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a b s t r a c t

The complexity of the mechanics involved in the mammalian reproductive process is evident. Neither an
ovum nor an embryo is self-propelled, but move through the oviduct or uterus due to the peristaltic
action of the tube walls, imposed pressure gradients, and perhaps ciliary motion. Here we use the
method of regularized Stokeslets to model the transport of an ovum or an embryo within a peristaltic
tube. We represent the ovum or the embryo as a spherical vesicle of finite volume – not a massless point
particle. The outer membrane of the neutrally buoyant vesicle is discretized by nodes that are joined by a
network of springs. The elastic moduli of these springs are chosen large enough so that a spherical shape
is maintained. For simplicity, here we choose an axisymmetric tube where the geometry of the two-
dimensional cross-section along the tube axis reflects that of the sagittal cross-section of the uterine
cavity. Although the tube motion is axisymmetric, the presence of the vesicle within the tube requires a
fully three-dimensional model. As was found in Yaniv et al. (2009, 2012) for a 2D closed channel, we find
that the flow dynamics in a 3D peristaltic tube are strongly influenced by the closed end and the manner
in which the peristaltic wave damps out towards the closure. In addition, we demonstrate that the
trajectory of a vesicle of finite volume can greatly differ from the trajectory of a massless fluid particle
initially placed at the vesicle's centroid.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Rhythmic muscular contractions that transport fluid occur in
most physiological systems. Peristalsis is an example of such a
rhythm whereby a wave of contraction is passed along a tube
containing fluid. Peristaltic waves convey urine from the kidney to
the bladder (Jimenez-Lozano et al., 2009), and move an ingested
food bolus along the esophagus towards the stomach (Brasseur
et al., 2007). In the reproductive system, oviductal peristalsis
contributes to ovum transport to the site of fertilization, and
uterine peristalsis enhances sperm transport through the uterus
towards the oviduct (Fauci and Dillon, 2006). The successful
implantation of an embryo at the fundal end of the uterus is a
crucial stage of mammalian reproduction. Whether the embryo is
introduced into the uterus after natural conception or by a
catheter after in-vitro fertilization, the intrauterine fluid flow
induced by peristalsis could play a central role in this success
(Bulletti and de Ziegler, 2005). In an effort to quantify the effects of
uterine peristalsis on embryo transport, researchers have

developed a series of fluid dynamic models that analyze the flow
induced by peristalsis in a two-dimensional channel (Eytan and
Elad, 1999; Eytan et al., 2001; Yaniv et al., 2009). Resulting flow
rates and trajectories of fluid tracers depend upon the geometry of
the channel, the asymmetry of the peristaltic wave and the
boundary conditions imposed on the channel ends. In addition,
computational models that include a fluid-filled catheter inserted
into either an open channel (Yaniv et al., 2003) or a closed-end
channel (Yaniv et al., 2012) show that particle transport depe-
nds upon the delivery speed of the catheter load and the tim-
ing of catheter discharge with respect to the phase of the
peristaltic wave.

Motivated by the model presented in Yaniv et al. (2009) that
demonstrated that a closed fundal end dramatically reduced the
transport of fluid tracer particles, here we present a model of
peristalsis in a three-dimensional closed-end tube. We assume
that the length and velocity scales are such that the flow is
governed by the Stokes equations of zero Reynolds number flow.
As in our previous study of peristaltic pumping (Aranda et al.,
2011), the flow is computed using the method of regularized
Stokeslets (Cortez et al., 2005). Moreover, we also include the
coupling of an elastic vesicle to the surrounding viscous fluid to
model the transport of an embryo of non-zero volume.
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In the following sections, we will describe the mathematical
formulation of the coupled tube–vesicle–fluid system, and outline
the regularized Stokeslet algorithm used to evolve the flow and the
vesicle trajectories. We will present numerical results that shed light
on the effect of the tube's closed-end on tracer and vesicle transport,
and the effect of vesicle radius on overall transport. In addition, we
show that a vesicle placed off the centerline of the axisymmetric
tube undergoes appreciable rotation as it moves towards the fundal
end of the tube.

2. Model

2.1. Tube dynamics

We consider a finite, axisymmetric tube whose longitudinal
axis is the segment 0rxrL. A cylinder of radius r0 is perturbed by
a time-dependent peristaltic wave resulting in circular cross
sections at a fixed value of x of radius:

rðx; tÞ ¼ roþa sin 2π
x
λ
� t
T

� �� �
tanh α

L
λ
�x
λ

� �� �
ð1Þ

where ro is the average tube radius, a is the maximal peristaltic
amplitude, λ is the wavelength, and c¼ λ=T is the wave velocity.
Note that the amplitude of the peristaltic wave is zero at the tube
end x¼L, and the tapering to this zero-amplitude is controlled by
the parameter α. We choose the tube parameters and wave kine-
matics in Table 1 based upon those of a sagittal cross-section of a
uterine cavity (Eytan and Elad, 1999). Fig. 1 shows the geometry of
this tube at a fixed phase of the peristaltic wave.

2.2. Vesicle geometry

The embryo will be represented by a spherical, fluid-filled vesicle
whose surface supports elastic forces. The surface membrane of this
vesicle will be discretized by nodes that are nearly equally spaced.
The surface nodes are connected by a network of Hookean springs
with prescribed elastic moduli. If these springs are stretched or
compressed away from their resting lengths, restoring forces on the

vesicle surface develop. Assume that yk and yl are two nodes on the
vesicle surface that are connected by a linkage or spring of rest
length Δkl. The force at yk due to this spring is

gðykÞ ¼ τkl
Jyl�yk J

Δkl
�1

� � ðyl�ykÞ
Jyl�yk J

: ð2Þ

There is an equal and opposite force due to this spring at the node yl.
Here τkl is the elastic modulus of the linear spring and Δkl is its
resting length. Note that the force given in Eq. (2) is the product of
the elastic modulus of the spring and its relative elongation, and
points in the direction of the vector connecting the spring's end-
points. The coupling of these forces to the surrounding viscous fluid
is described below.

2.3. Governing equations of the coupled fluid–tube–embryo system

The surface of the uterine cavity and the surface of the embryo
support localized forces that are exerted on the viscous fluid in
which they are immersed. The flow is governed by the incom-
pressible Stokes equations:

μΔu¼∇p�Fðx; tÞ�Gðx; tÞ
∇ � u¼ 0 ð3Þ

where t is the time, μ is the dynamic viscosity, u is the fluid
velocity (a 3D vector), and p is the pressure. The force densities
(force per volume) Fðx; tÞ and Gðx; tÞ are exerted on the fluid by the
uterine cavity walls and the embryo surface, respectively. These
force densities are also 3D vectors:

Fðx; tÞ ¼
Z
Σ1

fðXðs; tÞ; tÞδðx�Xðs; tÞÞ dA

Gðx; tÞ ¼
Z
Σ2

gðYðr; tÞ; tÞδðx�Yðr; tÞÞ dA ð4Þ

where X are the points on the uterine cavity surface Σ1, Y are the
points on the surface of the vesicle Σ2, s and r are the two-
dimensional surface coordinates, and δ is the three-dimensional
Dirac delta function. While the force per unit area distributed on
the vesicle surface g is an elastic membrane force density due to
surface deformations, the force per unit area f on the tube surface
will be chosen so that the prescribed kinematics (and hence
velocities) given in Eq. (1) are achieved. The passive, neutrally
buoyant vesicle is required to move at the local fluid velocity,
resulting in the boundary condition:

dYðr; tÞ
dt

¼ uðYðr; tÞ; tÞ: ð5Þ

The solution of the coupled Equations (3)–(5) will capture the
viscous drag exerted by the fluid on the vesicle.

3. Methods

3.1. Regularized Stokeslets

When flow is governed by the Stokes equations in three-dimensional free-
space, an isolated force density hkδðx�XkÞ applied at a single point Xk results in
the velocity field given by the classical Stokeslet (Pozrikidis, 1992):

uðxÞ ¼ 1
8πμ

1
rk
hkþ

hk � ðx�XkÞð Þðx�XkÞ
r3k

 !
; ð6Þ

where rk ¼ Jx�Xk J is the distance between the point at which the velocity is
evaluated and the point where the force is applied. Due to the linearity of the
Stokes equations, the resulting velocity field due to a sum of such point forces
would be the sum of the resulting Stokeslets. Although the Stokeslet solution is
singular at the points Xk at which forces are applied, when these forces are
distributed on a two-dimensional surface, the singularity is integrable on that
surface. The method of regularized Stokeslets (Cortez et al., 2005) replaces the
singular point force density with a regularized concentrated force density
hkϕϵðJx�Xk J Þ that distributes the force in a small fluid volume around the point.

Table 1
Model parameters.

Parameter Symbol Units Value

Channel length L¼ 2λ mm 50
Wavelength λ mm 25.0
Tube radius ro mm 2.0
Amplitude a mm 0.6
Wave speed c mm/s 1.25
Viscosity μ gm=mm s 0.001
Frequency f Hz 0.05
Period T ¼ 1=f s 20
Short taper parameter αs – 40
Long taper parameter αl – 1
Vesicle radius r mm 0.00–0.42

Fig. 1. Schematic of the axisymmetric tube with a closed end. The tube surface at
x¼L is a circular disk.
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For the choice of the blob (or cut-off) function

ϕϵðrÞ ¼
15ϵ4

8πðr2þϵ2Þ7=2
;

the resulting velocity field due to N such regularized forces hk is given by

uðxÞ ¼ 1
8πμ

XN
k ¼ 1

r2k þ2ϵ2

ðr2k þϵ2Þ3=2
hkþ

hk � ðx�XkÞð Þðx�XkÞ
ðr2k þϵ2Þ3=2

: ð7Þ

We note that the velocity field in Eq. (7) is an exact solution to the Stokes equations
μΔu¼∇p�PhkϕϵðJx�Xk J Þ, is everywhere incompressible, and is defined
everywhere. In addition, this expression tends to the classical Stokeslet as the blob
parameter ϵ tends to zero. The evaluation of Eq. (7) at each of the N points at which
the regularized forces are concentrated results in a linear relationship between
these velocities UðXkÞ ¼Uk and the forces hk for k¼ 1;…N. While this linear
relationship may be directly evaluated to arrive at velocities when forces are
specified, the 3N � 3N linear system may also be used to solve for the forces hk that
need to be applied at the points Xk to result in specified velocities Uk . This feature is
central to our numerical method because the kinematics of the tube surface, and
hence the velocities of its material points, are specified. On the other hand, the
velocities of the material points on the vesicle surface are not specified, but rather
the elastic forces due to its surface deformations are. The algorithm that exploits
the linearity of the Stokes equations and the regularized Stokeslet solutions
to evolve the coupled fluid–tube–vesicle system described by Eqs. (3)–(5) is
described below.

The numerical algorithm: Our goal is to evaluate the transport of the vesicle
within the three-dimensional tube due to the peristaltic waves being passed along
the tube walls. The surface of the tube Σ1 at time step n is discretized by Nt nodes
Xn

k for k¼ 1;…Nt . Using the kinematics in Eq. (1), the prescribed velocities Un
k may

be calculated by differentiation. At time t¼0 the surface of the neutrally buoyant
vesicle Σ2 is discretized by the Nv nodes Y0

j for j¼ 1;…Nv . The distance between
each pair of nodes is set to be the rest length of a Hookean spring between those
nodes (Δkl in Eq. (2)). The time-stepping algorithm proceeds as follows:

Given the vesicle nodes Yn
j for j¼ 1;…Nv , and the velocities Un

k imposed at the
tube surface nodes Xn

k ; k¼ 1;…;Nt ,

1. Compute the Nv forces gn
j for j¼ 1;…Nv at these vesicle points due to the

network of Hookean springs using Eq. (2).
2. Use Eq. (7) to evaluate at the Nt tube nodes Xn

k the velocities that would be
induced by the Nv elastic forces gn

j in the absence of any other forces. Call these
auxiliary velocities U

n
k ; k¼ 1;…;Nt .

3. Use the linear system arrived at by evaluating Eq. (7) at the Nt tube nodes Xn
k to

solve for the forces fnk ; k¼ 1;…;Nt , that need to be applied on the tube surface
in order to achieve the velocities on the tube Un

k �U
n
k .

4. Given the distribution of forces fnk ; k¼ 1;…;Nt , and gn
k ; k¼ 1;…;Nv , at the tube

surface and the vesicle surface, respectively, use Eq. (7) to evaluate the
velocities at the vesicle nodes Yn

j ; k¼ 1;…;Nv due to all forces to arrive at
Vnþ1
j ; j¼ 1;…;Nv .

5. Update the position of the vesicle nodes (using Euler's method for simplicity):

Ynþ1
j ¼ Yn

j þΔtVnþ1
j ; j¼ 1;…;Nv : ð8Þ

HereΔt is a time-step. In all of the simulations presented here we use 400 time
steps per period of oscillation of the tube. For the wave geometries considered here,
we have performed convergence tests that demonstrate that this time resolution is
more than adequate. In fact, little differences between trajectories of particles were
noted when the time-step was increased to one corresponding to 300 time steps
per period.

3.2. Discretization of tube and vesicle surfaces

Using the tube geometry and wave kinematics in Table 1, we discretize the tube
surface by distributing equidistant nodes around circular cross sections with
spacing Δs such that the distance between cross sections is also approximately
Δs. In the case of a closed-end tube, nodes are placed within the area of the circular
cap, distributed so that each node corresponds to an area element of approximately
Δs2, as described in Aranda et al. (2011). At these nodes, the fluid velocity is
specified to be zero. In all simulations presented here, we choose M¼101 cross
sections, Δs� 0:01L, and a blob size of ϵ¼ 1:5Δs. We have performed spatial
convergence tests that compare velocity profiles in the tube computed using
M ¼ 81;101;126 cross sections to resolve the tube, in each case choosing the same
relationship between the blob parameter and the spacing between nodes. The
numerical results demonstrate first order convergence in tube discretization.
Moreover, the velocities computed using the mid-resolution of M¼101 differ by
a maximum of four percent from those computed at the finest resolution of
M¼126.

A Voronoi tesselation of a surface partitions that surface into discrete regions,
each with a designated seed point (or generator), such that all points in a region are

closer to that region's seed point than any other seed point. Following Du et al.
(2003), we use a spherical centroidal Voronoi tessellation to discretize the vesicle
surface. This results in a polyhedron that approximates the sphere so that each
nodal point corresponds to a surface area no larger than Δs2. Because we would
like the vesicle to remain spherical, we treat the elastic moduli of the Hookean
springs connecting surface node points as penalty parameters that are chosen large
enough to resist deformation. We measure the vesicle's deformation from a sphere
by computing the distance of each surface point to the vesicle's centroid, and then
compare these to the prescribed radius. We note that in the simulations presented
here, this deformation never exceeded 10 percent.

4. Results

We present the results of our simulations using nondimen-
sional length and time, where the length scale is chosen to be the
wavelength λ and the time scale is the temporal period T of the
peristaltic wave.

4.1. Trajectories of tracer (massless) particles

In Aranda et al. (2011), we examined the peristaltic pumping of a
Stokesian fluid when a phase-shifted asymmetry was imposed
upon an open three-dimensional tube. In that study, we also
validated the numerical method by comparing computed flow rates
in an axisymmetric tube with those computed for periodic axisym-
metric tubes using long wavelength theory (Shapiro et al., 1969). It
was previously shown by Li and Brasseur (1993) that flow rates in
open-ended, finite tubes with an integral number of wavelengths
are the same as those in the periodic case.

Before addressing vesicle transport, we first examine the trajec-
tories of fluid tracers in axisymmetric tubes of three kinds: (1) open
tube, (2) closed-end with long taper (α¼ 1) and (3) closed-end with
short taper (α¼ 40). In this system where no vesicle is being tracked,
we can solve a linear system for the forces that must be applied at the
tube surface points (including the circular cap) so that the desired
velocities are achieved. The resulting velocity of a tracer particle may
then be directly computed by summing the contributions from these
forces (Eq. (7)). Fig. 2 shows the trajectories of five tracer particles
initially seeded radially within the circular disk at x¼L/8 mm. The
particle trajectories remain in the plane containing the particles' initial
positions and the tube axis due to axial symmetry. The trajectories in
Fig. 2(a), the open tube, are tracked for 1.5 periods, when those
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Fig. 2. Trajectories of fluid tracers that were initially seeded radially within the
circular disk at x¼ L=8 in the case of (a) an open tube, (b) a closed-end tube with
long taper, α¼1, (c) a closed-end tube with short taper, α¼40. Note that the
peristaltic tube is shown only at its initial phase for reference and that the particles
always remain within the peristaltic tube.
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initialized closer to the tube axis have exited the tube. Fig. 2(b) and
(c) shows the trajectories of tracers with the same initial positions
within the closed-end tubes of long and short taper, respectively.
These trajectories are tracked for two periods. While the particles that
begin near the tube axis do move towards the closed fundal end, we
see that those placed off-center trace out loops but make substantially
less progress in the axial direction than their counterparts in the open
tube. The manner in which the wave decays at the tube closure also

has a significant impact on the trajectories (compare Fig. 2(b) and (c)).
The two-dimensional simulations in closed-end channels presented by
Yaniv et al. (2009) show qualitatively similar results. Moreover, Yaniv
et al. (2009) identified cellular regions within the channel, spaced one
wavelength apart, where fluid markers that were initialized within
these regions could not escape. We have not identified such imperme-
able regions in the three-dimensional tube although the manner in
which the tube tapers seems to affect the possibility of cellular regions.
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Fig. 3. Progress of vesicle centroids in the axial direction. (a) Centroids initialized on axis in open tube. (b) Centroids initialized off axis in open tube. (c) Centroids initialized
on axis in closed-end, long tapered tube. (d) Centroids initialized off axis in closed-end, long tapered tube. (e) Centroids initialized on axis in closed-end, short tapered tube.
(f) Centroids initialized off axis in closed-end, short tapered tube.
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4.2. Trajectories of embryo

The embryo at the time of implantation in the uterus, called a
blastocyst, is not a fluid tracer, but a nearly spherical object of radius
approximately r¼0.07 mm (Romao et al., 2010). Elastic vesicles of
non-zero volume can span fluid streamlines, and also exert force on
the surrounding fluid, influencing the velocities induced by the
contracting tube walls. In order to emphasize the effect of a vesicle
of non-zero radius, we examine embryos with radii larger than that
of a blastocyst, but of the same order of magnitude. We initialize the
vesicle so that its centroid is at the cross-section of the tube x¼L/8
and is either on the tube axis or off the axis but always in the
xy-plane. Fig. 3 shows the results of 24 simulations where the
vesicles of four different radii (r¼0, r¼0.14 mm, r¼0.21 mm,
r¼0.42 mm) are placed within the three tubes, with centroid either
on-axis or off-axis. Note that the vesicle of zero radius is just a fluid
tracer. The largest vesicle considered has a radius that is 21 percent
of the tube radius. The first row, Fig. 3(a,b), shows that in an open
tube there is little difference between the x-displacement of the
vesicles and the point particle whether they start on the axis or off
the axis. In both of the closed-end tubes, we see that the vesicles
that are initialized on-axis travel paths that are not much dependent
on their radii (Fig. 3(c,e)). In fact, the vesicle trajectories are well-
approximated by the trajectory of a fluid tracer. These centrally
seeded vesicles advance just about to the tube closure x¼ L in the
short-taper tube, and oscillate near x¼ 1:7L in the long-taper tube.
The dramatic difference between x-trajectories of vesicles of non-
zero volume and tracer particles occurs for those placed off-axis in
the closed-end tubes. The solid curves in Fig. 3(d,f) depicting fluid
tracers show that they do not make any progress down the tube, but
undergo periodic oscillations, as observed in the simulations of
Yaniv et al. (2009). However, vesicles of non-zero radius are able to
move across streamlines, and progress towards the fundal end

(dashed curves). In fact, the vesicle with the largest radius moves
towards the closed end most quickly. Fig. 3(d) also shows how the
long taper slows down the progress of the vesicles. Fig. 4 shows the
three-dimensional trajectories of the fluid tracer and the three
vesicles in the short-tapered, closed-end tube. We remark that the
tracer particles and the vesicle centroids are initially placed in the xy-
plane (but off the tube axis) so that they remain in this plane
throughout the simulation due to the symmetry of the tube.

We also note that a spherical, non-zero radius embryo initially
placed off-center undergoes a significant rotation as it progresses
down the tube towards the closed end. Fig. 5 shows snapshots of
the vesicle of largest radius as it progresses within the long-
tapered, closed-end channel. Initially, the centroid of this vesicle
was placed just off the axis of the tube, at ð0:25;0:06;0Þ, where the
wavelength λ corresponds to a unit length. The coloring on the
panels of the discretized vesicle demonstrates that the rotation
changes direction during the timeframe shown. Because the
motion of the tube walls is axisymmetric, the vesicle can only
rotate about the normal to the fixed plane containing the tube axis
and the centroid of the vesicle at time zero. We show snapshots of
the embryo within this plane at time intervals of 0.125 of a
peristaltic period in Fig. 6. The rotation of the sphere is character-
ized by a single angle θðtÞ, shown in Fig. 7, where red dots indicate
the angle corresponding to the snapshots in Fig. 6. Again, we see
the change in the direction of rotation.

5. Discussion

Motivated by embryo transport in the uterine cavity, here we
presented a model of peristaltic transport of a vesicle within a
three-dimensional tube. We examined such transport in the case
of an open axisymmetric tube as well as an axisymmetric tube

Fig. 4. Trajectories of vesicles of radii r: (a) 0.00 mm, (b) 0.14 mm, (c) 0.21 mm, (d) 0.42 mm in the closed-end tube α¼ 40 tracked for 6 periods. The vesicles were initially
placed off-axis. These trajectories are the 3D views of those depicted in Fig. 3(f).
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Fig. 5. Snapshots of vesicle of radius R, discretized with Nv¼59 nodes, at four different times within the closed-end, long tapered tube. Zoomed-in view of the discretized
vesicle surface is shownwith panels colored to demonstrate rotation. Note that the direction of rotation does change within the shown time period. (For interpretation of the
references to color in this figure caption, the reader is referred to the web version of this paper.)
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with a closed end. We find that, in a closed-end tube, the transport
of a finite-sized vesicle differs from that of a fluid tracer placed at
its centroid when the vesicle is introduced off-axis. While fluid
tracers do not make progress towards the fundal end of the
idealized uterine cavity, the vesicles can cross streamlines and
progress towards an implantation site. These differences in trajec-
tories become more pronounced as the radius of the vesicle
increases.

Previous computational studies of finite-size particle transport in
a two-dimensional periodic channel include an immersed boundary
model by Fauci (1992), and a more recent lattice Boltzmannmodel by
Connington et al. (2009). Fauci (1992) found that an axially placed
circular particle was transported in the direction of the peristaltic
wave at a velocity much greater than a fluid tracer. This seems to
contradict the corresponding results presented here for an axially
placed vesicle in an open tube, where we observe very little
difference between the transport speeds of tracers and vesicles.
However, Connington et al. (2009) showed that the increased
transport speed observed in Fauci (1992) was due to the periodic
copy of the circular particle at every wavelength of the channel.
When periodic channels with only one finite-sized particle per five
or ten wavelengths were tracked, the transport speed did not
increase with particle diameter (Connington et al., 2009). Again, we
see the crucial dependence upon boundary conditions imposed at
the tube ends.

This method that couples a vesicle of non-zero volume to a
Stokesian fluid has recently been used to investigate the transport
of a microscale load by a rotating helical flagellum (Buchmann
et al., in press). Note that this algorithm does allow the vesicle

shape to respond to the evolving fluid flow. Here we treat the
elastic moduli of the Hookean springs as penalty parameters
chosen large enough to maintain a nearly spherical shape. Alter-
natively, these may be chosen to reflect the material properties of
the vesicle, which could be more deformable.

6. Conclusion

In summary, we assert that trajectories of neutrally buoyant
vesicles of small but non-zero radii within a peristaltic tube can be
dramatically different from those of massless fluid tracers. This can
have implications in the study of embryo transport in a uterine
cavity, and suggests that embryos of finite volume can progress
towards the fundus better than fluid particles of zero volume given
the same motion of the uterine walls.

We remark that this algorithm does not represent a fully coupled
system, since the kinematics of the axisymmetric tube are pre-set
and do not depend upon the presence of the immersed vesicle. In
reality, the surface of the uterine cavity is a complex structure
composed of passive elastic tissue and actuated muscles, whose
contractions are induced by an interplay of biochemical and electrical
signals (Bursztyn et al., 2007). Future models of embryo transport
should include a representation of the force-generating mechanisms
of the uterine muscles and feedback from the surrounding fluid.
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