continuity conditions are imposed, the kernel (with
smallest degree) is in S%*~' N C°(R), and provides an O(h?) interpolation. These kernels have
very similar properties as the Z-splines although the extra order of accuracy comes at the expense
of R — 1 degrees of regularity.

3.1 Smooth Kernels

We consider those even kernels A € Sﬁ which are as smooth as possible. If we require more than
£—1 degrees of regularity, then the polynomial at the edge of the support of A must be zero in order
for it to smoothly join zero at the edge of the support. The same argument shows that the next
polynomial piece must also be identically zero, and so on. Thus, given £, we require A € C'Zfl(]R).

The polynomial coefficients will be determined by imposing regularity, symmetry, and moment
conditions. Since A is assumed to be an even function, there are only R different polynomials of
degree £ that must be determined. This results in R(£ + 1) coefficients. Requiring A € C*~'(R)
represents £ conditions at the nodes ¢ = 1,2, ..., R for a total of R¢ conditions. Additionally, since
A(z) is even and C*~1(R), we conclude that the coefficients of all odd powers of z in Py(z) which
are less than £ must be zero. There are |£/2| of them. Thus, regularity and symmetry account for a
total of R£+ |£/2] conditions, leaving R— [£/2] degrees of freedom that are used to satisfy moment
conditions. This argument also shows that there is a minimum support necessary for high-order
approximations.

The next step is to investigate how many conditions are required to satisfy My(A;z) = 1 and
M, (A;z) = 0 for as many p > 0 as possible. We start with an example.

Consider the well-known hat function

Al(x):{l_m for |z| <1

0 for |z| >1

which belongs to S1 N C°(R). In this case the requirement My(Ai;z) = 1 is a single condition
which, together with the continuity condition at = 1, is enough to determine the two coefficients.
Surprisingly, it turns out that for this function M;(A;;2) = 0 automatically while My(Aq;2) =
z(1 — z) # 0 so that this kernel provides a second order interpolation formula. It is natural to
consider a piecewise linear kernel with R > 1 so that the additional coefficients may provide the
degrees of freedom to satisfy higher discrete moments. However, this is not possible because one
discovers that My(A1;z) = z(1 — z) + Cg regardless of R.

We investigated empirically kernels in % N C*~1(R) for £ = 1,...,8 and summarized the findings
in Table 1. The row labeled M gives the number of conditions needed to enforce My(A;z) = 1.
Notice that it takes only one condition to do it regardless of the value of £. The other rows show the
additional number of conditions required to set those moments to zero once My(A;x) has been set



to 1. The odd moments are automatically zero from the previous requirements so they represent
no additional conditions. A line in a cell indicates that the corresponding moment cannot be set
to zero regardless of the choice of R because it contains nontrivial polynomial terms. For the cases
shown in the table, one can enforce Mp(A;z) = d,0 for 0 < p < £ as long as R is large enough. The
minimum value of R (a smallest support of A) for which A € $4NC*"1(R) results in an interpolant
of order £+ 1is R=2|¢/2| + 1.

Smooth Even Kernels

¢

12]3[4][5]6]7]3
My 1J1J1]1]1]1]1]1
MiJoJoJoJoJo]o]o]o
My |—|1]1[1]1]1]1]1
M; —JoJoJoJofo]o
M, —[1J1]1]1]1
M; —JoJoJo]o
Mg — 111
M —J0]o0
Mg — |1
My —

Table 1: The row labeled M, gives the number of conditions needed to enforce My(A;x) = 1. The other
rows show the additional number of conditions required to set those moments to zero once Mo(A;z) has
been set to 1.

We prove the pattern in the table by performing the count of the number of independent conditions.
We calculate the coefficients of Nj(A;z) for p = 0,...,¢ and show that, because of the regularity
and symmetry of the kernel, exactly [£/2] + 1 of those coefficients are independent of one another.

It is convenient to express regularity at the nodes in terms of the coefficients of the constituent
polynomials as defined in Eq. (2). The regularity conditions are Pk(s)(k +1) = P,gj_)l (k+1) for
0<k<R—-1and 0<s</—1. In terms of the coeflicients we have

e .
Z (Z) Ak,j = Qkt1,s- 3)
j=s

The following Lemma, will help us prove subsequent results.

Lemma 1. Let A € sz be defined for x € [k,k + 1) as

l
A(z) = Po(z) = 3 apn (2 — k)"
n=0

Then, for m < £, the conditions Np(A;z) = 2P for z = 0,1,...,m are equivalent to the matriz
product VA being equal to the first m + 1 rows of the (£ + 1) x (£ + 1) identity matriz. Here, V is
an (m+ 1) x 2R matriz of Vandermonde type given by

_ (.7 _R)i_l fO’I" (Za]) 7é (17R)
Vii ‘{ 1 for (i, j) =



and A is the matriz of coefficients of size 2R x (£ + 1) given by
Ajk = ar_jr-1-
Proof. Let 0 < z < 1, then for p =0,1,...,m we have

R R R
Ny(A;2) = Z kPA(z — k) = Z KPP_(z — k) = Z ( Z kP a_k,n> P
=1— k

k=1-R k R n=0 =1-R

which can be written as the matrix product

AR-10 GR-11 “*° GR-1¢ 1
((1 —RP? (2—RP ... 0P 17 ... Rp) asz’O aRTm o aRTM z
a_R,0 a—.R,1 a_Ry o
This is precisely the (p + 1)* row of VA multiplied by the vector z = (1,z,22,...,29T. O

We are now ready to state the theorem that shows that the pattern observed in Table 1 holds for
all £.

Theorem 1. Fiz £> 1. If A € S§ N C*"YR) is an even function, then

1. My =1 represents 1 condition.
2. The number of additional conditions for My(A;z) =0 fork=1,...,¢ is

0 if k is odd
1 if k is even

3. Mei1(A;z) #0.

4. The minimum support for O(h**1) interpolation is R = 2|£/2| + 1 and there is a unique
kernel with this support.

Proof. The strategy for the proof is to determine the implications of the regularity and symmetry
of A on the matrix of coefficients A and use Lemma, 1.

Regularity: Since A(z) € C*"}(R), we have that

P,58>(k+1) =P,§i)1(k+1) for s=0,1,...,4—1

for all k. For convenience we will use the fact that all coefficients of Pg(x) and P_g_1(z) are
zero since they lie outside the support of the kernel. In terms of the polynomial coefficients, the
regularity conditions are

V4 .
Z(z>ak,z~=ak+1,s for 0<s<f¢{—-1 and —-R-1<k<R-1. (4)
s

1=S$

In particular, the case k = —R — 1 implies that a_g,2 =0 for i =0,1,...,¢—1 so that the leftmost
polynomial is P_g(z) = a_g¢(z + R)*.



Symmetry: For an even kernel A(xz), we require that A(—z) = A(z). That is, for z € (k,k + 1),
Py(z) = P_g_1(—z) which is

12 14
dakn @ =R = Y apin[1- (5 k)"
n=0 n=0
14 0 .
= > D o=yn (])a—k—l,j (z — k)™
; n
n=0 |j=n
Since this equation must hold for all z € (k,k + 1), we have that

£ .
akn = (—1)" Z (i)a_k_l,j for 0<n</¢ and —-R<kE<R-1. (5)
j=n

Substituting ¢ = —k — 1 in Eq. (4) and combining with Eq. (5) we conclude that

ain=(-1)"a_, for 0<n<¢—-1 and 0<i<R. (6)

If we define for n =0,1,...,£and m > 1

R R
m
By = Z an and By, = E K" a_gn
k=1—-R k=1-R

then proving VA = 7 reduces to showing that By, , = 0,,,, for 0 < m,n < £. Notice, in particular,
that Eq. (6) shows that Byji10=0for j =0,1,....

Taking Eq. (4) and summing over k we get that

L
n
2 (3>Bo’n =0 (7)
n=s+1
12 n m—1 m
> (e = X ()5 ®)
n=s+1 7=0 J
for0<s</—1and1<m<H/.
Eq. (7) for 0 < s < £ —1 is a homogeneous invertible triangular system for By 1, By, ..., Boe

so that By = 0 for £k = 1,2,...,£. Note that Byp is not determined. Since the condition
Mo(A;2) = No(A;z) = 1 is equivalent to By = 0ok (the first row of the identity matrix), then
My(A; z) =1 is achieved by the single condition By o = 1. This proves part 1.

We proceed by induction. Assume m < £ and B, = d;, for 0 <7 <m —1and 0 < s < /. Then

Eqg. (8) is
t /n m 1 (M) for 0<s<m-—1
Z Bm"n’ = Z ' 5j15 =
n=st1 \° j=0 \J 0 for m<s</-1.
Therefore, the variables B, ;, for k = m + 1,m + 2,..., ¢ satisfy the same invertible homogeneous

system and thus By, =0 for k =m+1,m +2,...,£. Then Eq. (8) reduces to

Z (n>Bm,n:<m> for 0<s<m-—1.
8 8

n=s+1



Using back substitution, when s = m — 1 we have that By, ,, = 1, which further reduces Eq. (8) to

m—1

3 (")Bm,nzo for 0<s<m-~—2.
n=s+1 8
This invertible homogeneous system results in By, = 0 for £k = 1,2,...,m — 1. Thus, all entries

of the m-th row of the matrix VA, except By, , are determined and agree with the m-th row of
the identity matrix. Since By, o = 0 for m odd, the odd moments are satisfied without additional
constraints. Each even moment, m = 2j (j > 1), requires the single condition By;o = 0. This
argument holds for 1 < m < £. This proves part 2.

To see that My ;(A;z) # 0 we check that Ny, 1(A;z) # 2¢t!. This is easy to see since Ny, 1(A;2)
is a polynomial of degree £.

Finally, as mentioned earlier, there are R — [£/2] degrees of freedom left after imposing regularity
and symmetry (evenness). Since the degrees of freedom are used to set Byjg = 0 for j =
0,1,...,[4/2], we must have R > 2|¢/2| + 1. For R = 2|¢/2| + 1, uniqueness follows from the
unique solution for the By, ,’s. O

As a result of this theorem, we conclude that given £ > 0 and R = 2|¢/2]| + 1, there exists a
unique kernel in S4 N C*~(R) which interpolates to O(h**!). There are more kernels in S% for
R > 2[£/2] + 1 but they are supported over larger intervals without any gain of accuracy. For
£ =1, the unique smooth kernel is simply the hat function. The unique smooth kernels, A;™, for
£ = 2,3, and 4 are displayed below (the even extension is implied) and their plots are shown in
Figure 1.

( $(5—32?%) for 0<z<1
£(23—-262+72%) for 1<z <2
Ag(a) =< ,
(3 — 1) for 2<z<3
[ 0 for 3<z
( (15 —272% + 14 23) for 0<z<1
(69— 117z + 6322 —1123) for 1<z <2
A (@) =
35 (— 3+x)? for 2<z<3
L 0 for 3<z
[ 355(2311 — 183022 + 3552%) for 0<z<1
T (671 + 1938 7 — 382222 + 1938 2% — 307 z*) for 1<z<2
755 (8159 — 13038 2 + 741022 — 1806 23 + 161 z*) for 2<z<3
A (2) = 9
sor5 (—30787 + 324122 — 1264222 + 217223 — 1392*) for 3 <z <4
a5 (— 5+ z)* for 4<z<5
| 0 for 5 <z

10



1 1 2 3
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0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
0 0
025 0 5 02 0 5
m m 4
A"OS] A"O s}
1 1
0.8 0.8
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0 0
025 0 5 02 0 5

Figure 1: Examples of smooth even kernels.
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3.2 Narrow Kernels

We now consider designing kernels in S}'ﬂz without imposing any regularity conditions. Instead,
we use all degrees of freedom to satisfy as many moment conditions as possible. This will result
in a highly accurate interpolation kernel with relatively small support. The correct way to pose
the relevant questions is to fix the size of the support R and ask what is the maximum number
of moment conditions that can be satisfied as well as the minimum polynomial degree that can
accomplish it.

Theorem 2. Fiz R > 1. The mazimum order of accuracy which can be obtained from any in-

terpolation kernel in any of the spaces sz 1§ 2R. That order is obtained by a unique, even kernel
A e SF I nC(R).

Proof. A piecewise polynomial kernel that interpolates a smooth function with O(h?) accuracy
must satisfy Np(A;z) = 2P for p=0,...,¢ — 1. From Lemma 1, we know this is equivalent to VA
being equal to the first ¢ rows of the identity matrix Z of size £ + 1. The Vandermonde matrix V
is ¢ X 2R, the coefficient matrix A is 2R X (£ + 1) and both are defined in the Lemma.

If ¢ = 2R, the Vandermonde matrix V is square and invertible; therefore, all coefficients in A are
uniquely determined and the interpolation has order of accuracy 2R. Notice that if £ > 2R, the
columns of A numbered 2R + 1 through £+ 1 must be zero since they equal V™! times the first 2R
rows of the identity matrix of size £ 4+ 1. Since A contains the polynomial coefficients, this implies
that the maximum polynomial degree is 2R — 1. If £ = 2R — 1, the unique solution for A contains
at least one polynomial of degree 2R — 1. Thus A € S%R_l. If ¢ > 2R + 1, then by considering the
first 2R equations and the argument above, we see that P, has degree at most 2R — 1 for each k,
so Ng—1(A;z) cannot equal 297!, Therefore the maximum possible order of accuracy is ¢ = 2R.

It remains to show that A(z) € S3*! of order O(h?®) is continuous and even. In this case, VA = Z,
so that A=V 1.
Letzj=j—R,forj=1,...,2R. ThenV;; = $;-_1. A simple observation (see [15] §4.6) shows that
the inverse of V is given in terms the coefficients of a polynomial interpolation problem. Specifically,
let L; be the Lagrange polynomial
r—x
Li(z) = H :

T; — Tk
ki % k

Then, for 1 <4,k < 2R, Li(z;) = 0; ;. Define the matrix C by

2R
Li(z) = ZCZ-,” z" L
n=1
Then the identity L;(z;) = d; ; means exactly VC = Z, since
2R 2R
6ij = Li(z;) =Y Cinaj ' =Y CinVn,-
n=1 n=1

Thus, Cz',j = aR—4,j—1, and
2R-1

Li(z) = Z aR—in T". 9)
n=0
The symmetry and continuity of A follow from two properties of the Lagrange polynomials:

12



1. Li(1) = Lyr(0) = 0 and L;(1) = L;_1(0), for i = 2, ..., 2R,
2. Li(z) =L;(1—z),ifi+j=2R+1.

The first property can be seen by noting that zgy1 = 1, zg = 0, and Li(zr+1) = Lor(zr) = 0.
Also, for 2 < i < 2R,

Li(zr+1) = 0iry1 = 0i 1, = Li 1(TR).
The last equation and Eq. (9) imply that

2R—1 2R—1
E GR—1,n = G_R0 = 0, and E GR—i;n = AR4+1—4,05 for 7= 2, ...,QR.
n=0 n=0

These identities mean exactly A € CO(R).

The second property follows from a substitution in the product which defines L;. Let j = 2R+1—1
and m=2R+1—k.

T — Ty r+R—-k
Lw=115—= = 11—

k#i k#i

N i+m—2R—1
m#2R+1—i

B Hl—x+R—m
A

_ Hl—x—avm
mgj 1T Tm

= Lj(l-x)

Take 1 < 4 < R, and j = 2R + 1 — ¢. Differentiating d times and evaluating at z = 0 gives
= (-1)4L{?(1). That is, for 1 <i < R,

2R-1
ap—ia = (—1)* Z (d) @R—jyn-

n=d

Using j = 2R + 1 — 4, we find that the last equation reduces to

2R—1 ..
apa= (-1 (d)a’“‘l’”
n=d
for 1 < k < R. But, this last identity means exactly P_g(z — k) = Py_1(k —z), for 1 < k < R.
Therefore, A is even.

O

One can check that the first derivative of these kernels is discontinuous, so that they do not have
more regularity than continuity. We note that the last part of the proof shows not only that A is
continuous but that it is zero at each nonzero integer. This implies that the polynomials in A are
easily factored as shown in the examples below (the even extension is implied). Figure 2 shows the
plots of these functions. The hat function is also a narrow kernel in the sense discussed here. The
hat function and AZ%"(z) have been analyzed in [29].
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ll+2)(1-2z)2-2) for 0<z<1
AT (z) =< F(l-=z)(2—-2)(3—2) for 1<z<2
L 0 for 2<z
(( L2+ +a)(1-2)2-2)B3-2) for 0<z<1
Anarr( ) ) 21_4(1+$)(1_"E)(2_-'E)(3_37)(4—37) for 1<z<?2
3 T) =
1%_0(1_x)(2_$)(3—37)(4—$)(5—:1:) for 2<z<3
( 0 for 3<z
(( B+ +2)(1+2)(1-2)2-2)3-2)d-2) for 0<z<1
s+ o)1 +z)(1-2)2-2)3—-z)4-2)(5—-2) for 1<z<2
ARV () = < 7;—0(14—3:)(1—:C)(2—:1:)(3—x)(4—:v)(5—:v)((i—ac) for 2<z<3
de(l-2)2-2)B-2)d—2)(6-2)(6—2)(T—12) for 3<z<4
L 0 for 4<z
narr 1 narr 3
Al DSl /\2 Oos
1 1
0.8 08
0.6 06
0.4 0.4
0.2 0.2
0 0
0.2 -0.2
~4 -2 0 2 4 4 > 0 5
narr 5 narr
/\3 DS3 /\4 0s
1 1
08 08
06 0.6
04 0.4
02 0.2
0 0
02 -0.2
-4 -2 0 2 4 Z4 2 0 5

Note that the narrow kernels have a form that can be written in a compact way. Given R, then for

Figure 2: Examples of narrow even kernels.
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k=0,1,...,R —1 we have that A" (z) = Py(x) for = € [k, k + 1), where

k+R
5

A@=- [ ~@-n.

We conclude this section with a summary in Table 2 of the two types of kernels. We emphasize
that for a given polynomial degree and order of accuracy, there is a tradeoff between the regularity
and the size of the support of the kernels.

smooth kernels narrow kernels
Given 4: Given R:
R=2[¢/2] +1, O(h*t"), C*"Y(R) | £ = 2R — 1, O(h*F), C°(R)

£=1, R=1, O(h?), C°(R) ¢=1, R=1, O(h?), C'(R)
=2, R=3, O(h3), CY{(
¢=3, R=3, O(h'), C*(R) ¢=3, R=2, O(h?), C°(R)
(h°), C*(
(h*), CX(

t=4, R=15, O(k®), C°
¢=5 R=15, O(h%), C*

R) ¢=5, R=3, O(h%), C'(R)

Table 2: Summary and a few examples of the two classes of unique kernels.

4 Comments about the errors

For a smooth function f(z), the leading error term in the interpolation (L f)(z) of order n is

(—1)" A" %f(")(m) M,y (A; ).

Sometimes this error displays oscillations in a scale comparable to the grid size h. It can be seen
that for 0 < < h, we may assume that f(")(z) is slowly varying and so the character of the
error comes from M, (A; z) which is the first nonvanishing moment of the kernel A. For the smooth
kernels discussed in Section 3.1, these are

L=1: My(Ajz)=—z(z—1)

L=2:  M;s(A; )—m(:c—l/2)(m—1)

0=3: MyAz) = —z%(z —1)?

L=4:  Ms(A; )—ac(:c—l/2)(ac—1)(ac —z—1/3).

Figure 3 shows the errors on a very fine scale resulting from the first example in Section 7. These
are typical in interpolation computations. The error in the top graph results from using the hat
function (£ = 1) and the error in the bottom graph results from using A3™(z) (¢ = 2). Notice that
they follow the pattern in the equations above. The period of the oscillations is h so that a plot
of the error on a fine scale will look noisy. In principle, one can use one degree of freedom in the
design of the kernel to set the leading error moment to a nonzero constant in order to remove the
oscillations. However, this would result in in fewer moment conditions being satisfied for a given
support R.
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«10° Error using the Hat function
0 T T

140 141 142 143 144 145

) Error using AS™
5 X 10 2
T

-8 ! ! ! !
140 141 142 143 144 145

grid node

Figure 3: Errors in a typical interpolation computation. The top graph shows the error from the hat
function (£ = 1) and the bottom graph shows the error from A$™(z) (¢ = 2).
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5 Dilations of kernels

In numerical applications, kernels of the type shown in Figures 1 and 2 are used as smooth ap-
proximations of a delta distribution to interpolate data from arbitrary points to the grid nodes.
The convergence properties of such methods typically depend on the relative size of the grid to the
radius of the support of the kernel, so that convergence may be achieved as the grid size and the
support of the kernel approach zero at different rates [16, 10, 7, 12, 17]. So far, we have designed
our kernels so that the size of their support, R, is proportional to h. However, it may be important
to relax this condition for the reasons mentioned above.

In this section we show that a kernel with support [—R, R] can be scaled to have support [-nR, nR]
for any positive integer n. This provides some flexibility for reducing the support of the kernel and
the grid size at different rates, although the support must always remain a multiple of R and cannot
be scaled independently of h (see also [28]).

Proposition 2. Given A with support [—R, R], assume that (L, f)(z) approzimates f*)(x) so that
My(A;z) = (—1)° sl §p 5 forp=0,1,...,q with 0 < s < q. Define the scaled dilation of A by

¥ = i (1)

for some positive integer n. Let 0 < z < 1, then
My(®;z) = Mp(A;z)  for p=0,1,...,q.

Proof. Note that ® has support [-nR,nR] on the same grid of size 1. For p =0, 1,...,q, we have

R
My(®;z) = i: (z —m)P &(x —m)
m=1-nR
 pese1 oz mye A(E_™
=t Y GR) Gen)

Notice that 0 < z/n < 1/n so that the points z; = z/n+j/n satisfy 0 < z; < 1for j =0,1,...,n—1,
therefore we can break up the sum into

My(®;z) = nP 5! Z Z — k)Y Az — k)

k=1—R j=0

n—1
= pP st Z M, (A; z5)
=0

= nP7%(—=1)° sl 0ps

= My(A;x) for p=0,1,...,q.
]

The preceding result shows that the regularity and moment conditions satisfied by the kernel A
are also satisfied by ®. They both have the same polynomial pieces (scaled by n) except that the
support of ® is larger than that of A by a factor of n.
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Perhaps the most common example of this type of scaling is the hat function, H(z), and the
wide-hat function, W(z) with n = 2:

[ 1—-|z| for |z|<1 [ 1@2—|z|) for |z|<2
Hiw) = { 0 for |z| > 1, Wiz) = 0 for |z| > 2.

6 Differentiation of Interpolation Kernels

In this section, we discuss properties of derivatives of the piecewise polynomial kernels in the
previous sections. Since each polynomial Py (z) is defined for = € [k, k + 1), the kernels are right-
differentiable infinitely many times. Therefore, we use the notation
d A —A
4 \(2) = M(z) = Tim 2EF)=AE)

dzt e—0+ €

An important recurrence can be found by differentiation of the moments of a kernel.
d
K
= > N(z—k)
k

= My(Asz)

My(Asz) =

and forn >1

IS
ISH

My(Asz) = —— [Z(m — k)"A(z — k)
k

= Zn(w — k)”_lA(a: —k)+(z—k)"N(z - k)
k

= nM,_1(A;z) + M, (N'; ).
Solving for M, (A’; z) we get the recursion
Moy(A'sz) = Mg(A;z) (10)
M,(N;z) = M) (A;z) —nM,_1(A;z) forn > 1. (11)

Now consider a kernel A which interpolates to O(hP*!). Then
Mp(Asz) =6opn for0<n<p and My (A;z) =g(z)#0.
By using the recursion in Eq. (10)—(11), we find that
M,(AN;z)=—61, for0<n<p and M, 1(N;z) =g (z)—pdoy—1 #0.

Thus, A’ is a kernel that can be used to approximate f'(z). In general, the approximation is O(h?),
although it improves to O(hP*1) when ¢'(z) = pdyp_1 but this is not usually the case as discussed
in Section 4. The recursion in Eq. (10)—(11) can be used for higher derivatives of the kernel, leading
to the following result.

Lemma 2. Let A € Sé and N be the right-differentiation of A(z). If the kernel A approzimates the
d™ derivative of smooth functions with order of accuracy O(hP), then A' approzimates the (d+ 1)
derivative to at least O(RP™1).
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6.1 Smooth kernels for approximating f'(z)

One may use the previous lemma to construct kernels. For example, to approximate the d-th
derivative of some function with order of accuracy p, we could construct an order (p+d) interpolation
kernel and then differentiate it d times. However, this process does not always lead to kernels with
the smallest support possible because differentiating the kernel lowers the degree and the accuracy
but does not decrease the support.

An alternative to differentiating smooth interpolation kernels to derive kernels for approximating
f'(z) is to design them with the desired properties from the start. We let A(z) be an odd piecewise
polynomial kernel of degree £, enforce the regularity conditions in Eq. (3) and set M;(A;z) = —d;1
for j = 0,1,...,m. This results in an O(h™) approximation of f'(z).

Table 3 summarizes the findings for polynomials of degree £ = 1,...,8. The row labeled M| gives
the number of conditions needed to enforce My(A;x) = 0. Notice that this is automatically satisfied
due to regularity and symmetry. The other rows show the number of conditions required to set
those moments to their corresponding value. The line in a cell indicates that the corresponding
moment cannot be set to zero, regardless of the size of the support R. In all cases, the resulting
unique kernel is in $% N C*1(R) and the minimum support is R = £ + 1.

Smooth Odd Kernels

[

1]2]3]4][5]6][7]3
My [oJoJoJoJoJoJoJo
M [T]1]1]1]1]1]1]1
My [0oJoJoJoJoJo]o]O
M 111 [1[1]1]1
M, —JoJoJo]o]o0]oO
Ms — |11 ]1]1]1
Mg —JoJolo]o
My —[1]1]1
Mg —Jo0]o
My — |1
Mg —

Table 3: The row labeled My gives the number of conditions needed to enforce My(A;z) = 0. The other
rows show the number of conditions required to set those moments to their corresponding value.

Notice that the table demonstrates that some, but not all, of these kernels are the derivative of
one of the smooth interpolation kernels discussed earlier. Suppose @ is an interpolation kernel in
Sg’l N C*(R) and therefore has support R = 2[5! | + 1 and order of accuracy O(h?*2). Then we
know that @’ is an approximation kernel (for f') in $% N C* 1(R) with order of accuracy O(h**1).
If 7 is odd, then R = 2|_£+le + 1 = £ + 2 which is larger than the support of the kernels in
Table 3. Therefore ® is not one with minimum support. On the other hand, if £ is even, then
R= 2|_£+le +1=/+1 and ® must be one of the kernels in Table 3.

Theorem 3. Fiz £ > 1. If A € Sf% N C* 1R is an odd function, then

1. My =1 represents 0 conditions.
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2. The number of additional conditions for My(A;z) =0 fork=1,...,£+ 1 is

1 if k is odd
0 if k is even

3. Myio(A;z) # 0.

4. The minimum support for O(h”l) approzimation is R = £+ 1 and there is a unique kernel
with this support.

Proof. The proof is very similar to the proof of theorem 1 so we do not present all the details.
The regularity arguments are as in theorem 1 so Eq. (4) holds. The symmetry condition for odd
functions is A(—z) = —A(z). This results in

£ .
agn = (—1)" Z (i)a_k_l,j for 0<n<¥¢ and —-R<E<R-1. (12)
j=n

Substituting ¢ = —k — 1 in Eq. (4) and combining with Eq. (12) we conclude that

ain=(-1)""a_;, for 0<n<f-1 and 0<i<R (13)

In the case of an odd kernel to approximate f'(z), the required conditions are that

1 0
l i z 1
VA = — =
: dz Vi 01
A z Lz
Pt (€+ 1)z£

which are equivalent to By = 0 and By, = m dgpm—1 for 0 <k </Zand 1 <m < £+ 1 (see
Eq. (1)).

We note in this case that Eq. (13) shows that Byjo = 0 for j = 0,1,.... As in theorem 1, Eq. (7)
for 0 < s < £ —1 is an invertible triangular system for the variables By 1, Boyz,..., B so that
By =0for k=1,2,...,¢. By is already known to be zero. This proves part 1.

By induction, we assume 1 <m </{+1and Bj ;=7 d5j1for0<j<m—1and 0<s </ Then
Eq. (8) is

> (%)

n=s+1

= (m (5T1)(3+1) for 0<s<m-—2
> ( .)j §sj1 =
i=o N

0 for m—-1<s</-—1.
Therefore, By, , = 0 for k =m,m +1,...,£. Then Eq. (8) reduces to

m—1
n m m—1
B = 1) = fi <s<m-—2.
Z (s) m.n (s_l_l)(s—l—) m( . > or 0<s<m

n=s+1

When s = m — 2, we get that By, ,,—1 = m. The rest of the variables satisfy B,,; = 0 for
k=1,2,...,m — 2. Since By, o = 0 for m even, the even moments are satisfied without additional
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constraints. Each odd moment, m = 2j +1 (j > 0), requires the single condition By;19 = 0. The
argument holds for 1 < m < £+ 1. This proves part 2.

Since Nyi2(A;2) is a polynomial of degree £, it cannot equal (£ 4 2)z¢+1; so My o(A; 2) # 0.

The symmetry condition for an odd function implies that the coefficients of the even powers of x
in Py(x) must be zero. There are L“’le of them. Therefore, there are R — L%J degrees of freedom
available to satisfy |£/2| + 1 moment conditions; that is, R > £+ 1. Uniqueness for R = ¢+ 1
follows. O

The theorem indicates that given £, the maximum order of accuracy that can be attained is O(ht*+1)
and that the minimum support to attain it is R = £+ 1. Moreover, there is a unique kernel that
has this minimum support. The kernels corresponding to £ = 1,2, 3, and 4 are displayed below (the
odd extension is implied).

( —%x for 0<z<1
A¢¥(z) =< L(z—2) for 1<z<2
| 0 for 2<zx
( 3z(Tz - 9) for 0<z<1
(-39 +42z — 112?) for 1<z <2
A% () = 4 . )
5(z —3) for 2<z<3
L 0 for 3<z
( %z(112% — 30) for 0<z<1
(29 — 1172 + 8722 — 1823)  for 1<z <2
A% (z) = 2=(—179 + 195z — 6922 + 82%) for 2<z <3
— 3z —4)3 for 3<z<4
L 0 for 4<z
[ 55552 (—6100 + 710022 — 3069z3) for 0<z<1
55 (4845 — 25480z + 29070z — 1228023 + 1776z%) for 1<z <2
Agti(a) — 5 (—32595 + 49400z — 2709022 + 6440z% — 564z) for 2<z <3
=5 (40515 — 42140z + 16290z% — 278023 + 177z*)  for 3 <z <4
— =23 (z — 5)* for 4<z<5
{ 0 for 5<z

These kernels are shown in Figure 4. Notice that A$%(z) is the derivative of A§™(z) in Section 3.1.
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0
-0.5
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Figure 4: Examples of smooth odd kernels.



6.2 Narrow kernels for approximating f'(x)

The previous section shows that although all derivatives of smooth interpolation kernels satisfy the
moment conditions for kernels that approximate the first derivative of smooth functions, the A’
may not have the smallest support for the given properties. For narrow kernels, the situation is
different. It turns out that for a given support radius R, the highest accuracy for approximating
the first derivative of smooth functions is achieved by the derivative of the corresponding narrow
interpolation kernel.

Theorem 4. Fiz R > 1. The mazimum order of accuracy which can be obtained from any approz-
imation kernel for the derivative of a smooth function in any of the spaces Sf{z is 2R—1. That order
s obtained by a unique A € S122R_2 which is the derivative of the corresponding narrow interpolation
kernel.

Proof. A piecewise polynomial kernel that approximates the first derivative of a smooth function
with O(h97!) accuracy must satisfy N,(A;z) = p 2zP~! for p=0,...,q — 1. This is equivalent to

(0 0 0
0 10 0
1 ] 0 2 0 1 1
z .. z z
V'A' . = : == . . T. 0 :j
: -1 00 -+ £+4+1
A Lz , T A A
(t+1)z Do :
00 --- 0

where V is a ¢ x 2R matrix of Vandermonde type, A is the coefficient matrix of size 2R x (£ + 1)
and J is ¢ X (£+ 1). The matrices V and A are defined in Lemma 1.

If ¢ = 2R, the Vandermonde matrix V is square and invertible; therefore, all coefficients in A are
uniquely determined and the interpolation has order of accuracy 2R — 1. Notice that if £+ 1 > 2R,
then the only the first 2R — 1 columns of J contain nonzero elements. Therefore, the columns of
A numbered 2R through / + 1 are zero and so the maximum polynomial degree is 2R — 2. When
£ = 2R — 2, the unique solution for A contains at least one polynomial of degree 2R — 2. Thus
A€ S%zR_Q. If ¢ > 2R + 1, then by considering the first 2R equations and the argument above, we
see that P; has degree at most 2R — 2 for each k, so N,_1(A;z) cannot equal (g — 1)z92.

We note that if a narrow interpolation kernel A € S?%R*l has order of accuracy 2R, then by Lemma, 2,
A’ will have order of accuracy 2R — 1 and will belong to S%R_Z. O

The derivative of narrow kernels is discontinuous at the grid nodes. Using the derivative of a narrow
kernel in the definition of (L, f)(z) results in a discontinuous approximation of f'(z). However, if
this kernel is order O(h?), the discontinuity in the approximation (L; f)(z) must be of the same
order. In other words, the discontinuity is of the order of the error in the approximation; therefore,
in theory these kernels are perfectly acceptable. In practice, however, there is a disadvantage
when using discontinuous kernels that becomes apparent when approximating f'(z) at a grid node.
In that case, we must compute ), fxAp(—kh)h which requires evaluating the kernel exactly at
the location of the discontinuities. Although Aj is defined properly at those points, the slightest
bit of roundoff error can cause the evaluation of the kernel on the wrong side of the discontinuity,
resulting in the wrong weights. The performance of these kernels will be illustrated in the numerical
examples.
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Narrow kernels have a curious property. Although their right derivative is discontinuous, the second
right derivative is continuous. In fact, we have observed that the odd (nontrivial) right derivatives
are discontinuous while the even right derivatives are continuous. Below are examples of two narrow
kernels which come from right-differentiating narrow kernels in Section 3.2. Their graphs are shown

in Figure 5.
( (-1 — 4z + 322) for 0<z<l1
L ABaT(z) = ¢ A(—11+127 —322) for 1<z <2
{ 0 for 2<z
( %(—4—30x+15x2+12$3—5$4) for 0<z<1
2 (—26 — 30z + 7522 — 362 + 521) for 1<z<2
T AR () =
‘ 135 (—274 + 4502 — 25522 + 6023 — ba?) for 2 <z <3
L 0 for 3<z
d/idx” [AD2"(x)] d/dx” [AZ(x)]
1.5 1.5

1 “ 1
0.5 0.5 /X
00—9O / /@ *— 0 —p &
-0.5 -0.5

T | T

-1.5 -15
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

Figure 5: Examples of righ-derivatives of narrow kernels.

7 Numerical examples

7.1 Interpolation in one dimension

Consider the values of f(z) = sin(27z) given on a uniform grid y; = jh with h = 1/n. We seek to
approximate the value of f at the points z; = 0.44 + k/(20v/2) for k = 0-34. The purpose of this
example is to test the performance of various kernels in a particular interpolation problem.

Given n and Ap, we compute (Lof)(zx) = 32, f(y;)An(zk — yj)h for k = 0-34 and we define the
error in this approximation as

En = max  [(Lof)(ze) = flak)]

We use the third-order kernel A5 (z) from Section 3.1 and display the results in Table 4(a). We also
show the ratio of consecutive errors so that the order of the approximation can be easily seen. A
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kernel of order m should result in an error ratio of 2™. Table 4(b) shows the results using the sixth-
order narrow kernel A% (z) from Section 3.2. Finally, we approximate f'(zy) using M%[Ag‘m"(x)]
and compare it with f'(z;) = 27 cos(2mwzy) using the error defined above. Note that the derivative
kernel is discontinuous at the grid nodes but we still expect the derivative to be O(h%) accurate
since A% (x) is O(h®). The results are shown in Table 4(c).

(a) (b) (c)
n E, ‘ En/EQn E, ‘ En/EQn E, ‘ En/EZn
20 || 6.07456e-04 13.16 4.52503e-06 64.20 2.94629e-04 33.11
40 || 4.61422e-05 10.40 7.04786e-08 64.03 8.89753e-06 31.28
80 || 4.43661e-06 8.89 1.10078e-09 61.46 2.84463e-07 30.84
160 || 4.98824e-07 8.22 1.79106e-11 65.82 9.22460e-09 25.74

320 || 6.06677e-08 2.72116e-13 3.58444e-10

Table 4: Results of the one-dimensional interpolation problem. Columns (a) show the error and error ratios
for interpolation using the smooth third-order kernel A§™(z). Columns (b) show similar results with the
sixth-order narrow kernel AZ*""(z). Columns (c) show the results for approximating the derivative of the
given function using the (discontinuous) first derivative of the narrow kernel from part (b).

7.2 Interpolation in two dimensions

We consider the function f(z,y) = 4e~(*+9?) In(z? 4+ 1) in the domain (z,y) € [0,2] x [0,2]. The
function values are computed at the nodes of a uniform square grid of size h = 2/n. The goal is to
interpolate the function on 100 points equally spaced along the circle of radius 1/6 centered at the
point (1,1). The maximum value of f(z,y) is about 1.

In two dimensions we use the product of two interpolation kernels, one in each coordinate direction

R R
(Loof)my) = D D fl@ryi)Male — zx)An(y — y;)h°.

j=1-R k=1-R

As in the previous example, given n and Ay, we compute (Loof)(zk,yx) for £ =1,...,100 and we
find the error

E e L - .
n = JaX |(Lo,of)(zks Yk) — f(Tks Yk

For this example, we use two fourth-order kernels. The first one is the smooth kernel A§™(z) from
Section 3.1 whose support is R = 3 and the second one is the fourth-order narrow kernel A3 (z)
from Section 3.2 whose support is R = 2. Since both kernels have errors O(h*), we expect the error
ratios E,/Fs, to be about 16 as h — 0. Table 5 shows the results.

7.3 Normal derivative along a curve in 2D

We approximate the normal derivative of the function u(z,y) = sin(z) sin(y) at 100 points on the
curve

C(s) = (% + icos(%rs), % + isin(47rs)) ,

(see Figure 6). The points on the curve are C(i/100) for ¢ =0,1,...,99.
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(a) (b)
n E, ‘ En/EQn B, ‘ En/EQn
10 6.74572e-04 14.07 5.21340e-04 10.64
20 4.79359¢-05 16.73 4.89918e-05 17.22
40 2.86496e-06 15.50 2.84454e-06 15.83
80 1.84890e-07 15.75 1.79697e-07 15.87
160 1.17366e-08 16.25 1.13201e-08 14.36
320 || 7.22040e-10 16.22 7.88351e-10 16.56
640 || 4.45126e-11 15.39 4.75988e-11 15.59
1280 || 2.89246¢-12 3.05289e-12

Table 5: Results of the two-dimensional interpolation example. Columns (a) show the error and error ratios
for interpolation using the smooth fourth-order kernel A§™(z). Columns (b) show similar results with the
fourth-order narrow kernel A5 ().
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Figure 6: Curve C(s) and its normal vectors at 100 points where the normal derivative of u(z,y) =
sin(z) sin(y) was approximated from grid values.
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In order to use our approximation kernels, the values of u(z,y) are specified on a square grid of
dimension h = 1/n. Then, an approximation of the partial u,(z,y) is given by

Ry
(L1,0u)(,y) Z Z w(wk, y5)®n(z — o) Anly — yj)h?,
] 1-R1 k=1—R»

where A}, with support R1, satisfies the moment conditions for interpolation, and ®;,, with support
Ry, satisfies the moment conditions for approximation of the first derivative. The partial u, is
approximated similarly. For this example, the exact normal vectors at the points on the curve were
used. Here we seek a fourth-order approximation so we choose Aj(z) = A§™(z) from Section 3.1
and ®p,(z) = A% (z) from Section 6.1. The error in the approximation was computed as in the
previous example. The results are shown in Table 6. Notice that the error ratios are about 2%, as

n En En/Eom
20 | 5.17758¢-07 | 15.81
40 | 3.27539¢-08 | 16.27
80 || 2.01372¢-09 | 15.93
160 || 1.26421e-10 | 10.71
320 || 1.18054e-11

Table 6: Errors and error ratios for the computation of the normal derivative of a smooth function using
fourth-order kernels.

expected, except when the errors are very small. This is not due to the kernels but to roundoff. In
order to evaluate the kernels at a point x, one computes z/h. Due to roundoff error, one expects

to get
T+ € T+ € € €
- 1= ...):_ €_
hte h ( n h+h Tt

so that the largest contribution to roundoff is O(e/h?). For a grid of size h = 1/320 and € = 10716
we have that ¢/h? ~ 107!, which is why the errors saturate around that value.

8 Discussion and conclusion

One of the differences between the two classes of approximation kernels discussed here, smooth and
narrow, is their degree of regularity. We have mentioned that for a given order of accuracy and
polynomial degree, the narrow kernels have less regularity and smaller support than the smooth
kernels (see Table 2). Another difference is that when the interpolation kernels described in Sec-
tions 3.1 and 3.2 are evaluated at a grid node, the narrow kernels return the function value at that
node. In other words, the narrow kernels satisfy

Z fe AR (yi — yi)h = fi.

k=—o0

On the other hand, the smooth kernels do not have this property. Instead, they return a high-order
average of the function values at nearby grid nodes.

The kernels that approximate derivatives of functions also have different properties. The smooth
odd kernels of Section 6.1 evaluated at a grid node provide symmetric finite-difference stencils. For
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example,
1

8 8 1
Agdd(yi) = ﬁfi—2 - Efz‘—l + ﬁfi+1 - Efz‘+2-

On the other hand, the narrow kernels in Section 6.2 give an asymmetric finite-difference stencil.

For example,
d 1 1 1
e A (yi) = gli-e —fisn+ 5 fit gfin

We have mentioned already that the latter kernels are discontinuous at the grid nodes. It might
be counterintuitive to approximate the derivative of a smooth function with a linear combination
of discontinuous kernels. However, these kernels are designed so that for any 0 < = < 1, the Taylor
expansions of the approximation (L; f)(z) and of f'(z) agree up to the term corresponding to the
first non-zero moment of the kernel (excluding My(A;z)). In other words, the discontinuity in
the kernels appears in the error term of the approximation, and therefore, the discontinuity in the
approximation is of the order of the error.

We note that the function f(z) has been assumed to be smooth. In the case that f(z) or one of its
derivatives has discontinuities, the arguments presented here no longer apply and the approxima-
tions lose accuracy. A specific example of interest is the solution of partial differential equations
with singular source terms. In that case, one can regularize the singularity by replacing the delta
function in the source term by an interpolation kernel. However, since the weak solution of the
PDE is not smooth, the accuracy will be limited unless additional constraints are imposed on the
kernels [19, 29]. Such constraints might be one-sided moment conditions [4, 13] or properties that
the Fourier transform of the kernel must satisfy [28].

It is common to approximate data with splines. Generally, this technique uses all grid values of
the function f(z) to compute a single spline (with appropriate boundary conditions) that spans
the data. These splines are global in the sense that a change in one grid value of the function f(z)
affects the approximation everywhere. The kernels derived here are based on a different idea even
though the smooth kernels in Section 3.1 are themselves splines. The difference is that our kernels
are local since they use only a few data points to generate a spline that smoothly approximates a
delta function. Therefore, our approximations are unaffected by changes in the grid values of the
function outside the support of the kernel.

Several kernels of the type discussed here have been used previously. However, no systematic way
of designing the kernels had been proposed. More importantly, we have derived results that clearly
state the accuracy that can be achieved by piecewise polynomial kernels for a given smoothness
and polynomial degree. Using our results, it is a simple matter to generate the kernels using a
symbolic software package.
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