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ABSTRACT: A nonlinear 3D model for mass transport into immiscible polymeric blends is developed by
explicitly incorporating the interface dynamics into the transport equations. The interface is characterized,
on a mesoscopic level of description, by a scalar Q(r,t) and a second-order tensor q(r,t) respectively
describing the local size and anisotropy densities of the interfacial area. The newly obtained constitutive
equation for the diffusion mass flux density extends Fick’s first law by involving two additional terms
accounting for the local changes of the interface morphology. The model provides an expression for the
distribution of both isotropic (Laplace) and anisotropic stresses created by mass transport within the
immiscible polymeric blend. The governing equations are parametrized by the free energy density that
includes a mixing part and an excess energy term attributed to the presence of the interface. We investigate
in more detail a one-dimensional sorption process of a solvent into a thin immiscible blend consisting of
a matrix and a dispersed phase. Three dimensionless groups of physical parameters arise in the 1D
dimensionless formulation; two are coupling constants that explicitly relate diffusion to the interface
dynamic changes, and one is the diffusion Deborah number. Numerical results show that diffusion becomes
non-Fickian for values of Deborah number approaching unity. The time evolution of the calculated mass
uptake, swelling, stresses, and total size and anisotropy densities provides a good indication of the effects
of diffusion-interface interaction on both mass transport and the morphology of the interface.

I. Introduction
Mass transport of low molecular weight substances

into polymeric materials is an important process in
many areas of today’s application. Examples include
protective coatings, drug delivery systems, and bio-
science. Since the vast majority of polymers are natu-
rally immiscible, there is a growing interest for the use
of such immiscible systems in the design and manufac-
ture of materials with tailored morphologies possessing
properties unavailable with their homopolymer counter-
parts. One obvious manifestation of immiscibility is the
presence of an interface that separates the different
components. The interface, characterized by its size and
shape, plays a key role in determining the physical as
well as the mechanical properties of immiscible blends.
The size and shape of the interface are determined by
the competition among many factors, the most impor-
tant of which are identified to be the flow field, the
interfacial tension, and the probable presence of inclu-
sions.

Although diffusion is a ubiquitous process in most
multicomponent immiscible mixtures involving small
molecules, it has not received enough attention. Cur-
rently, most investigations devoted to the dynamics of
immiscible polymeric blends are rheological. Such stud-
ies focus on understanding the effects of an applied flow
on the interface morphology that, in most cases, under-
goes significant changes as a result of the occurrence of
simultaneous and concomitant coalescence and break-
up processes produced by interfacial distortions/defor-
mations. These mechanical changes, attributed mainly
to the interface-flow interaction, create isotropic as well

as anisotropic stresses that generally subsist within the
blend after cessation of the external flow. Here, we study
a different dynamic phenomenon that is related to the
isothermal unsteady mass transport of a solvent into
an immiscible polymeric blend. It consists of investigat-
ing the interface-diffusion interaction, in the absence
of an external flow and under mechanical equilibrium.
In other words, this paper is devoted to elucidate the
effects of the coupling arising between diffusion and the
deformation of the interface on both the process of mass
transport as well as on the morphology of the interface.

It is well-known that mass transport into complex
media is generally accompanied by the creation of
internal stresses resulting from local deformations (e.g.,
swelling) of the internal structure. These structural
changes strongly influence the transport behavior whose
dynamics is beyond the range of predictions of Fick’s
linear theory.1-10 Therefore, to appropriately describe
non-Fickian manifestations, it is of primordial impor-
tance to identify the nature of the internal structure
and how its dynamics couples to diffusion. Here, our
structured system is a blend of immiscible polymers that
embeds an interface. The morphology of the interface
may be as simple as that observed in media consisting
of a matrix and a dispersed phase with a spherical
symmetry or as complex as that observed in co-continu-
ous media. We seek to describe diffusion on a more
microscopic level than that provided by the classical
Fickian theory. Indeed, whereas the latter is based on
the use of one independent state variable, namely the
concentration of penetrants, our approach involves extra
internal variables that directly track the interfacial
changes produced by the diffusion mass fluxes. Thereby,
this mesoscopic description allows us to gain more
information concerning the interface-diffusion interac-
tion by utilizing two structural variables defined as
moments of an interfacial kinetic distribution function.11
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These interfacial variables consist of a scalar and a
traceless symmetric second order that describe the local
changes of the interfacial size and shape anisotropy
densities, respectively.

II. Model Development: A 3D Formulation
Here, we study the behavior of the unsteady isother-

mal diffusion occurring in a system consisting of a
solvent, s, and a two-phase blend, p ) A/B, of two
immiscible polymers, A and B, as shown in Figure 1.
The polymeric blend, p, is regarded as a pseudo-one-
component system that embeds an interface. We limit
our study to the special case where there is no inter-
penetration between the two components A and B. Such
a physical situation may be observed, for instance, far
from criticality or in the case of a high friction coefficient
between the two immiscible components. In this case,
the mass transport process that exclusively occurs in
this system is that corresponding to the interpenetration
between the solvent and the polymeric blend. Hence,
from the two-fluid point of view,12 the mixture {s + p}
is regarded as consisting of two interpenetrating media;
one is the solvent, s, and the other is the whole
polymeric blend, p. Here, our aim is to derive time
evolution equations that account for diffusion processes
into such complex immiscible systems. Current under-
standings show that the best step, and also perhaps the
most difficult one, to start with in mathematical model-
ing to provide a proper description of a physical phe-
nomenon, would consist in appropriately determining
independent variables singled out to characterize states
of the system under consideration. In this formulation,
we choose to describe the solvent by Fs and us and the
polymeric blend by Fp and up, denoting the apparent
mass and linear momentum field densities, respectively.
From the experience gained in rheological and vis-
coelastic diffusion studies, these hydrodynamic fields
(mass and momentum densities) have proven to be
insufficient to adequately characterize dynamic behavior
of complex media. Indeed, the internal structure couples
to diffusion and brings about inertia and viscoelasticity,
as it may occur in our system. Since even though its

individual constituents are Newtonian, the polymeric
immiscible blend may behave as a viscoelastic struc-
tured medium due to the presence of the interface. As
the morphology of the interface undergoes changes in
its size and shape resulting from the accommodation of
the solvent molecules, additional internal structural
variables are required. The behavior of the interface
may reflect a direct characterization of that of the blend.
Consequently, the effects of the internal structural
deformations on mass transport are described in this
work by tracking the dynamic changes of the interface.
The more details we use to describe the interface, the
more complete will be our knowledge for discerning its
time evolution and dynamic contribution to the diffusion
process. However, our aim is to study the diffusion-
interface interaction on a level of description that allows
us to reasonably follow both the diffusion process and
the dynamic changes of the interface. Therefore, we use
the two interfacial variables originally introduced in ref
11 and adopted subsequently by several authors13-20 to
study the flow-interface interaction. These variables
are a scalar and a second-order tensor:

describing the local changes of the interfacial size and
shape anisotropy densities, respectively. n is the unit
vector normal to the interface, and d2n is the solid angle.
I and nn are the unit and dyadic second-order tensors,
respectively. By definition, trace (q) ) 0. These inter-
facial variables (1) are defined respectively as the zeroth
and second moments of the interfacial kinetic distribu-
tion function density f(n,r,t).11 Consequently, the set of
the independent state variables for the whole mixture
{s + p} is

where F ) Fs + Fp is the global mass density, u ) us +
up is the overall momentum density, c ) Fs/(Fs + Fp) is
the solvent mass fraction, and J ) (Fp/(Fs + Fp))up -
(Fs/(Fs + Fp))us is the solvent diffusion mass flux. We
have derived governing equations20 for the set (2)
describing the structure-flow-diffusion interaction in
systems embedding a complex interface. Here, we
investigate in more detail the particular case corre-
sponding to the absence of an applied flow

(u ) F v, v is the overall velocity field) and correspond-
ing to the mechanical equilibrium

where the scalar p ) -æ + F(∂æ/∂F) + Q(∂æ/∂Q) +
qij(∂æ/∂qij) stands for the hydrodynamic pressure and the
second-order tensor σ(overall) ) JJ/(Fc(1 - c)) - σ(interface)

represents the overall extra stress tensor. The quantity
æ ) æ(F,c,Q,q) refers to the internal free energy density
defined as Φ ) ∫dr (J2/(2Fc(1 - c))) + ∫dr æ(F,c,Q,q),
where the first term corresponds to the relative kinetic
energy. The Einstein summation convention is used
throughout this paper. The symbol ∂R(.) ≡ ∂(.)/∂rR is the
spatial derivative of (.) in the R-direction (R ≡ x, y, and

Figure 1. Schematic representation of dry and swollen
immiscible polymeric blends, p. (a) and (b) represent co-
continuous phases, and (c) and (d) represent a matrix and a
dispersed phase. Dots in b and d designate a solvent. Q(r,t) ) ∫d2n f(n,r,t)

q(r,t) ) ∫d2n f(n,r,t)(nn - 1/3I) (1)

(F, u, c, J, Q, q) (2)

u ) 0 (3)

∂Rp + ∂âσRâ
(overall) ) 0 (4)
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z). Moreover, the derivation is based on the requirement
of the overall incompressibility

Under the constraints (3)-(5), the set of the indepen-
dent variables (2) reduces to (c,Q,q), and the governing
equations derived in ref 20 simplify considerably to the
following governing equations (6-21) for the study of
the interface-diffusion interaction.

The mass conservation of the solvent molecules into
the two-phase polymeric blend in the absence of chemi-
cal reactions is given by the usual continuity equation

As the dynamic changes of the interface contribute
strongly to diffusion, the driving force for mass transport
is no longer simply the gradient of the concentration
but rather the gradient of the partial derivative of the
internal free energy density æ with respect to the mass
fraction c, ∂æ/∂c. This has been shown for diffusion of
solvents into polymeric media,10,20 using nonequilibrium
considerations.21 In this case, the solvent mass flux
density in the absence of inertial effects reads as

where ΛJ is a positive phenomenological parameter that
is related to the friction coefficient.20,22 In the case of
interpenetration between two simple fluids (e.g., gases
or liquids) or two symmetric polymers with identical
mechanical properties, the quantity ∂æ/∂c coincides with
the exchange chemical potential. Indeed, in the case
of two simple fluids 1 and 2, possessing respectively
a chemical potential µ1 ) æ - c(∂æ/∂c) and µ2 ) æ +
(1 - c)(∂æ/∂c), the exchange chemical potential becomes
µ2 - µ1 ) ∂æ/∂c. Since æ ) æ(c,Q,q), by applying the
chain rule to expression 7, i.e., ∂R(∂æ/∂c) ) (∂2æ/∂c2)∂Rc
+ (∂2æ/∂c∂Q)∂RQ + (∂2æ/∂c ∂qâγ)∂Rqâγ, and rearranging
appropriately the resulting expression, we obtain the
following new form for the solvent mass flux density

which involves two additional new terms accounting for
the local interfacial changes and therefore provides an
extended expression for Fick’s first law. Furthermore,
this expression also includes three functionals: two
scalars and one second-order tensor. The first scalar

is identified as the diffusivity coefficient, while the
second one

is a new term that couples diffusion to interfacial size
changes. The second-order tensor

couples diffusion to the anisotropic changes of the
interface. These functionals explicitly depend on the
concentration as well as on the two structural variables
Q and q. For linear problems such as those correspond-
ing to differential sorption experiments, the quantities
D, A, and E can be approximated by constants. Note
that only gradients of the state variables contribute to
the mass flux in the absence of an external flow while
in its presence20 divergence of stresses may also gener-
ate mass transport. Moreover, the third term in (8)
involves the third-order tensor ∇q, which implies the
effects of a higher order tensor on mass transport, as
opposed to the classical Fickian expression. The com-
bination of eqs 8 and 6 yields

Clearly, the presence of the two structural variables
Q and q in this continuity equation requires two
additional time evolution equations in order to close the
set of the governing equations. The time evolution
equations for these interfacial variables have already
been derived20 and are given by

for the interfacial size density and

for the interfacial anisotropy density, where

represents the rate of strain of the polymeric blend or
that of the interface, since vp ) -J/(F(1 - c)) represents
the velocity vector field. The functional H, to be defined
subsequently, is introduced here to ensure the consis-
tency of the interface dynamic with swelling. In eqs 13-
15, one substitutes the diffusion mass flux, J, by its
expression 8. In these equations, δRâ is the Kronecker
delta symbol, Γ0 ) Γ(c)0) represents the initial inter-
facial tension of the dry blend, and ΛqQ is a positive
phenomenological parameter having the dimension of
the inverse of time and may be related to the relaxation
time of the interface, τqQ, provided that the system can
be associated with a characteristic length scale. The
latter parameter may also be concentration dependent.
The quantities Q* and q* are functionals that provide
the local values for the size and shape densities of the
interface while ensuring a smooth continuous transition
from the initial to the final equilibrium state.

F ∂c
∂t

) ∂R(FD(∂Rc + A ∂RQ + Eâγ ∂Rqâγ)) (12)

∂Q
∂t

)
JR

F(1 - c)
∂RQ + (qRγ + Q

3
δRγ)dγR -

ΛqQ

Γ0
((Q - Q*)∂æ

∂Q
+ (qij - qij*) ∂æ

∂qij
) (13)

∂qRâ

∂t
)

Jγ

F(1 - c)
∂γqRâ + qRγdγâ + qâγdγR -

qRâqθγ

Q
dθγ +

Q
3

(dRâ + dâR) - 1
3(qRâ + 2Q

3
δRâ)dγγ - 2

3
δRâqθγdθγ -

ΛqQ

Γ0
((qRâ - qRâ*)∂æ

∂Q
+ (qRâqij

Q
-

qRâ*qij*
Q* ) ∂æ

∂qij
) (14)

dRâ ) (1 - H)∂â( JR

F(1 - c)) (15)

F ) const (5)

F ∂c
∂t

) -∂RJR (6)

JR ) - c
FΛJ

∂R(∂æ
∂c ) (7)

JR ) -FD(∂Rc + A ∂RQ + Eâγ ∂Rqâγ) (8)

D ) c
ΛJ

(∂2æ
∂c2) (9)

A ) ( ∂
2æ

∂c ∂Q)/(∂2æ
∂c2) (10)

Eâγ ) ( ∂
2æ

∂c ∂qâγ
)/(∂2æ

∂c2) (11)
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Additional comments about their physical meaning
will be provided in the following sections, in particular
for the one-dimensional formulation (section IV). Their
expressions11 are given by

and

The quantity f0 is the initial distribution function
related to the initial size density of the interfacial area
by Q0 ) 4πf0. The second-order tensor F represents the
gradient of the deformation whose components are
defined as

where r and Y represent the deformed and undeformed
coordinate vectors, respectively. Since, in most cases,
diffusion is accompanied by swelling of the blend and
therefore by an increase in the interfacial size as well
as by a rearrangement of the shape, the quantities Q*
and q* may show noticeable deviations from their initial
values. Such deviations affect not only the behavior of
mass transport but also the interface dynamics. The
swelling of the polymeric blend can be quantified by the
Jacobian of the transformation (18) that gives Vdeformed
) Vundeformed det F measuring the blend volume change.
Furthermore, swelling or more generally deformation
creates internal stresses within the blend; our model
eqs 6-18 are supplemented by the expression for the
extra stress tensor

where the isotropic contribution20 is

and the anisotropic term is written as20

The isotropic as well as the anisotropic terms of the
stress tensor involve the contribution of both anisotropic
parameters (∝ ∂æ/∂qij) as well as that of the interfacial
tension (∂æ/∂Q ) Γ(c)). In expression 20, the first term,
also called the Laplace term, is associated with the
effects of the interfacial tension (∝ ΓQ) and the second
term is clearly a nonequilibrium correction to the
isotropic stresses that is brought about by the aniso-
tropic changes occurring at the interface. This nonequi-
librium contribution vanishes when the system reaches
its equilibrium state.

III. Internal Free Energy and Thermodynamics

The model (6-21) describes the unsteady diffusion of
a solvent into an immiscible polymeric blend and
associated with it the dynamic changes of the size and
shape of the interface. The governing equations as well
as the extra stress tensor are parametrized by the
internal free energy density, æ, in which we express all
the physical features of the mixture under consider-
ation. The free energy involves two contributions. One
is attributed to mixing and a second one to the excess
energy attributed to the presence of the interface.

In this paper, the mixture is regarded as consisting
of two components: one is the solvent, and the other is
the two-phase blend. For the sake of simplicity, we have
considered the blend as a pseudo-one-component me-
dium whose physical properties are defined as averages
of the properties of each of its constituents. This
approximation has the advantage of reducing the num-
ber of state variables and thus the number of governing
equations to be solved. The mixing part of the free
energy for the mixture s-p can be well described by the
Flory-Huggins mean-field theory.23

where R is the gas constant, T is the temperature, and
Ωs is the molar volume of the solvent. In this expression,
we have ignored the term ((1 - c) ln(1 - c))/xn, since xn
representing an average monomer number in the poly-
mer chains is considered to be very large. Here we have
used the mass fraction c of the solvent instead of its
volume fraction. These two quantities coincide under
the incompressibility constraints for both the global
mass density (F ) const) and the material (intrinsic)
mass density of the component i (γi ) mi/Vi ) Fci/φi )
const, with ci ) mi/(ms + mp) and φi ) Vi/(Vs + Vp)
representing the mass and volume fractions of i ) s, p,
respectively). As the global mass density can be written
as F ) Fs + Fp ) φγs + (1 - φ)γp, and the fact that dF )
φ dγs + (1 - φ) dγp + (γs - γp) dφ ) 0, we arrive at F )
γs ) γp and therefore at φ ) c. The interaction param-
eter of the solvent/blend mixture can be expressed as
an average value of the interaction parameters of the
individual systems solvent/component A and solvent/
component B, i.e., øsp ) φA*øsA + (1 - φA*)øsB, where
φA* ) VA/(VA + VB) is the volume fraction of phase A in
blend p ≡ A/B. This is justified by the fact that the
polymers A and B are assumed to swell with the same
rate and that the molecules of the solvent also move
with a same velocity in both phases A and B.

The second term arising in the free energy density
expression (22) is attributed to the contribution of the
interface and is written as

The first term expresses the effects of the interfacial
tension, Γ, between the blend components A and B. The
last term introduces the shape anisotropic changes and

Q* ) ∫d2n f0
(det F)2

|F+‚n|4
(16)

q* ) ∫d2n f0
(det F)2

|F+‚n|4 (nn - 1
3
I) (17)

FRâ )
∂rR

∂Yâ
(18)

σRâ
(interface) ) σisoδRâ + σRâ (19)

σiso ) 2
3(Q ∂æ

∂Q
+ 2qij

∂æ
∂qij

) (20)

σRâ ) -(2qRγ
∂æ
∂qγâ

+ qRâ
∂æ
∂Q

+ 2Q
3

∂æ
∂qRâ

-
qRâqγν

Q
∂æ
∂qγν

-

2
3

δij(qRâ + 1
3
QδRâ) ∂æ

∂qij
) (21)

æ(c,Q,q) ) æmixing(c) + æinterface(c,Q,q) (22)

æmixing ) RT
Ωs

(c ln c + øspc(1 - c)) (23)

æinterface )

(1 - c)(Γ(c) Q + 1
2

Rijkl(c)(qij - qij*)(qkl - qkl*)) (24)
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is expressed here in a quadratic form involving tensorial
quantities. The mathematical justification for this choice
comes as a result of a Taylor expansion around equi-
librium of the interfacial free energy density: æinterface

) æ* + 1/2Rijkl(qij - qij*)(qkl - qij*). Therefore, the first
term, æ*, corresponds to the isotropic state and repre-
sents the effects of the interfacial tension. The fourth-
order tensor appearing in the second term on the right
side of eq 24, Rijkl ) (∂2æ/∂qij ∂qkl), obeys the easily
verifiable symmetry properties Rijkl ) Rklij ) Rjikl ) Rijlk.
Since the blend is subjected to diffusion, the physical
properties of the interface may be affected by its
interaction with the solvent molecules as well as by the
nature of the diffusion-induced deformation. Conse-
quently, the interfacial tension Γ and the coefficients
of the anisotropy tensor r are concentration-dependent.

At equilibrium, the free energy of the system reaches
its minimum (i.e., the derivative of the free energy with
respect to the state variables must be equal to zero).
This criterion might be helpful to distinguish between
slow and fast variables. If, in the space of the state
variables, the free energy presents for a certain ther-
modynamic variable, x, an absolute minimum at the
equilibrium state (i.e., ∂æ/∂x ) 0), the variable can be
considered as fast. Otherwise, the variable is slow.
Applying this criterion to our case, we deduce that the
size density Q can therefore be regarded as a slow
variable since ∂æ/∂Q ) Γ(c) which, in most cases, is
different from zero. The presence of some surfactants,
under certain experimental conditions, may reduce the
interfacial tension of the system, i.e., Γ(c) f 0, making
the blend more stable from the thermodynamics point
of view. On the other hand, from our choice of the
internal free energy density for the interface, the
anisotropy tensor density, q, is a fast variable since at
the final stage of diffusion ∂æ/∂qij ) 0 as qij ) qij*.
Therefore, the quantity q* represents the local equilib-
rium value for the state variable q. Our problem here
needs careful consideration in order to define the
equilibrium state for the blend, in particular, for the
variables that possess the property of fast variables.
Indeed, before the onset of diffusion, the blend occupies
an initial state (e.g., dry) that is different from its final
swollen equilibrium state (e.g., blend + solvent). There-
fore, these two equilibrium states must be expressed
into the free energy density. As the transition from the
initial state to the final state is mainly produced by
diffusion of the solvent, the quantity q* is concentration-
dependent and is expressed in such a way that the
constraint ∂æ/∂qij ) 0 is satisfied at both the initial (c )
0 within the blend) and final (c ) ceq) equilibrium state.
One expression for q* is that given by eq 17, whose final
value qeq ) q*(c ) ceq) is an explicit function of the value
of the mass fraction, ceq, at the equilibrium state. The
latter is attained when the chemical potential of the
simple fluid in the pure state equals its value in the
polymeric blend, i.e., µ ) µ0. The solvent chemical
potential is written as

Therefore, at the final equilibrium state (µ ) µ0 and
(∂æ/∂qRâ)|equilibrium ) 0), eq 25 reduces to

Using expressions 21-26, we arrive at the following
equation

whose solution gives ceq since the other physical param-
eters are, in principle, experimentally measurable. The
quantity Qeq ) Q*(c ) ceq) is the final equilibrium value
of the size density.

IV. Diffusion into a Thin Polymeric Blend
Consisting of a Matrix and a Dispersed Phase

Many experimental measurements for diffusion such
as sorption, permeation, dissolution, or pervaporation
are carried out using thin polymeric films. In such
situations, the mathematical formulation can be refor-
mulated in a one-dimensional setting. This is justified
by the fact that the thickness of the film is very small
compared to the dimension of the other directions. In
this section, we study diffusion of a solvent into a thin
blend of two immiscible polymers constituting a matrix
and a dispersed phase. We treat the case where the
minor phase consists initially of spherical drops. Let x
be the spatial coordinate corresponding to the direction
of diffusion. The state variables c(x,t), Q(x,t), and q(x,t)
are functions of one spatial coordinate and time. Be-
cause of the particular symmetry of this problem, the
anisotropy tensors have the following form

satisfying tr(q) ) 0 and tr(q*) ) 0. These forms simplify
considerably the mathematical formulation. Indeed, the
second-order tensor coefficient given by eq 11 becomes

with E ) (∂2æ/∂c∂q)/(∂2æ/∂c2), and the fourth-order tensor
appearing in the interface free energy expression 24
becomes

satisfying the symmetry properties given above, where
R ) ∂2æ/∂q2. The other components of the matrix (30),
denoted by x, do not intervene in the expression of the
free energy density due to symmetry considerations, and
therefore there is no need for their specification. The
corresponding expression in the internal free energy
density becomes

F(µ - µ0) ) æ + (1 - c)∂æ
∂c

- Q ∂æ
∂Q

- qRâ
∂æ

∂qRâ
(25)

æ + (1 - c)∂æ
∂c

- Q ∂æ
∂Q

) 0 (26)

(RT
Ωs

)(ln ceq + (1 - ceq) + øsb(1 - ceq)
2) +

(1 - ceq)Qeq(-Γ|c)ceq
+ (1 - ceq)(∂Γ

∂c)|c)ceq
) ) 0 (27)

q ) (q 0 0
0 -q/2 0
0 0 -q/2 ) and q* ) (q* 0 0

0 -q*/2 0
0 0 -q*/2 )

(28)

E ) (E 0 0
0 -2E 0
0 0 -2E ) (29)

r ) (R -2R -2R x x x
-2R 4R -2R x x x
-2R -2R 4R x x x
x x x x x x
x x x x x x
x x x x x x

) (30)

Rijkl(qij - qij*)(qkl - qkl*) ) 9R(q - q*)2 (31)
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The one-dimensional governing equations are

The equations governing the time evolution of the
interface include two competing parts. The first one is
attributed to the local interfacial changes caused by the
solvent mass flux, and the second one is due to relax-
ation phenomena related to the effects of the interfacial
tension and anisotropic changes. Note that the time
symmetry is broken during the whole process of diffu-
sion as the dynamic changes of the interface are
exclusively caused by dissipative processes as opposed
to flow dynamics of complex fluids that are diffusion-
free. Therefore, it is interesting to observe that in the
case of diffusion the time evolution for the structural
variables is governed by a different mathematical
structure than that encountered in conventional rheo-
logical studies. In the latter and precisely in the
nonlinear regime, the time evolution of the internal
structure is obtained as a result of both reversible and
irreversible competing processes. Here, diffusion is
completely irreversible, and the source of irreversibility
stems from two distinct dissipative phenomena. Note
that the functional H, appearing in eq 15, is replaced,
here by Q̃* ) Q*/Q0 in such a way that (1 - Q̃*) is
positive in the case of shrinkage and negative in the
case of swelling, where Q0 being the initial value of the
size density of the interfacial area.

The search for solutions of the partial differential
equations requires, in addition to the initial condition,
the knowledge of boundary conditions. In most complex
media, the physics of the boundaries (surface, interface,
interphase) is generally different from that of the
bulk. Some of the best examples are those related to
Marangoni effect observed at the air-liquid interfaces
such as in bubbles rising freely in a non-Newtonian fluid
or during the airways reopening in lungs. This inter-
facial effect induced by surface tension gradients is
caused by mass exchange of surfactant between the bulk
and the surrounding interface. The mass transport
between the bulk and the interface, occurring through
spontaneous adsorption and desorption processes, cre-
ates local inhomogeneities in the interface concentration
and therefore leads to a two-dimensional interfacial flow
and diffusion. Here, in this study, we deal with two
types of interfaces: the interface that is embedded
within the immiscible blend and the interface that
separates the solvent and the polymeric blend (external

boundary). We have provided an extrinsic study for the
embedded interface using a description from the per-
spective of an observer located outside of the immiscible
blend. The interface separating the two immiscible
polymers is described by the above-mentioned quanti-
ties, i.e., the interfacial size and shape anisotropy
densities. Now, we turn our attention to the physics of
the interface between the solvent and the immiscible
blend that constitutes the boundary condition. In most
studies involving partial differential equations, the
boundary conditions are set as fixed known values. This
assumes that the boundaries reach their equilibrium
state in a time scale much faster than that of the bulk.
Such a situation may not always hold in complex media
where relaxation processes and other physicochemical
phenomena may contribute to the dynamics of the
boundaries. Indeed, our model involves, in addition to
the parabolic equation (32a), two interfacial equations
(32b) and (32c) that have a complex mathematical
structure including relaxation terms as well as spatial
derivative. One notices that the parabolic nature of the
classical diffusion equations, such as Fick’s or Fourier’s
equations, attenuates the development of discontinui-
ties. In contrast to that, a special treatment for the
boundaries is required when one deals with complex
structured media. We need therefore to complete our
model equations by deriving equations that directly
track the time evolution of the boundaries.

Let (cb(t), Qb(t), qb(t)) represent the sate variables at
the boundaries. As we have already mentioned, we
ignore any two-dimensional surface diffusion at the
boundaries and consider only the dynamic changes that
are produced by the adsorption/desorption processes of
the solvent molecules. The governing equation for the
solvent mass fraction at the boundary is as

where Fb is the constant surface global mass density and
Jn is the solvent mass flux density that is normal to the
boundaries and whose expression can be written in the
form of a radiation flux

The multiplication factor, k, representing the adsorp-
tion rate is a material constant and depends on the
relaxation time of the internal structure. The governing
equations for the interfacial variables are

These two equations are written as a sum of two
contributions: a relaxation term and an adsorption-
induced deformation term. On one hand, the relaxation
part is kept similar to that of the bulk because we

∂c
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assume that the macromolecules located at the bound-
aries have the same relaxation phenomena as those
located in the bulk. Our motivation is justified by the
fact that in thin films diffusion can be approximated as
a unidirectional process. This might not be true if
surface diffusion at the boundaries has to be considered
or in the case of a shock-wave-like diffusion observed
in glassy polymers. In these cases, the kinetic coef-
ficients (relaxation times) as well as the state equations
(surface tension, anisotropy coefficients R) must have
different values and/or expressions. On the other hand,
the first part of the equations presents a different
mathematical structure than those of the bulk, where
the net change of the interfacial variables (i.e., Q - Q*,
q - q*) is exclusively produced by the adsorption flux.
These bulk-effect terms, seen as advection-like phenom-
ena, however produced by diffusion fluxes, drive the
interface morphology in the direction of the swelling.
The main difference in the mathematical structure
between the governing equations of the bulk and those
of the boundaries is the absence of the deformation (e.g.,
swelling) term, ∂(J/(F(1 - c)))/∂x, that influences the
embedded interfacial morphology within the bulk rather
than at the boundaries.

As a recapitulation, the model consists of a set of three
time evolution partial differential equations for the
volume and three time evolution ordinary differential
equations for the boundaries that have to be solved
simultaneously. The distribution of stresses on the other
hand comprises the isotropic component

and the anisotropic contribution given by

where its components are

The first normal stress difference is

while the second normal stress difference vanishes due
to symmetry. All the model equations involve the still
analytically undetermined interfacial quantities Q*(c)
and q*(c). As the thin polymeric blend swells only in
the direction of diffusion, the changes are assumed to
occur principally in the x-direction. Therefore, the
deformation gradient matrix can be written as

In this one-dimensional setting, we have F ) 1/(1 - c)
since det F ) Vdeformed/Vundeformed and the volume fraction

coincides with the mass fraction due to the global and
material incompressibility constraint as seen in section
III. Considering expressions 16 and 17, and using
spherical coordinates with nx ) cos θ, ny ) sin θ cos â,
and nz ) sin θ sin â with θ and â being the polar angles,
we can write

where Q0 ) 4πf0 is the initial value of the size density
for the interfacial area. Integration of eqs 42 and 43
gives

F ) 1/(1 - c) g 1 since the system swells as a result
of diffusion. One can verify that at the initial state
Q*(c)0) ) Q0 and q*(c≈0) ≈ 0. The final equilibrium
values are given by Qeq ≡ Q*(c)ceq) and qeq ≡ q*(c)ceq)
as shown in Figure 2. Swelling of the blend produces
the displacement of the boundaries which requires,
numerically, an adjustment of their position during the
time of diffusion. One can alternatively solve the
governing equations in a fixed frame by reformulating
the governing equations in Lagrangian coordinates
corresponding to the undeformed polymeric blend. As-
suming no overall flow under an overall mechanical
equilibrium in a one-dimensional formulation, this
task becomes easier and consists of using the math-
ematical transformation (18) where the Eulerian spatial
gradient ∂/∂x is replaced by Lagrangian spatial gradient
(1/F)(∂/∂Y) ) (1 - c)(∂/∂Y). In the following, the PDEs
are rewritten in Lagrangian coordinates.
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Figure 2. Q* and q* vs concentration, c.
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V. 1D Dimensionless Equations
The model governing equations are parametrized by

a kinetic coefficient (interfacial relaxation time τqQ) and
the internal free energy density that involves the solvent
and the polymer material parameters. To clarify the
relative magnitude of physical interactions, we scale the
governing eqs 32-35 to identify dimensionless groups
of the model. We use the following dimensionless
quantities X ) Y/L0 for space and θ ) t/τd for time,
where L0 is the initial thickness of the film, τd ) L0

2/D0
is the diffusion characteristic time scale, and D0 )
D(c)0). The dimensionless quantities for the state
variables are c̃ ) c/ceq, Q̃ ) Q/Q0, and q̃ ) q/Q0, where
ceq is the equilibrium mass fraction and Q0 is the initial
size density that can be measured using X-ray tech-
niques. Under these transformations, the dimensionless
governing eqs 32 for the bulk are

and those for the boundaries are

that involve three normalized functionals D̃(c,Q,q) )
D(c,Q,q)/D0, Ã(c,Q,q) ) (Q0/ceqg0)A(c,Q,q), and Ẽ(c,Q,q)
) (Q0/ceqg1)E(c,Q,q) and three dimensionless groups

In addition to these groups, the boundary equations
include a fourth parameter K ) L0

2k/D0 that compares
the rate of adsorption to the diffusion time in the bulk.
These groups of numbers and the functionals A and E
depend explicitly on the physical properties of both the
interface and the solvent as well as on the experimental
conditions. Moreover, A and E involve the Flory ø
parameter expressing the molecular interactions among
the constituents of the solvent/blend system. Therefore,
the model provides a description of the behavior of
diffusion for a particular solvent-blend mixture at a
particular experimental condition. While D is chosen to
be constant in this study, A and E are functionals that
are allowed to explicitly vary with the state variables
c, Q, and q. Their expressions are obtained by replacing
the internal free energy density (22-24) in eqs 10 and
11. The third dimensionless group De refers to the
diffusion Deborah number and compares the diffusion
characteristic time scale to the relaxation characteristic
time scale of the interface. In this description, it is
plausible and justifiable to define the latter, since the
blend possesses a characteristic length scale. We recall
that the diffusion Deborah number has been intro-
duced24,25 to provide a qualitative description of the
behavior of mass transport. It is expected that when De
≈ O(1), diffusion will exhibit a non-Fickian behavior.
In polymeric media, such kinetics has been shown to
vary as a power law: tn where n is an exponent that is
equal to 1/2 for the Fickian behavior, n ) 1 for the case
II mass transport, and 1/2 < n < 1 for anomalous
diffusion. In most general cases, a polynomial expansion
∑antn is well suitable to fit the experimental data, where
an is a material parameter. Deviations from the square
root kinetics constitute a direct evidence of the occur-
rence of the non-Fickian character of mass transport
produced by viscoelasticity. It is clear that viscoelatic
effects are brought about by the presence of the interface
and its retarded response. If the interface relaxes slowly
in a time scale larger than or comparable to the diffusion
characteristic time scale, the dynamic changes of the
interfacial variables will be caused by the local changes
of the solvent mass fluxes. The local changes of the
interfacial variables subsist much longer than in the
Fickian case. Consequently, diffusion exhibits a non-
Fickian behavior. If, on the other hand, the interface
relaxes rapidly to its equilibrium state, the size and
anisotropy reach their final values in a time scale much
smaller than the time scale of diffusion. In this case,
diffusion is Fickian. This qualitative picture can easily
be depicted using the qualitative understanding pro-
vided by the dimensionless diffusion Deborah number,
De, arising in the dimensionless form of the governing
equations. Here, we use the following expression De )
D0η0/Γ0Q0L0

2, where η0 is the viscosity of the blend, Γ0
is the initial interfacial tension, Q0 ) 3φ/R0, φ is the
volume fraction of the minor phase in the blend, and
R0 is the radius of the drops. The governing equations
are explicitly dependent on the interfacial tension as
well as on the anisotropy coefficient R whose expressions
require two equations of state. Our choice focuses on
the use of the following already existing function of
concentration similar to the familiar expressions used
for surfactants Γ̃(c̃) ) Γ(c̃)/Γ0 ) 1 + εΓceqc̃ and R̃(c̃) )
R(c̃)/R0 ) 1 + εRceqc̃. In case of shrinkage where the
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∂q̃
∂X))

∂Q̃
∂θ

) -ceq(1 - ceqc̃)(D̃(∂c̃
∂X

+ g0Ã
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interfacial area decreases, the interfacial tension de-
creases with concentration (ε < 0), while in case of
swelling the interfacial area increases with the concen-
tration (ε > 0). In the following, we investigate the case
where diffusion is accompanied by swelling, and there-
fore ε is chosen to be positive.

Solutions to the governing eqs 46 and 47 require the
knowledge of initial conditions that are

Note that this formulation does not require us to impose
fixed values for the boundary conditions. Equations 47
constitute the boundary conditions for eqs 46. To solve
numerically the governing equations, the model re-
quires, in addition to the initial conditions, the knowl-
edge of the equilibrium state that can be in principle
determined from thermodynamics considerations. In
sorption experiments, one generally measures the poly-
mer mass uptake during the time of diffusion which is
generally used as a good indication to determine the
behavior of diffusion and how its kinetics deviates from
the Fickian one. The normalized mass uptake is calcu-
lated using the following expression:

As the polymer is assumed to swell only in the
direction of diffusion, the normalized deformed thick-
ness of the swollen blend is given by

Similarly, and for practical reasons, we define the net
change of the interfacial size density

of the interfacial anisotropy density

and of the normalized transient stress tensor compo-
nents by

where σj ≡ σ11, σ22, and σiso.

VI. Numerical Results
In this section, we provide numerical results of the

governing eqs 46 and 47. We first study the behavior of
mass transport in solvent-blend systems with physical
properties similar to those of the model system MeOH-
PIB/PDMS. The polymeric blend of a 1 mm thickness
has an interfacial tension Γ0 ) 2.3 × 10-3 N/m, a size
density Q0 ) 2.6 × 106 m-1, a viscosity η0 ) 100 Pa s,
and an anisotropy coefficient R ) 3 × 10-11 N. The
solvent has a molar volume Ωs ) 4.05 × 10-5 m3/mol

and a diffusivity coefficient D0 ) 10-11 m2/s. The
equilibrium mass fraction is chosen to be 0.1, which
gives, using expressions 44 and 45, the interfacial
equilibrium values of Qeq/Q0 ) 1.0748 and qeq/Q0 )
-0.0392 for the size and anisotropy densities, respec-
tively. The Deborah number is of the order of 10-5,
leading to a fast relaxation of the interface to its final
swollen state. The coupling constants appearing in the
dimensionless time evolution equations are g0 ) 10-4

and g1 ) 3.7 × 10-6, demonstrating a weak coupling
between diffusion and the dynamic changes of the
interface morphology. In this case, diffusion mainly
influences the time evolution of the interfacial variables
through the concentration gradients. Therefore, one
expects to observe a Fickian behavior. A clear indication
of this result is confirmed by the blend mass-uptake
curve vs normalized time given in Figure 3, which shows
the usual Fickian time square root function (i.e., first
curve starting from the left). We also study the effect
of Deborah number for fixed values of the coupling
constant g0 as well as that of the coupling constant g0
for fixed values of De. In the following, by requiring
more symmetry for the dissipation part at the initial
state, we arrive at the constraint (q - q*)∂æ/∂Q ) 3Q
∂æ/∂q that gives g1 ) g0/27. The constant k in expression
34 is chosen to be equal to k1/τQq. The proportionality
to the relaxation time inverse of the interface is justified
from previous experimental results.26 The multiplication
factor k1 is set here by numerical trial and error to be
equal to 0.1. More physical insight is needed here to
define quantitatively the parameters entering the ex-
pression of the adsorption mass flux.

Figure 3 also shows the profiles of mass uptake vs
time for three different values of De ) 10-5, 0.1, and 1
for g0 ) 10-4 (dashed lines) and g0 ) 0.9 (solid lines).
The effects of g0 on the kinetics of diffusion are notice-
able for small values of De. For relatively larger values
than those leading to the Fickian regime, the slow
relaxation of the interfacial variables dominates during
the process of mass transport, and the process becomes
a relaxation-controlled rather than diffusion-controlled.
This may be understood from the fact that the coupling
constants g0 and g1 intervene directly in the speed of
the advancing solvent fronts within the polymeric blend.

c̃(X,θ)0) ) 0

Q̃(X,θ)0) ) 1 for 0 e X e 1 (49)
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Figure 3. Polymer mass uptake vs normalized time for De )
10-5, 0.1, and 1. Solid lines correspond to g0 ) 0.9 and dashed
lines to g0 ) 10-4.
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Generally, clear deviations from Fickian diffusion are
observed when De approaches unity.

Figure 4 shows the profiles of concentration vs
normalized thickness of the blend for g0 ) 10-4 and De
) 10-5. As expected, these profiles are typically Fickian,
where the gradients of concentration become the domi-
nant driving force generating mass fluxes. The calcu-
lated profiles can be recovered as classical solutions of
the parabolic diffusion equation. In this case, the
relaxation of the interface is faster than the motion of
the solvent molecules that do not have time to notice
any dynamic changes occurring at the interface.

The same tendency is also observed for the interfacial
variables Q and q as shown respectively in Figures 5
and 6. As discussed earlier, diffusion, mainly produced
by the gradients of concentration for small values of g0,
influences unilaterally the evolution of the interface.
The effects of coupling between diffusion and the
interface deformation are much weaker on the side of

diffusion than on the side of the interface dynamics. For
small values of De, the fast relaxation phenomenon
predominates during the time evolution of the interface
whose behavior mainly exhibit a Fickian-like character.
Indeed, the relaxation parts of the interface governing
equations are strong functions of the concentration, via
the functionals Q* and q*. For larger values of De,
gradients of concentration become the driving forces for
the dynamic changes of the interface.

Note that the study of the dynamics of the interface
may provide an interesting and alternative framework
to track the behavior of diffusion and vice versa. The
net change of the anisotropy density follows the square
root kinetics for g0 ) 10-4 and De ) 10-5 as shown in
Figure 7. As in the case of the blend mass uptake, the
net change of the interfacial anisotropy density also
exhibits a behavior that does not follow the square root
kinetics for De approaching unity. Moreover, the inter-

Figure 4. Profiles of concentration, c̃, against normalized
thickness of the blend for De ) 10-5 and g0 ) 10-4 (normalized
time step ) 1.2 × 10-2).

Figure 5. Profiles of normalized size density, Q̃, against
normalized thickness of the blend for De ) 10-5 and g0 ) 10-4

(normalized time step ) 1.2 × 10-2).

Figure 6. Profiles of normalized anisotropy density, q̃, against
normalized thickness of the blend for De ) 10-5 and g0 ) 10-4

(normalized time step ) 1.2 × 10-2).

Figure 7. Time evolution of the net change of the total
anisotropy density for De ) 10-5, 0.1, and 1. Solid lines
correspond to g0 ) 0.9 and dashed lines to g0 ) 10-4.
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facial variables show a slow evolution compared to that
followed by the blend weight gain, in particular at the
initial stages of the sorption process.

We have observed that the behavior of mass transport
as well as that of the dynamic changes of the interface
is strongly influenced by the time evolution of the
boundaries. The profiles of the mass fraction, the size,
and the anisotropy densities at the boundaries are
shown in Figures 8a,b, 9, and 10, respectively, for
different values of the De. For large values of De,
diffusion becomes an adsorption-controlled process at
the boundaries.

The behavior at the boundaries for the adsorption
process is, without big surprises, Fickian-like. Only the
rate, at which the equilibrium is reached, changes as
De increases. This is attributed to our choice of the
adsorption rate, k, to be inversely proportional to the
relaxation time of the interface. The effects of g0 on the
time evolution of the boundaries are only seen for very
small values of De, as shown in Figure 8b. The plateau

is reached faster for a weak coupling. No such effects
have been detected for large De as shown in Figure 8a.

Figure 9 shows the profiles of the size density, Q̃b, vs
normalized time for different values of De. As opposed
to the evolution of the concentration at the boundaries,
the effects of competing processes between the adsorp-
tion and the relaxation phenomena are visible on the
time evolution. The profiles can no longer be reproduced
by the usual time square root function for larger De.
This is more obvious for De ) 1, where we observe an
induction time at the initial stage of the adsorption
process.

Figure 10 shows the profiles of the anisotropy density,
q̃b, vs normalized time for different values of De. Even
though the anisotropy density is regarded as a fast
variable, its time evolution is a result of direct processes
as well as of indirect processes due to its intimate
coupling with the time evolution of the size density. This

Figure 8. (a) Time evolution of the normalized concentration
at the boundary, c̃b, for De ) 10-5, 0.1, and 1. (b) Time evolution
of the normalized concentration at the boundary, c̃b, for De )
10-5.

Figure 9. Time evolution of the normalized size density, Q̃b,
at the boundary for De ) 1, 0.1, and 10-5.

Figure 10. Time evolution of the normalized anisotropy
density, q̃b, at the boundary for De ) 10-5, 0.1, and 1.
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explains the resemblance of the profiles in this figure
with those of Figure 9. However, at the swollen equi-
librium state, the internal free energy becomes mini-
mum with respect to q while it is not with respect to
the interfacial size density Q.

Figures 11 and 12 show the profiles of concentration
vs normalized distance for De ) 0.1 and 1. The more
we increase De, the more the gradients of concentration
become insignificant within the polymeric blend. This
is also observed for the interfacial variables Q and q
(not shown here). In this case, no process is prevailing,
and the driving force for mass transport is produced by
simultaneous and local changes created by the gradients
of the three variables c, Q, and q.

Diffusion in polymeric blends is generally accompa-
nied by swelling that creates internal stresses. Time
evolution of the distributions of such stresses is calcu-

lated using eq 54 and are shown in Figures 13-15. The
normalized first component, σ̃11, of the anisotropic extra
stress tensor exhibits an undershoot that becomes more
pronounced when De approaches the unity (Figure 13).

On the other hand, the normalized second component,
σ̃22, shows an overshoot (Figure 14). No such effects are
detected for the isotropic contribution, σ̃iso to the stress
tensor (Figure 15). Contrary to the positive values of
σ̃11 expressing the blend swelling, the negative values
of σ̃22 show that the shape is subjected to compressing
forces in the directions normal to diffusion. However,
the shape of the drops is not expected to deform in such
directions since swelling forces oppose such changes.
What is interesting to note is that the first normal stress
difference is different from zero, demonstrating the
viscoelastic behavior of diffusion. On the other hand,
the second normal stress difference vanishes by sym-

Figure 11. Normalized concentration profiles against nor-
malized thickness of the blend for g0 ) 0.9 and De ) 0.1
(normalized time step ) 8 × 10-2).

Figure 12. Normalized concentration profiles against nor-
malized thickness of the blend for g0 ) 0.9 and De ) 1
(normalized time step ) 0.16).

Figure 13. Normalized first component of the stress tensor,
σ̃11, vs normalized time for De ) 10-5, 0.1, and 1. Solid line
correspond to g0 ) 0.9 and dashed lines to g0 ) 10-4.

Figure 14. Normalized second component of the stress tensor,
σ̃22, vs normalized time for De ) 10-5, 0.1, and 1. Solid line
correspond to g0 ) 0.9 and dashed lines to g0 ) 10-4.
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metry. An interesting behavior is expected to occur for
a dispersed phase consisting of drops with an initially
complex shape. As discussed earlier, the coupling con-
stants g0 and g1 affect the time evolution of stresses for
small De. The plateau is reached more or less rapidly
depending on the values of De.

Figure 16 shows the macroscopic swelling of the blend
vs the normalized time for different values of De. These
profiles are calculated using eq 51, where the gradient
of the deformation, F, in the direction of diffusion
depends explicitly on the concentration of the penetrants
and therefore implicitly on the interfacial variables Q
and q. The same reasoning that has been discussed
previously concerning the kinetics of mass uptake
applies here as well for the kinetics of swelling.

The global macroscopic swelling of the blend is a
result of internal changes of the internal structure that
affects the shape of the interface. Initially, the dispersed
phase consists of spherical drops that are expected to

become, in subsequent times, ellipsoids due to the
particular geometry and symmetry of the system. The
time evolution of the shape is calculated using the
equation

where R0 is the initial radius of the drops and F(c(x,t))
is the component of the gradient of deformation defined
above. The vector (x(t), y(t), z(t)) represents the time-
dependent deformed position coordinate of the shape of
a drop located at (x0, y0, z0). Figure 17 shows the time
evolution of a drop of radius R0 ) 5.6 × 10-7 m initially
located at the position (2 × 10-4 m, 2 × 10-4 m, 2 ×
10-4 m) within a blend of thickness 10-3 m. The
dimensionless parameters used in this simulation are
De ) 10-5, g0 ) 10-5, and g1 ) 3.7 × 10-6 and
correspond to the MeOH-PIB/PDMS mixture. We show
the projection of the ellipsoids in the (x, y) plan, since
the y and z directions are symmetric by any rotation
around the x axis corresponding to the diffusion direc-
tion.

VII. Conclusion
We have derived a 3D model to investigate the

behavior of mass transport of a solvent into an im-
miscible polymeric blend. The model consists of a set of
coupled nonlinear equations governing the time evolu-
tion of the solvent mass fraction and two structural
variables accounting for the local dynamic changes of
the interface morphology, namely the interfacial size
and shape anisotropy densities. An expression for the
distribution of stresses created by diffusion is also
provided. The model is parametrized by the free energy
density in which we express the physics of the system
under consideration. We suggest an extended form for
the excess energy arising from the presence of the
interface. This expression includes the well-known term
attributed to the effects of the interfacial tension and a
new term expressing the contribution of the shape
anisotropy of the interface. Since diffusion is generally
accompanied by swelling, we express the governing

Figure 15. Normalized isotropic stress tensor, σ̃iso, vs normal-
ized time for De ) 1, 0.1, and 10-5. Solid line correspond to g0
) 0.9 and dashed lines to g0 ) 10-4.

Figure 16. Swelling of the blend vs normalized time for De
) 10-5, 0.1, and 1. Solid line correspond to g0 ) 0.9 and dashed
lines to g0 ) 10-4.

Figure 17. Time evolution of the shape of a drop for De )
10-5and g0 ) 10-4.

(x(t) - x0

F(t)R0
)2

+ (y - y0

R0
)2

+ (z - z0

R0
)2

) 1

9228 El Afif et al. Macromolecules, Vol. 36, No. 24, 2003



equations in Lagrangian coordinates. We investigate in
more detail the case corresponding to a 1D diffusion
process in a thin polymeric blend consisting of a matrix
and a dispersed phase. The physics of the boundaries
is further discussed by deriving governing equations to
follow their time evolution. Three dimensionless groups
of physical parameters emerge naturally in the dimen-
sionless formulation: two constants couple diffusion to
the dynamic changes of the interface, and one is the
diffusion Deborah number that compares the diffusion
characteristic time to the interface relaxation time.
Numerical results for a blend consisting of two im-
miscible Newtonian polymers with physical properties
similar to those of the model blend PIB/PDMS predict
a typically Fickian behavior. By varying the Deborah
number, we were able to cover and predict a wide range
of non-Fickian behavior. The coupling constants slightly
influence mass transport when De approaches unity.
Mass transport becomes viscoelastic in that case. This
is expected, since viscoelasticity is brought about by the
dynamic changes of the interface and its relaxation rate.
The Deborah number dictates the behavior of mass
transport as well as that of the dynamic changes of the
interface.

This study opens new possibilities for experimental
investigations of diffusion into immiscible polymeric
blends.
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