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a b s t r a c t

In many animals, sperm flagella exhibit primarily planar waveforms. An isolated sperm with a planar
flagellar beat in a three-dimensional unbounded fluid domain would remain in a plane. However,
because sperm must navigate through complex, three-dimensional confined spaces along with other
sperm, forces that bend or move the flagellum out of its current beat plane develop. Here we present an
extension of previous models of an elastic sperm flagellar filament whose shape change is driven by the
pursuit of a preferred curvature wave. In particular, we extend the energy of the generalized elastica to
include a term that penalizes out-of-plane motion. We are now able to study the interaction of free-
swimmers in a 3D Stokes flow that do not start out beating in the same plane. We demonstrate the
three-dimensional nature of swimming behavior as neighboring sperm swim close to each other and
affect each others’ trajectories via fluid–structure coupling.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

For successful fertilization, sperm must be able to navigate
complex environments to reach the egg. Thus, sperm motility
patterns are vital components of sexual reproduction. In many
species, sperm flagellar waveforms are planar or near-planar,
though helical waveforms are also stable (Vernon and Woolley,
2004; Woolley and Vernon, 2001). Planar waveforms of an isolated
beating flagellum result in trajectories that are characterized by
either linear or circular paths within the plane, depending on the
symmetry of the beat pattern (Phillips, 1972; Yanagimachi, 1970).
However, forces exerted on the planar swimmer by proximal
surfaces or nearby swimmers can easily bend or pull part or all
of the flagellum out of its current beat plane.

Three-dimensional behavior of sperm flagella has been experi-
mentally observed (Woolley and Osborn, 1984) and some species
exhibit “ Fig. 8” or helical deviations of the waveform out of the
plane (Cosson et al., 2003; Woolley and Vernon, 2001). More
recent experimental advances in tracking sperm at a high resolu-
tion have exposed the three-dimensional nature of swimming
trajectories of sperm in populations, providing experimental
evidence for helical or “chiral ribbon” trajectories (Corkidi et al.,
2008; Su et al., 2012, 2013). The recent review of Guerrero et al.
(2011) highlights the importance of understanding sperm motility

in fully three-dimensional settings in order to correctly character-
ize and assess fertility in sperm.

The hydrodynamics of sperm motility is characterized by low
Reynolds number, viscous fluid mechanics, and has been the inspira-
tion of many classic studies in biological fluid dynamics (Fauci and
Dillon, 2006), including Taylor's swimming sheet (Taylor, 1951) and
the resistive force theory of Gray and Hancock (1955). In these early
models, the kinematics of the flagellar waveform were imposed, and
the resulting swimming speed of the flagellum was calculated.
Recognizing that a sperm flagellum is an elastic structure whose
realized kinematics are determined by its coupling to the surround-
ing viscous fluid, models have been developed that treat the
flagellum as a generalized Euler elastica, whose shape change is
driven by the pursuit of a preferred curvature wave (Fauci and Peskin,
1988). Such flagellar models, essentially of swimming sheets, have
been coupled to a two-dimensional fluid and have been used to
study synchronization of finite swimmers and their attraction to
walls (Fauci and McDonald, 1995), and the effect of viscoelasticity on
flagellar swimming (Chrispell et al., 2013; Teran et al., 2010). More
recently, these driven-elasticas have been coupled to a model for
three-dimensional Stokes flow and have been used to study the
emergence of a hyperactivated waveform due to calcium dynamics in
a single, isolated flagellar filament (Olson et al., 2011), and the elastic
attachment of a planar flagellar filament to an orthogonal planar wall
(Simons et al., 2014). While the dynamics of these filaments were
coupled to a three-dimensional domain of fluid, the symmetry
imposed by a single flagellum confined to a plane in free-space or
one beating perpendicular to an infinite planar wall does not result in
any out-of-plane component of force on the flagellum.
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Motivated by the understanding sperm–sperm and sperm–

boundary interactions in more general settings, even for driven
filaments that pursue a planar waveform, here we extend the
generalized Euler elastica energy formulation of Fauci and Peskin
(1988) to include a penalty for out-of-plane motion. The native
flagellar plane will evolve in time. The energy that drives this new
model is rotation- and translation-invariant, therefore the filament
will be a free-swimmer that generates zero total force and torque.

While several different mathematical approaches may be used
to couple flagellar forces to a fluid, here we use the 3D method of
regularized Stokeslets (Cortez et al., 2005). In the following
sections, we present the mathematical formulation of the three-
dimensional model, how to incorporate multiple nearby sperm,
and then discuss the implications for three-dimensional trajec-
tories and behaviors in sperm populations.

2. Methods

2.1. Derivation of the three-dimensional model

We model the sperm flagellum as a three-dimensional curve Xðs; tÞ that exerts
forces along its length in a viscous fluid governed by the incompressible Stokes
equations:

μΔu¼∇p�
Z L

0
fðXðs; tÞ; tÞϕϵðx�Xðs; tÞÞ ds

∇ � u¼ 0 ð1Þ

where L is the total length of the flagellum, s is the arc length, t is time, μ is the
dynamic viscosity, u is the fluid velocity, and p is the pressure. The forces fðX; tÞ
exerted by the flagellum upon the surrounding fluid are regularized by a blob
function ϕϵ defined by

ϕϵðrÞ ¼
15ϵ4

8πðr2þϵ2Þ7=2
:

This is a regularized delta function that distributes the force in a small fluid volume
around the curve (Cortez, 2001; Cortez et al., 2005). This regularization eliminates
singularities in the velocity field and the parameter ϵ is chosen to be on the order of
the diameter of the sperm flagellum. The flagellumwill be considered an immersed
boundary that moves with the fluid velocity at all points along its length.

Our model assumes that sperm flagella have a nearly planar beat. Both helical
and planar flagellar beat forms may be stable. Planar waveforms may be more
prevalent near surfaces and observed helical waveforms may in fact be more aptly
described as “flattened helices” (Brokaw, 1965; Rikmenspoel, 1965; Woolley and
Vernon, 2001). The planar or quasi-planar nature of the sperm flagellum is most
likely controlled by the structure of the microtubule doublets and dynein bridges of
the axoneme (Gibbons et al., 1985; Ishijima et al., 1988; Lin et al., 2012; Lindemann
et al., 1992; Omoto et al., 1999; Shingyoji et al., 1991). We do not seek to model the
underlying structure of the flagellum nor how a planar preference might arise, but
instead conceptualize the sperm flagellum as a thin filament that would naturally
have a planar shape in the absence of external forces.

This extended model is formulated so that a flagellum can accommodate three-
dimensional effects that cause deviations from planar configurations. These effects
could include surfaces, other sperm swimming nearby, or other external forces. To
accomplish this, we incorporate forces that restrict out-of-plane deviations of the
flagellum. Within the flagellar plane, we prescribe curvature-based forces along the
flagellum as in Fauci and Peskin (1988), which enable the sperm to move in a wave-
like manner.

The forces f will be derived using a continuous energy formulation that is an
extension of the internally actuated filament model in Fauci and Peskin (1988). In
order to define the energy, we first define a local coordinate system in which the
flagellar plane is z¼0. This will be referred to as the flagellum frame of reference. In
this frame of reference, bending forces that modulate the swimming behavior of
the flagellum will occur in the plane z¼0 alone. Moreover, non-planar deviations
can be understood as deviations in the z component and forces restricting these
deviations can be found. For clarity, in the flagellum frame of reference, we refer to
the Cartesian coordinates as x̂ ; ŷ , and ẑ and the coordinates of the flagellum itself as
X̂ . Thus the flagellar plane is the plane ẑ ¼ 0.

Using this notation, we define the total energy as

EðX̂ ; tÞ ¼ EtensðX̂ ; tÞþEbendðX̂ ; tÞþEplaneðX̂ ; tÞ

where Etens is a tensile energy term that enforces inextensibility, Ebend is a time-
dependent bending energy that drives the beating behavior of the filament, and
Eplane is the energy arising from out-of-plane deviations. Each energy is defined as

follows:

EtensðX̂ ; tÞ ¼ 1
2
St

Z L

0

∂X̂
∂s

�����
������1

" #2
ds ð2Þ

EbendðX̂ ; tÞ ¼ 1
2
Sb

Z ℓ

0

∂X̂
∂α

� ∂2X̂
∂α2

 !
� e3�Cðα; tÞ

" #2
dα ð3Þ

EplaneðX̂ ; tÞ ¼ 1
2
Sp

Z L

0

∂X̂
∂s

� e3
" #2

ds ð4Þ

where Si are stiffness coefficients, L is the length of the flagellum, and e3 ¼ ð0;0;1ÞT
is the normal to the flagellar plane. The function Cðα; tÞ is the preferred curvature
that drives the swimming motion of the sperm. Since this function is restricted to
the plane ẑ ¼ 0, the parameter α refers to the projection of the filament arc length
onto that plane, and ℓ is the total projected arc length in that plane. We take ℓ to be
approximately constant because deviations from the plane are assumed to be small.

With these definitions, the energies (2) and (3) are the same energies described
in Fauci and Peskin (1988) and the energy (4) is the new addition to our model. The
energy (4) is non-zero when there are local deviations of the flagellum in the
ẑ direction (i.e. deviations from the flagellar plane). The total energy E is
translation- and rotation-invariant and forces in the flagellum frame of reference
f̂ can be calculated as

f̂ ¼ � ∂E
∂X̂

:

These resulting forces seek to minimize the total energy, where the tensile, bending
and planarity stiffness constants ðSt ; Sb; SpÞ determine how closely the preferred
planar traveling wave is realized. In particular, the tensile stiffness St is chosen large
enough so that the filament is effectively inextensible, the bending stiffness Sb
reflects the bend modulus of the flexible filament, and the planarity stiffness Sp
controls the penalty for deviation from the plane. Finding the forces f in the
original frame of reference requires a transformation from the ðx̂ ; ŷ; ẑÞ coordinates
to the global Cartesian coordinates ðx; y; zÞ.

For computational purposes, we will discretize the integral in (1) by defining
discrete points Xk along the flagellum (where k denotes the index of the point).
Fig. 1 shows a schematic of the physical domain of the discretized flagellum for a
preferred sinusoidal waveform with amplitude b.

Using the method of regularized Stokeslets described in Cortez et al. (2005), the
fluid velocity is given by

uðxÞ ¼ 1
8πμ

X
k

r2k þ2ϵ2

ðr2k þϵ2Þ3=2
fkþ

ðfk � ðx�XkÞÞþðx�XkÞ
ðr2k þϵ2Þ3=2

where rk ¼ Jx�Xk J and ϵ is set to be close to the flagellum diameter. The points
will be discretized so that their spacing is less than ϵ. The discrete forces fk define
the forces the flagellum exerts at points Xk , and are calculated from discretized
versions of the energies (2)–(4). The motion of the flagellum points is described by
the following equation:

dXk

dt
¼ uðXkðtÞ; tÞÞ

which is approximated using a forward Euler method. In the next several sections,
we describe the specific components of the three-dimensional preferred
curvature model.

2.2. Derivation of the discrete flagellar plane bending energy

We discretize the bending energy (3), as in Fauci and Peskin (1988):

Ebend;xy ¼
1
2
Sb
XN�1

k ¼ 2

ðx̂kþ1� x̂kÞðŷk� ŷk�1Þ�ðŷkþ1� ŷkÞðx̂k� x̂k�1Þ
Δα3 �CkðtÞ

� �2

Δα ð5Þ

Fig. 1. Schematic of the physical domain of the discretized preferred configuration
of the flagellum, with a sinusoidal waveform of amplitude b and an arc length along
the flagellum ranging from s¼0 to s¼L. Each point Xk experiences tensile forces
from interactions with neighboring points, and bending forces that actuate the
motion of the flagellum. The points have a preferred spacing of Δs.
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where Sb is the bending stiffness constant, N is the total number of points along the
flagellum, and Δα is a constant equal to the desired spacing between the points
ðx̂k ; ŷk ;0Þ. The preferred curvature Ck(t) is a time-dependent sinusoidal function
similar to the one used in Fauci and Peskin (1988):

CkðtÞ ¼ κ2b sin ðκαk�ωtÞ ð6Þ
where αk is the arc length distance along the flagellum (projected onto the plane
ẑ ¼ 0) from the head point ðx̂1 ; ŷ1 ;0Þ up to the point ðx̂k; ŷk;0Þ, and κ and ω are the
wavenumber and frequency parameters, respectively. In this model, we choose
κ ¼ 2π=L so there is approximately one wavelength per flagellum length, but our
results are not qualitatively sensitive to this choice.

Small out-of-plane deviations of the flagellum imply that Δα may be smaller
but not too different from Δs (the desired spacing between points in 3D). In order
not to overestimate the desired planar curvature forces for three-dimensional
flagellar configurations, we consider the three-dimensional vector of length Δs
given by

rkþ1 ¼Δs
X̂kþ1�X̂k

JX̂kþ1�X̂k J
;

and define Δαkþ1 as the length of the projection of vector rkþ1 onto the flagellar
plane:

Δαkþ1≔Jrkþ1�ðe3 � rkþ1Þe3 J :
With this definition, the factors of Δα3 and Δα in Eq. (5) are replaced with

Δα3-ΔαkΔαkþ1
ΔαkþΔαkþ1

2
; Δα-ΔαkþΔαkþ1

2
ð7Þ

We note that Δαk ¼Δs for all k when the points are exactly in the plane ẑ ¼ 0.

2.3. Plane restriction force

To address out-of-plane deviations, we discretize the energy (4) as

Eplane ¼
1
2
Sp
XN�1

k ¼ 1

ẑkþ1� ẑk
Δs

� �2

Δs:

This energy formulation restricts any non-planar deviations via forces in the
ẑ-direction but is a local effect that seeks to minimize the total quadratic variation
in ẑ , hence reducing the concavity of ẑðsÞ. The force derived from this energy acting
upon an interior point kA ð2;…;N�1Þ would then be

f̂ k ¼ Spðẑ kþ1�2ẑ kþ ẑ k�1Þ
1
Δs

e3 � SpΔs ẑ″ðskÞ e3 : ð8Þ

Because the energy function Eplane, like the bending and tensile energies, is rotationally
and translationally invariant, the net force and the net torque due to Eplane satisfy:X
k

f̂ k ¼
X
k

X̂k � f̂ k ¼ 0:

This can be proven by direct calculation from (8) and is due to Noether's Theorem
(Arnold, 1989). These two conditions on the net force and net torque are constraints
required for self-propelled organisms.

2.4. Incorporating asymmetry

Motility patterns in sperm are typically characterized as active (symmetric) or
hyperactive (asymmetric with high amplitude). Because hyperactivity is required
for successful fertilization of the egg (Suarez et al., 1991; Suarez, 2008;
Yanagimachi, 1970), we consider both asymmetric and symmetric preferred beat-
forms. To incorporate asymmetry into this model, we use a simple amplitude
modulation approach as in Olson et al. (2011) to set the preferred curvature

function Ck(t) in expression (6) along the flagellum for all times t. For our flagellum
of length 100 μm, we let the amplitude b of the curvature function (6) take the
following values:

b¼
b1 if sin ðκsk�ωtÞo0
b2 if sin ðκsk�ωtÞZ0:

(
ð9Þ

In the case of a symmetric waveform, we choose b1 ¼ b2 ¼ 10 μm. To explore the
effect of a weak asymmetry in curvature, we choose b1¼10 μm and b2¼15 μm. For
a stronger, higher amplitude asymmetry we choose b1¼10 μm and b2¼25 μm. The
stronger asymmetry parameters have been chosen such that the behavior is
closer to the deeper bends characteristic of hyperactive sperm motility patterns
(see previous models in Olson et al., 2011; Simons et al., 2014).

2.5. Defining the flagellum frame of reference

At each time step, we need to update the preferred flagellar plane and flagellar
frame of reference. We use the method of least squares, as described in Eberly and
Geometric Tools (2014), to define this plane. Given discrete points along the
flagellum Xk , we find the center of mass of the flagellum, denoted by X . This is
simply the average position of all points Xk . We define the flagellar plane as the
plane that minimizes the sum of the squares of the orthogonal distances between
the centered points Xk�X≔ðxk; yk; zkÞT and the plane. The plane is represented by
the vector v¼ ða;b; cÞT , corresponding to least squares fit plane axþbyþcz¼ 0. We
note that because the points ðxk ; yk; zkÞ have zero average, this plane must go
through the origin by construction.

The vector v defines the normal to the flagellar plane. This is equivalent to the ẑ
coordinate direction in the local (Lagrangian) flagellum frame of reference. Noting
that a plane splits the space into two half-spaces, care is taken to ensure that v is
always pointing towards the same half-space. This is important because the
preferred curvature model in Fauci and Peskin (1988) requires the ability to discern
the sign of the curvature. In other words, we must be able to choose between a
plane normal vector pointing in the positive or negative ẑ direction. Since our
model is designed to represent a continuous process and we use a small numerical
time step, the flagellar plane should not change significantly between time steps.
Therefore, we add a check point in our algorithm that verifies that the normal
vector from the previous time step and the normal vector from the current time
step have a positive dot product.

Because forces within the flagellar plane are invariant under rotation and
translation, we may choose any x̂ and ŷ directions that would result in an
orthonormal triad with v with the appropriate “right-hand rule” relationship
between the coordinate directions. Fig. 2 shows an example of a three-
dimensional flagellum configuration, the least squares plane fit to the centered
data, as well as the flagellum frame of reference.

2.6. Computational method

In all simulations, each flagellum is initialized with a non-collinear configura-
tion at time step j¼0 to ensure that a unique flagellar plane can be defined. The
method for computing flagellar positions, forces, and velocities over time is as
follows:

1. Calculate center of mass of flagellum points Xk and translate data so they have a
center of mass at the origin.

2. Using the method of least squares, find the flagellar plane for centered flagellar
data. The normal to this plane is represented by the normal vector vj .

3. For time step j40: if vj � vj�1o0, let vj ¼ �vj (signed curvature checkpoint).
4. Define X̂k using the flagellum frame of reference determined by vj .
5. Find forces f̂ k for the points X̂k based on the total energy E.
6. Rotate forces f̂ k back to original frame of reference to obtain fk .

Fig. 2. Example of a least squares fit plane to a flagellum given by data Xk: (a) shows the original data, (b) shows the centered data with the least squares fit plane, and
(c) shows the data in the flagellum frame of reference with a least squares fit plane ẑ ¼ 0. Dots represent the head of the sperm body, with darker shading showing the parts
of the flagellum that are underneath the flagellar plane.
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7. Solve for velocities uk using the method of regularized Stokeslets and forces fk ,
as described in Olson et al. (2011).

8. Move all points Xk using a forward Euler time step with velocities uk .
9. Let j¼ jþ1 and repeat.

2.7. Multiple sperm

We are interested in how sperm trajectories are influenced by nearby
neighbors. The model proposed here can consider any three-dimensional flagellum
configuration with multiple sperm present. However, for realistic scenarios with
multiple sperm, the model must not allow flagellum points to overlap. To address
this, we add a repulsive force that acts on points that come within a certain
distance of each other.

The repulsive force acting on the point Xk by the point Xj on separate flagellum
will take the following form:

gj
k ¼ Sr

1
d
� 1
minðr; dÞ

� �
ðXk�XjÞ ð10Þ

where r¼ JXk�Xj J and d is a fixed distance. We choose this form because it is
continuous in r and it tends to infinity as r approaches zero, which ensures that
points do not get too close to one another if the time step is small. The choice of
parameter Sr is arbitrary, but should be chosen so that the repulsion forces do not
get too large too quickly (compared to the curvature forces) as r falls below d. The
forces gj

k will be added to the forces fk before solving for velocities in the
computational method. Note that contributions from this repulsion force maintain
force- and torque-free swimming.

3. Results

Here we explore the effects of extending the elastica model of
driven filaments to include an energy contribution for out-of-plane
motion. In particular, consider the cases of both a single planar
flagellum swimming in 3D free-space, and a pair of coplanar flagella
pursuing waves in that plane, whose initial configurations are all

Table 1
Parameter values used in models. Sperm parameters were set to that of a typical mammalian sperm (see Cummins andWoodall, 1985). The regularized delta function for the method

of regularized Stokeslets is the same as in Olson et al. (2011). Note that in this framework, we are using force and energy densities, so stiffness constants include a factor of μm�3.

Parameter Description Value Remark/reference(s)

ϵ Regularization parameter 1.3 μm See Cortez (2001)

Diameter of sperm flagellum 0.5 μm Serres et al. (1984)

μ Viscosity (water) 10�3 kg m�1 s�1

Δs Spatial (arc length) discretization 1 μm
L Flagellum length 100 μm Cummins and Woodall (1985)

b Amplitude 10 – 25 μm Ohmuro and Ishijima (2006), Smith et al. (2009)

κ Wavenumber 2π=L
ω Frequency 20π (10 Hz) Ohmuro and Ishijima (2006), Smith et al. (2009)

St Tensile stiffness 2 pN μm�3 Simons et al. (2014)

Sp Planar restriction stiffness 0.001–1 pN μm�3 This work

Sb Planar bending stiffness 10 pN μm�3 Olson et al. (2011)

Sr Repulsion stiffness 5 aN μm�3 This work

d Repulsion length 3 μm Set to be 42δ

Fig. 3. Initial configurations of sperm flagella. In simulations with a single sperm, the black curve in (a)–(c) is used, and has a fully three-dimensional configuration. For two
sperm coplanar simulations, we consider the flagella in panels (a)–(c), and project the black curve in (a)–(c) onto the plane z¼0 so both sperm are in the plane z¼0. For two
sperm simulations with a non-planar perturbation, we use the red and black curves as shown in panels (a)–(c). For two spermwith initial parallel flagellar planes, we use the
configurations in panels (d)–(f). All units are in μm. These small amplitude initial configurations are chosen for simplicity, and the sperm shape at later times is a sinusoidal
formwith an amplitude near 10 μm, coming from the energies defined in Section 2.1. (For interpretation of the references to color in this figure caption, the reader is referred
to the web version of this article.)
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planar. In these cases, the energy contribution for out-of-plane
motion is always zero, and the trajectories of the swimmers remain
in the initial plane. However, a pair of flagella each pursuing planar
waveforms in parallel planes will interact with each other and
generate out-of-plane motion. Below we consider these cases, and
also explore the consequences of out-of-plane perturbations of
initial flagellar configurations in both an isolated flagellum and
pairs of interacting flagella. All simulations use the model para-
meter values listed in Table 1 and were initialized with the flagellar
configurations shown in Fig. 3. The top row (Fig. 3a–c) is used for
coplanar or perturbed coplanar initial conditions, and the bottom
row (Fig. 3d–f) is used for parallel plane initial configurations. From
these small amplitude initial configurations (chosen for simplicity),
the sperm flagellum evolves into its natural waveform over time. In
all two sperm simulations presented here, the preferred curvature
waves are specified to be in-phase. For further description of the
method of regularized Stokeslets and scalings used for the fluid
equations, please see Cortez (2001) and Simons et al. (2014).

3.1. Single sperm

We first consider a single flagellum that is pursuing a sym-
metric, planar wave, but whose initial small amplitude configura-
tion is perturbed slightly out-of-plane. The flagellum was started
with a primarily x–y sinusoidal planar conformation, with the
head of the sperm slightly raised from the x–y plane (shown in
black in Fig. 3). We examine the dynamics of relaxation of this
sperm flagellum to its native planar form from its initial three-
dimensional configuration for various planarity stiffnesses Sp. The
higher the value of this stiffness parameter, the faster one would
expect the flagellum to relax towards its native plane. The
relaxation to the native flagellar plane can be characterized by

considering the maximum value of j ẑk j over all flagellum points.
Fig. 4 shows the relaxation behavior of this quantity over time for
values of Sp between 0.001 and 1 pN μm�3. We note that a value
of 1 is of the same order of magnitude as the inextensibility
parameter connecting the flagellar points together. With this
parameter value, the flagellum approaches its native plane within
10�4 s (or 10�3 beats). For symmetric waveforms, a single sperm
would relax to a planar configuration and swim linearly forward
within that plane. For an asymmetric waveform, the sperm would
also relax to a planar configuration and swim in a circular motion
within its native plane, as shown in Fig. 9a and Movie M1.

3.2. Two sperm

We examine the cases of two identical flagella pursuing in-
phase planar waves in (a) the same plane and (b) parallel planes.
The initial configurations are taken to be perfectly planar, with no
perturbations (Fig. 3a–c with no perturbation from z¼0, and
Fig. 3d–f). In the coplanar case, the sperm flagella attract and
swim side by side, never leaving the plane z¼0. The trajectories
for this scenario are shown in Fig. 5a and Movie M2. Woolley et al.
(2009) demonstrated this attraction between bull spermatozoa in
experiments where the swimming was confined to a glass surface.
Numerical simulations using multi-particle collision dynamics in
two dimensions by Yang et al. (2008) and bead models in three
dimensions by Llopis et al. (2013) also demonstrate the attraction
of nearby flagella.

In contrast, when two flagella are initialized in parallel planes, the
flagella repel over time. This is shown by the trajectories in Fig. 5b
and the Movie M3, where the two sperm are initially placed half a
flagellum length (50 μm) apart. Below, we will see that when they
are placed closer together initially, the flagella may attract before
ultimately repelling and swimming away from each other.

The velocities achieved by two identical interacting symmetric
swimmers, when compared to an identically actuated single
swimmer, depend on relative distance and orientations of the
flagella. The velocities versus minimum distance between the two
flagella as a function of time are plotted in Fig. 6 for four different
initial configurations of two swimmers that are pursuing identical
symmetric waveforms, and whose planarity stiffness constant is
Sp¼1. Whereas a single swimmer has an average path velocity
(i.e. the speed of the sperm over one beat period) of approximately
62 μm/s, the coplanar swimmers (Fig. 5a) that are attracted
towards each other have a decreased velocity of 50 μm/s after
they reach a steady swimming state (see Fig. 6c). The swimmers
that start 50 μm apart in parallel planes (see Fig. 5b) swim slower
at all times, and approach a single swimmer's speed as they swim
away from each other, as shown in Fig. 6a. If the distance between
initially parallel swimmers is reduced from 50 μm to 5 μm, the
swimmers actually see a transient increase in velocity and attract
towards each other. They eventually do swim away from each
other, however, even without a repelling force, as demonstrated in

Fig. 4. Comparison of maximal deviations from the flagellar plane over time for
various choices of planar restriction stiffness parameter Sp. These deviations were
calculated for a single spermwith the initial three-dimensional configuration given
by the black curve in Fig. 3, using the symmetric preferred curvature motility
behavior.

Fig. 5. Trajectories of the head points of two symmetrically beating sperm with different planar initial conditions. Triangles represent final positions at time t¼25 s, and the
starting position for the sperm heads is at x¼0. Units are μm. Panel (a) initializes both flagella as coplanar in the plane z¼0 with initial conditions corresponding to the
projections of the configurations in Fig. 3a–c onto z¼0. Panel (b) initializes both flagella in parallel planes in y with initial conditions shown in Fig. 3d–f. Note that coplanar
flagella attract, whereas parallel planar flagella repel. The Movies M2 and M3 show the swimming behavior of the trajectories in (a) and (b), respectively, over time.
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Fig. 6b. The initial attraction of parallel swimmers, rotating their
native plane and leading to an effective repulsion at longer times,
is consistent with the observations of Llopis et al. (2013).

Now we are going to consider perturbed coplanar initial config-
urations, as depicted in Fig. 3a–c. Figs. 7–9 and Movies M4–M7 show
examples of two sperm swimming near each other with variations in
the symmetry of the preferred curvature waveform. In particular,
Fig. 7 shows the relative motions of the sperm bodies for the two
symmetric swimmers over a period of 10 s. Initially, the two sperm

are swimming side-by-side in slightly different planes (labeled by
t¼0.1 s). As time progresses, the sperm are attracted towards each
other (labeled by t¼5.1 s) and then move away from each other
(labeled by t¼10.1 s). The trajectories of the heads of these two
swimmers are shown in Fig. 8a. While near each other, the fluid–
structure coupling of the two sperm causes each filament to impact
the trajectory (and preferred flagellar plane) of the other. The
supplementary Movie M4 shows the swimming behavior of this pair
of perturbed coplanar swimmers.

Fig. 6. Average path velocities and minimum distance (magenta curves) between flagella over time for symmetric swimmers with planar restriction stiffness Sp¼1. Panel
(a) shows velocities from the initial parallel configurations in Fig. 3d–f, corresponding to the trajectories in Fig. 5b. Panel (b) shows velocities from the same initial parallel
configurations, except the parallel planes are 10 times closer (5 μm apart). To demonstrate attraction versus repelling swimming behavior, both parallel plane simulations
were run without any repulsion forces gj

k that might interfere with trajectories. Panel (c) shows velocities from the coplanar initial configurations given by the projections of
the configurations in Fig. 3 onto the plane z¼0, corresponding to the trajectories in Fig. 5a. Panel (d) shows velocities from the non-planar initial configurations shown in
Fig. 3, corresponding to the trajectories in Fig. 5a. Both panels (c) and (d) show simulations run with repulsion forces gj

k present to prevent flagella from overlapping
unrealistically.

Fig. 7. Example of the positions of two symmetrically beating sperm at t ¼ 0:1;5:1, and 10.1 s with planar restriction stiffness Sp¼1. These are snapshots of sperm locations
from the trajectories shown in Fig. 8a. Units are μm. Initial configurations are shown in Fig. 3. The Movie M4 shows the swimming behavior of this simulation over time.
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Although two perfectly coplanar swimmers pursuing a planar
waveform would remain in that plane, this simulation shows that
a small initial perturbation from that plane is never recovered. As
is noted in Llopis et al. (2013), coplanar swimming is an unstable
configuration. Fig. 8 shows that even with symmetric motility
patterns, fully three-dimensional trajectories may appear. We also
see that these trajectories depend upon the intrinsic properties of
the actuated swimmer, since different planarity stiffness constants
result in different trajectories. For the stiffness parameter values
shown, it appears that a weaker planar restriction stiffness results
in longer-term cooperativity, as the flagella remain close to each
other for a longer period of time. This period of close swimming
shows that symmetrically beating sperm in different planes may
move in wave-like patterns, weaving around each other before
eventually swimming away. Velocities for these swimmers dec-
rease as they get closer to each other, but eventually increase
towards that of a single swimmer as they swim apart (see Fig. 6d).
It appears that for transient periods of time, these swimmers may
swim faster than a single swimmer due to their evolving relative
orientation.

For a single flagellum, an asymmetric waveform acting upon a
planar flagellum would result in a circular trajectory within the
flagellar plane alone. Fig. 9 shows that for two sperm, weak
asymmetry in the waveform can lead to more complex three-
dimensional trajectories. The flagellar plane of each individual
sperm is rotated due to the presence of a nearby neighbor. Thus,
spiral or pseudo-helical (slinky-like) trajectories can evolve from
asymmetric waveforms. Movie M6 shows this swimming behavior
over time. Movie M7 shows high amplitude, strongly asymmetric
waveforms that would characterize hyperactivity. Such high
asymmetry and amplitude cause neighboring sperm to swim in
more ball-like trajectories.

4. Conclusions

Mathematical and computational models have addressed var-
ious aspects of the hydrodynamic interaction of flagella, from
infinite sheets (Chrispell et al., 2013; Elfring and Lauga, 2009;
Fauci, 1990; Taylor, 1951) to more recent investigations in three
dimensions (Llopis et al., 2013; Mettot and Lauga, 2011), along
with novel laboratory experiments (Brumley et al., 2014). Here we
have presented an extension of the driven elastica model of a
swimming flagellum (Fauci and Peskin, 1988) into a fully three-
dimensional formulation that penalizes out-of-plane waveforms.
This allows the investigation of the fluid dynamic interaction of
nearby swimmers, whose preferred planar waveforms may be
altered by the flow.

This model is able to exhibit fully three-dimensional, helical
and ball-like trajectories arising from simple planar waveforms
due to fluid–structure coupling of nearby swimmers. In mamma-
lian sperm, hyperactivity is thought to facilitate reorientation of
the sperm body so that sperm can chemotactically move towards
the egg (Keppler, 1999). The ball-like trajectories observed in our
simulations of hyperactive waveforms may be functionally equiva-
lent to the tumbling state often described in bacterial chemotaxis,
which enables bacteria to move towards favorable environments
by randomly reorienting themselves before swimming in a new
direction (Berg, 1993). These trajectories, indeed, may be a benefit
of complex environments and neighboring swimmers, in that they
enable individual sperm to reorient in a fully three-dimensional
space instead of just within their natural plane.

Cooperativity has been established in rodent sperm, where
sperm cells swim together in the form of trains, but are also
mechanically attached to each other by hook-like cell body struc-
tures (Moore et al., 2002). In Simons et al. (2014) we examined the

Fig. 8. Example of trajectories of the head points of two symmetrically beating sperm with different planar restriction stiffnesses Sp, over 25 s. Triangles represent final
positions, starting position for sperm heads is at x¼0. Units are μm. Initial configurations are shown in Fig. 3. The Movies M4 and M5 show the swimming behavior of the
trajectories in (a) and (b), respectively, over time.

Fig. 9. Example of trajectories of the head points of weakly asymmetrically beating sperm using a planar restriction stiffness of Sp¼1, traced out over the times indicated
with the initial configurations shown in Fig. 3a–c. “Zigzag” in the trajectories demonstrates the lateral displacement of the head. Triangles (partially occluded) are placed at
the end of trajectories, starting position for sperm heads is at x¼0. Units are in μm. The Movies M1 and M6 show the swimming behaviors of (a) and (b), respectively,
over time.
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hydrodynamics of sperm attachment and detachment from epithe-
lia by allowing for forces due to dynamic elastic linkages between
the actuated elastic flagellum and a planar wall. We will use the 3D
extension described here, along with these dynamic linkages, to
capture the complex binding interactions observed in some species
(Fisher and Hoekstra, 2010; Johnston et al., 2007; Moore et al.,
2002; Moore and Taggart, 1995).

Our current model is a simplistic model chosen to compare
with previous planar model results. For instance, the effect of a
sperm head has not been included in our model, which would
introduce drag at the base of the flagellum and could affect
motility patterns particularly near surfaces (see the recent work
of Ishimoto and Gaffney, 2014). Moreover, some species have been
shown experimentally to have three-dimensional sperm config-
urations that cannot be represented by simple planar forces
described in our model. In fact, there is evidence that sperm
flagella exhibit helical or non-planar waveforms in some settings
(Bishop, 1962; Phillips, 1972; Rikmenspoel, 1965; Woolley and
Vernon, 2001). In Woolley and Osborn (1984), the three-
dimensional nature of hamster spermatozoa was determined to
give rise to primarily clockwise torsional component, indicating
that this came not from randomly applied (or external) forces but
some structural feature of the flagellum itself. Additionally, the sea
urchin behavior observed in some studies (Cosson et al., 2003;

Woolley and Vernon, 2001) is thought to demonstrate a natural
three-dimensional beat pattern which only reduces to a near-
planar motion near surfaces. For these intrinsic three-dimensional
waveforms, the method of regularized Stokeslets coupled to a
Kirchhoff rod model (Olson et al., 2013) should be explored.
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Appendix A. Supplementary material

The following are the supplementary data to this paper:
Video S1 Video S2 Video S3 Video S4 Video S5 Video S6 Video S7

Video S1. A weakly asymmetric swimmer starting with a perturbed planar initial configuration (see black curve in Fig. 3a–c, with planar stiffness constant Sp¼1. The sperm
travels in a circular path, recovering from its non-planar configuration quickly. Gray curve shows the projection (shadow) of the flagellum on the plane z¼�100. Units are in
microns. Length of simulation is 25 s. A video clip is available online. Supplementary material related to this paper can be found online at http://dx.doi.org/10.1016/j.
jbiomech.2015.01.050.
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Video S3. Two symmetric swimmers with a parallel planar initial configuration (see Fig. 3d–f), with planar stiffness constant Sp¼1. The two swimmers repel over time. Light
shaded curves show the projections (shadows) of the flagella on the plane z¼�100. Units are in microns. Length of simulation is 25 s. A video clip is available online.
Supplementary material related to this paper can be found online at http://dx.doi.org/10.1016/j.jbiomech.2015.01.050.

Video S2. Two symmetric swimmers with a coplanar initial configuration (see Fig. 3a–c), with planar stiffness constant Sp¼1. The two swimmers attract over time. Light
shaded curves show the projections (shadows) of the flagella on the plane z¼�100. Units are in microns. Length of simulation is 25 s. A video clip is available online.
Supplementary material related to this paper can be found online at http://dx.doi.org/10.1016/j.jbiomech.2015.01.050.
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Video S5. Two symmetric swimmers with a perturbed planar initial configuration (see Fig. 3a–c), with planar stiffness constant Sp¼0.01. The two swimmers “weave” near
each other for a more prolonged period than in Movie M4 because of a weaker stiffness constant. Light shaded curves show the projections (shadows) of the flagella on the
plane z¼�100. Units are in microns. Length of simulation is 25 s. A video clip is available online. Supplementary material related to this paper can be found online at http://
dx.doi.org/10.1016/j.jbiomech.2015.01.050.

Video S4. Two symmetric swimmers with a perturbed planar initial configuration (see Fig. 3a–c), with planar stiffness constant Sp¼1. The two swimmers “weave” near each
other before swimming apart. Light shaded curves show the projections (shadows) of the flagella on the plane z¼�150. Units are in microns. Length of simulation is 25 s. A
video clip is available online. Supplementary material related to this paper can be found online at http://dx.doi.org/10.1016/j.jbiomech.2015.01.050.
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Video S6. Two weakly asymmetric swimmers with a perturbed planar initial configuration (see Fig. 3a–c), with planar stiffness constant Sp¼1. The two swimmers move in
curved “slinky-like” trajectories over time. Light shaded curves show the projections (shadows) of the flagella on the plane z¼�250. Units are in microns. Length of
simulation is 25 s. A video clip is available online. Supplementary material related to this paper can be found online at http://dx.doi.org/10.1016/j.jbiomech.2015.01.050.
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