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A Lagrangian method that combines vortices and impulse elements (vortex dipoles)
is introduced. The applications addressed are flows induced by the motion of thin
flexible boundaries immersed in a two-dimensional incompressible fluid. The im-
pulse elements are attached to the boundaries and are used to account for the forces
affecting the motion. The vortices occupy a region surrounding the boundaries and
are used to account for the viscous effects via a deterministic diffusion method. The
convergence of the method is demonstrated numerically. The method is then used to
track the motion of an undulating filament, simulating the swimming of an organism
in a slightly viscous fluid. © 2000 Academic Press
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1. INTRODUCTION

The goal of this paper is to introduce a numerical method for moderate to high Reynt
number flows interacting with immersed boundaries. This is a regime where relativ
little work has been done. The numerical solution of fluid flow problems with thin flexib
moving boundaries is motivated by the wide range of potential applications in biology «
physiology. For example, the walls of the heart or lungs and swimming eels can be mod
as thin membranes embedded in fluids. These are examples of flows with a reasonably
Reynolds number, in contrast to microorganism and cell motion, where the length sc
typically reduce the Reynolds number®@j1) or less.

The method introduced here is based on the Lagrangian vortex method but generali;
with the use of impulse density as a second computational variable. Impulse variables
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shown their usefulness in problems with immersed boundaries, where forces are restr
to thin filaments in the fluid. The use of impulse in the context of immersed bound:
motion has been studied for the case of Euler flow in [3, 6, and 21]. In those papel
was shown that the impulse method converged to asymptotic solutions obtained fro
perturbation analysis. For viscous flows, a mechanism to model the diffusion term mus
added. This can be done while maintaining the Lagrangian character of the method witt
use of deterministic diffusion methods. These are schemes in which the vortex stren
rather than the location of the particles, are changed at every time step to simulate diffu:
Various types of deterministic methods exist (see [4, 7, and 10] for example) but many nr
use of similar cutoff functions and only differ in the way they approximate the Laplaci
operator. We chose to use Fishelov's method since it lends itself more naturally for
purposes of this paper; however, it is not the only available choice. The grid-free chara
of the method has the desirable property of introducing little humerical dissipation &
remaining stable when decreasing values of viscosity are used.

McCracken and Peskin [16] developed a vortex method for the study of blood fl
through heart valves. Their method combined point vortices near the immersed bound:
and finite differences on a grid. The results showed signs of noise in the boundary mof
possibly due to statistical error in the random diffusion model they used, compoundec
the presence of very strong point vortices. The method presented here was motivate
their work.

The thin flexible membranes are described by points which move with the fluid veloc
and are used to compute the forces in the same way as in other methods, such as Pe
immersed boundary method [9]. The boundary is interpreted as a vortex dipole layer wt
strength is space- and time-dependent due to the forces [3]. Typical forces are due to ter
the stretching of the membranes beyond a prescribed resting length; and due to bendin
deviations in the shape of the membrane away from a target curvature. Such forces de
on the specific application and the elasticity model used. For instance, an elastic chai
filling with fluid might only include elastic forces while an active swimming creature migt
include elastic and bending forces. It is interesting to study the physiological mechani
that lead to various swimming motions displayed by undulating creatures. This, howeve
not the objective of the current work. Instead, a target motion is prescribed in the numel
tests without regard to the biological justification or efficiency of such motion. The me
goal is to present the numerical method and its usefulness for the computation of tl
motions.

Since the numerical method is based on the evolution equations for vorticity and impu
these are presented first for the case of Euler flow and the numerical method derived
them is explained. The presentation of the method is then finished with a discussio
the diffusion model and its implementation in the present context. Numerical examples
presented at the end.

2. EQUATIONS OF MOTION

Several formulations of the equations of fluid motion are used in computations. T
Navier—Stokes equations are commonly written in terms of the fluid velocity or in terms
the vorticity. In both cases, many numerical methods have been based on those equa
More recently the fluid equations have been expressed in terms of impulse density (st
times called magnetization). Impulse, which can be thought of as linear momentum, ca
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defined for constant density fluids as a vector field whose curl is the vorticity in the flc
At the same time the impulse field is not required to have zero divergence. In this way,
impulse and the fluid velocity differ at most by the gradient of some scalar function. T
two formulations relevant to this paper are those based on vorticity and impulse.

The evolution equations for a viscous incompressible fluiirare

U +U-Vu=—-Vp+vAu, V.u=0, Q)

whereu is the velocity,p the pressure, andthe kinematic viscosity. We assume from now
on that the fluid density is constant and septe 1.

The diffusion term will be treated separately in the numerical method so we consi
inviscid flow first. In two dimensions and in the absence of forces, the Euler equation
terms of vorticity,w, are

ot +U-Vo =0, V.u=0 (2)

sothatthe vorticity is simply transported by the incompressible flow. In unbounded doma
and assuming the vorticity has compact support, we requirauthal as|x| — oo. The
incompressible flow field can be given the fours: (uy, u2) = (Yy, —x) for some function
¥, and since vorticity is the curl of velocity, we hawe= d,u, — dyu; = —Ayr. Thus given
the vorticity, the velocity is recovered by the Biot—Savart law,

U= (Gy*w, -Gy *x w),
whereG is the Green'’s function satisfyingG = —34. In full form, the velocity is written

/ / / 1 (_y+y/’X_X/) / / /
= K(x— dx' = — ,y)dx dy.
u(x) /RZ X — XN (X) dx 27 o (X —X)2 1 (y = y/)z“’(x y)ydx dy

A more complete discussion of the vorticity formulation of fluid flow can be found i
[20, 22].

As mentioned before, the impulse density, denotechbis a vector field that coincides
with the fluid velocity up to a gradient:

m=u+ Vé¢. 3)

For incompressible flowsn is the sum of a divergence-free field and a gradient, so the I
equation is the orthogonal decompositiomofSubstituting Eq. (3) into the Euler equations
in primitive variables and identifying the pressure wiith=¢; +u- V¢ + %|u|2 we arrive

at the Euler equations in terms of impulse,

m;+u-vm=—(Vu)'m+F, u="Pm, 4)

whereVu is a matrix withi j -entry given bydu; /9x;. We have included the force term since
it is precisely the presence of forces that will give rise to an impulse field in our probler
The last equation represents a projection which expresses the fact that the fluid vel
can be recovered from impulse by extracting the divergence-free partTiis is done by
taking the divergence of Eq. (3), solving the resulting Poisson equatiap ifoterms of
m, and isolatingu. Equations (2) and (4) are used to derive the evolution equation of t
vortex and impulse strengths in the numerical method.
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2.1. The Forces

Immersed boundaries can be described in a general way as curves embedded in ¢
dimensional flow along which forces act to influence the fluid motion. If the immers:
boundary is parametrized by (¢, t) for 0<¢ <L, then the forces concentrated on the
membranes are given by

L
F(x) =/ f(€,)6(x — X(¢, 1)) de,
0

wheref (¢, t) represents the force density on the curve. This is a singular expressiof isince
atwo-dimensional Dirac delta. This formulation is equivalent to specifying jump conditio
across the immersed boundary in terms of the force density [19].

3. THE NUMERICAL METHOD

The approach used here is a vorticity-based method that combines impulse vector t
and vortex blobs. The advantage of using impulse elements is the simplicity with wh
they introduce the effects of forces into the fluid motion. An organism, such as a fist
an eel, generates forces along its body in order to push the fluid near its tail, which res
in forward motion. In terms of the mathematical formulation of the problem, these forc
appear as a term on the right hand side of the impulse strength equation.

Suppose the immersed boundary is discretized by the pdinfhe impulse in the flow
can be represented as a sum of regularized delta functions centereaas the

N
m(x) = A¢ Z m* f5(x — x), (5)
k=1

whereAZ is a discretization parameter of the immersed boundariedNaiglthe number
of impulse elements. The representation of impulse as a sum of blobs is reasonable |
the expression of the forces. The cutoff functifjis a smooth approximation to the delta
function given byfs(x) = 82 f (x/8). Generally the order of the approximation is measure
by the number of moment conditiorfssatisfies. A cutoff that satisfie f (x) dx =1 and

//xikf(xl,xz)dxldxzzo for i=12 and k=1,...,.m—-1

is anmth order cutoff [1, 12].
One needs an evolution equation for the impulse strengtfis). Based on Eq. (4), the
equation of motion in the case of an inviscid fluid is

dm* Tk gk
T —(Vu) ' m* + f*,
wherefk is the force density atk. This equation clearly indicates that since the impuls
strengths are initially set to zero, it is the forces that introduce impulse into the flow.
The term ¥u) T mX is a stretching term which results in the growth of the impulse vect
m* whenever a material curve passing throughand perpendicular ton® undergoes
stretching. This is possible in incompressible flows as long as the fluid compresses ir
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direction ofmK as is the case, for example, at stagnation points. In terms of a numer
method, this growth in the magnitude f can lead to a loss of accuracy if the stretching
of material curves is too extensive (see [5]). For this reason it is not desirable to
impulse elements in the background space, i.e., detached from the immersed boun
where the vectors may grow due to stretching of material curves. The impulse elem
on a filament representing a swimming creature do not typically experience stretch
since the creature itself does not stretch. This is the motivation for using impulse alonc
immersed boundaries and vortices in free space.

For the purposes of modeling the diffusion (or possibly other reasons) a vorticity dis
bution covering a relevant domain is required. In a Lagrangian vortex method the vorti
is approximated by

N,
w(X) = hzz:wi fs(x — X1, (6)

i=1

whereh? is the element of area covered by each vortex Bids the total number of
vortices. The size of the domain, and hence the number of vortices, depends on the
time of the simulation and the diffusive properties of the fluid. In practice, the domain s
is determined by the distribution of significant vortices throughout the simulation. Sir
vorticity is constant along particle trajectories the vortex strengths do not change due t
advection. It is important to realize that the impulse can be viewed as additional vorti
in the form of a vortex dipole field. This interpretation will be explained in the next secti
since itis used in the diffusion process.

3.1. The Velocity Field

In the numerical method we must find an expression for the fluid velocity that can
evaluated at the particle locations in order to update their positions. The velocity gradi
are also needed in the evolution equation of the impulse strengths. The velocity of the
is the sum of the contributions from impulse and vorticity. The vorticity in Eq. (6) induc
a velocity given by

N,
hZZa)i Ks(x — X)), (7)

i=1

where the regularized vortex kern&l; = (3y, —dx) (G = f;), is a smooth approximation to
the singular kernel

(=Y2, y1)
K(y) = W

The velocity contribution from the impulse is obtained by finding the divergence-free
of the field in Eq. (5). This can be done exactly for radially symmetric cutoff functigns
The result (see [2]) may be written as

N;
ALY [ fs(r) + V(MK - VG5 ()], ®)
k=1
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where AG;(r) = — fs(r) andr = |x — xX|. The functionG; = (G % f5) is a regularized
Green'’s function which is smooth everywhere. It is found analytically for the chosen cut
function so that all smoothing functions in the velocity expression are known in advanc
the computation. The fluid velocity then is the sum of the two contributions,

N; N,
ue) = ALY [mfs(r) + V(mE - VGy)] +h* D o Ks(x — X). (9)
k=1 i=1

The first stage of the numerical method can now be written as a system of ordinary differel
equations for the vortex and impulse strengths and for the particle positions:

do'

EZO, i=1,...,Nu (10)
d k

d—”t‘ S (VO MR k=1 N, (11)
dx! , L

ot = u(x!), for all particles;. (12)

This system describes the evolution of an inviscid flow. Equation (11) requires the com
tation of the derivatives of the fluid velocity. These are found by direct differentiation of tl
expression in (9).

The method described so far is for the solution of the Euler equations using a combine
of vortices and impulse variables. The solution of the Navier—Stokes equations require
addition a model for the diffusion of vorticity. This is explained next.

4. THE DIFFUSION

The vortices, placed in a region surrounding the immersed boundaries, initially h
zero strength. Their strengths change only as the vorticity on the membranes diffuse
the neighboring region. This is accomplished via a deterministic diffusion method due
Fishelov [10], which was shown to be convergent in [4]. The method takes advantage o
blob representation of a general functiBrx, t) in terms of strengthk' (t) centered ax'

N
B(x, t) = hzz b (t) fs(x — x').

i=1

In order to approximate the LaplacianBfx, t) one can differentiate the expression abov
to obtain

N
AB(x. ) =h*> b (1) Afs(x — X).

i=1

The accuracy of this approximation depends on the properties of the cutoff furigtior
one can design such functions of arbitrarily high order. The error bound also depend
the bound of the flow map, which identifies the initial positié(D) to its position at time.
When particles that are initially placed on a regular grid become highly disorganized
error bounds are large. If one has a priori knowledge that the flow map and its derivat
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are bounded, a uniform error bound can be obtained. If such information is not avail:
it may be necessary to regrid the particles occasionally to keep errors from growin
intolerable levels. There are various algorithms that perform this regridding proced
while maintaining accuracy. We explain in the next section the algorithm used here.

In our numerical method the vorticity has two contributions: one from the vortices a
another from the impulse. By the definition of impulse, Eq. (3), one can see that the
ticity induced by it isV x m. Each impulse element contributes to the vorticity an amou
V f5(x — x) x mK, which is equivalent to a vortex dipole with a prescribed dipole mome
(see [5]). The total vorticity in the flow is given by

N, N;
wt(X) = @(X) + V x m(X) = hZZa)i fs(x —X') + AL Z V f5(x — x¥) x mK.
i=1 k=1

Extending the diffusion method to this function we write

N, Ni
Awor(X) = hZZwi Afs(x — X)) + AL Z VAfs(x — xK) x m¥
i=1 k=1

and adjust the vortex strengths within the diffusion step by

do' i
d—a: :vAa)tot(X'), i = 1,..., NU. (13)

The impulse strengths are left unchanged.
The numerical method is summarized by performing the following at each time step

1. Compute the forcel& on the immersed boundaries.
2. Update the particle positions and impulse strengths by solving Egs. (10)—(12).
3. Account for diffusion by solving Eq. (13).

One can see that although the presentation of the numerical method was made w
common cutoff functionfs; and common cutoff paramet&rthis is not necessary. Different
cutoffs can be selected for the vortices and the impulse and yet another one can be u:
the diffusion step. This may actually be preferable so that each of the procedures is
with the parameters that lead to optimal overall properties.

5. REGRIDDING PROCEDURE

If the particles (vortices) that cover a region in space become very disorganized \
respect to their initial positions, it is an indication that gradients of the flow map are lal
in parts of the domain. This in turn signals the possibility that errors in the particle meth
especially in the diffusion model, may be larger than one is willing to accept. In such ce
there is a need to lay down a new uniform mesh where the vorticity can be interpole
and the new grid points become the new vortices. In some of the numerical simulat
presented here regridding was performed using a procedure of Monaghan [17], whicl
briefly describe.
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Define forx > 0 the function

1-2x3(5—3x) for0<x <1
Wa(x) = { 2(1-x)(2-x)?  forl<x<2
0 for2<x

and notice thatV,(x) andW,(x) are continuous. léx are the values of a smooth function
at the points € R and if z are points on a uniform grid of sizge then the interpolation

N

> oWa(|x — 2|/ h)

k=1

approximateso (z) with errors of O(h®). The functionW,(x) has the properties that it
exactly reproduces polynomials of order up to 2 and if the poiptdready lie on a regular
grid of sizeh, the interpolated values aj are left unchanged. See [17, 18] for more detail:
and other choices.

6. NUMERICAL EXAMPLES

Two numerical examples are presented in this section. The first one is a test case des
to provide some insight into the properties of the method. It consists of tracking the moit
of a closed elastic membrane from a given initial shape to its circular equilibrium positic
The second example shows the application of the numerical method to the motion |
swimming organism.

6.1. A Closed Membrane

Consider an incompressible fluid of constant density occupying &Padnd a closed
elastic membrane separating the fluid into two disjoint regions. The membrane is assu
to be stretched beyond its rest position so that its equilibrium configuration is the unit cit
under tension. The initial position of the membrane is given in polar coordinates by

r@) =+1-—€2/2+ ecog29)

with ¢ =0.1. This represents a perturbation of the circle whose enclosed aredlise
force density at a poink (¢, t) on the boundary is taken to be proportional to the secor
derivative of the position vector with respect to the initial parametrization:

32X (L, 1)

fe,t)y=0 Y

Initially, this force density is approximately proportional to the membrane curvature i
is the arclength parameter. Rot 0, however, this may no longer be true. The membrar
motion is oscillatory with damping due to the viscosity. The fluid density was settd
and the viscosity to = 0.02. The stiffness constant in the force density was fixed-ar.
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The membrane was discretized with 256 particles placed initially at equal Euclide
distances. The force density at the poixitsvas approximated by

XKHL _ oyk | xk-1

£k =
7 A2

The annulug1/2)? < x? 4+ y? < (3/2)? was discretized with vortices placed initially on a
regular Cartesian grid of size= 0.05. The initial vortex and impulse strengths were set t
zero so that the forces developed along the membrane initiate the motion by introdu
impulse. The diffusion of the vorticity carried by the impulse elements add to the vor
strengths. In the results presented below, the vortex and impulse elements were regule
with the cutoff fs(r) =82 (r/8), wheref (r) = - (r* — 6r2 + 6)e~"* ands =0.15. The
regularization parameter for the diffusion step was set to 0.19. The system of ordir
differential equations was solved using a fifth-order Runge—Kutta method with time s
At =0.0127.

The position of the particles and contours of the vorticity in the flow are shown in Fig.
Although no symmetry was imposed, the motion remains symmetric and hence only
guadrant of the solution is shown. As the membrane oscillates from a left/right elongatio
a top/bottom elongation and back, the vorticity turns from positive to negative. The fig
shows four instances where the membrane is nearly circular on its way to an ellipt
shape. The distortion of the original vortex locations is also apparent though not sever
no regridding procedure was used in this example.

TIME = 0.30558 TIME = 0.81487

0 0.5 1 1.5 0 0.5 1 1.5

FIG. 1. \Vorticity contours on one quadrant of the solution with=0.02. Shown are the membrane, the
vortices, contours of positive vorticity (solid), and contours of negative vorticity (dashed) at various times.
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a
TIME

FIG. 2. Decay of the amplitude of the perturbed modeifes 0.005, 0.01, 0.015, and 0.02. The envelope in
all cases is given by exp{cvPt) with c=5.39 andp =0.835.

One can think of the solution in polar coordinates as
r@,t) =1+ eA(t) cog29) + O(e?) (14)

and plot the amplitudé\(t) of the perturbed mode. In [6] it was shown that in the absenc
of viscosity, it is the magnitude of the force that sets the time scale of the problem
constant factor multiplying the force density can be eliminated by rescaling time. Howe
the presence of viscosity introduces a second time scale which describes the decay ¢
amplitude of the perturbation. Figure 2 shows the evolution of the amplAgdeduring the
course of several oscillations of the membrane. The figure shows the solution for se\
values of the viscosity ranging from 0.005 to 0.02. One can see from the plots th:
variations inv produce only slight changes in the frequency of the oscillations but affe
visibly the envelope of their amplitude. As a way of measuring empirically the decay of
amplitude, a curve of the form exptvPt) was fitted to the data. The values-5.39 and
p=0.835 seem to fit all cases well.

A convergence experiment was conducted by computing the solution of the prob
using three discretizations of the membrane, each one smaller than the previous or
a factor of 45. The vortices were placed initially on a grid whose size was also reduc
by a factor of 45. The parameters mentioned before were used for the coarsest run.
discretizations used were 256, 320, and 400 particles on the membrane and 2428%),
3932 h=0.04), and 6140 = 0.032) vortices, respectively. The regularization parametel
of the vorticity and the diffusion were reduced at the slower (#45. This is consistent
with convergence theory for vortex methods [1, 11, 12] and diffusion methods [5,
The impulse variables, however, are used to discretize a line integral rather than a
dimensional integral. We found that best results were obtained by reducing the imp
regularization parameter proportionallyA¥. An estimate of the convergence rate can b
found from the results by assuming thé norm of the error is of the forr@h'. Then one
can compute the error ratio

4

& = -

C(sh) —C(zh)"

ch —C(¢n) (5)'

and the rate =log(s;)/log(5/4). Table | shows the error ratio and estimated rate ¢
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TABLE |
Error Ratios between Successive Solutions
and Corresponding Convergence Rates

Time &r I(I)t;g(g;
t=0.51 1.4331 1.61
t=1.12 1.3916 1.48
t=1.94 1.6119 2.14
t=2.65 1.3836 1.46

convergence for the membrane location at selected times. The times were chosen
the membranes were nearly circular during the first two periods of oscillation. When
membranes reach their maximum eccentricity, all three solutions tend to coincide, maki
difficult to computes, accurately. The table shows convergence rates between 1 and 2.
may be an indication that the various terms that contribute to the error are not sufficie
balanced to give a uniform rate or that not all error terms produce the same rate. The re
clearly show that the method converges with at least first order rate. Figure 3 shows
numerator and denominator of the expressiorfat timet = 1.94 as an illustration of the
relative error magnitudes.

6.2. A Swimming Creature

The second example is that of a fast-swimming creature via undulatory motion. Typice
a wave is observed to move through the body of the creature from head to tail with la
amplitude at the tail (see [14, p. 14]). This results in an overall forward motion. As this pa
is not concerned with the physiological mechanism that leads from muscle contractio
the development of such a wave, we select a sinusoidal wave to act as the target shape
creature. However, the shape itself is notimposed, only its curvature. This defines the s
of the creature relative to itself but the exact position in space or orientation with respe
a fixed line are not prescribed and the creature is allowed to experience solid-body rot:
and translation. In this example we follow the description of forces used in [8, 9].

X 10‘3 TIME =1.9353

ANGLE o

FIG. 3. Radial difference between successive solutions at tisaé.94. The dashed line is the numerator of
& and the solid line is the denominator.
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Let s be the arclength parameter<G < L, with s=0 corresponding to the tail of the
creature and= L to the head. Ley(s, t) be given by

L-s

y(s’ t) =€ (T) Sin(KS — Qt)

andx(s, t) by (dx/ds)? 4 (dy/ds)? = 1. Now let be a unit vector normal to this curve and
letc(s, t) beits curvature. This represents the target curvature of the swimming creature.
numerical parameters common to all runs bre 0.2, ¢ =0.02,x =27 /L, andQ2 =8r.
The Reynolds number based on the wavelength is calculated as

Q

V2’

R=

During the computation of the motion, forces are introduced to keep the creature’s shaj
close as possible to the target shape. Itis convenient to define a type of energy as a fur
of the immersed boundary discretization. Given such energy functiorEgathe forces
can be defined by

fl = —V,i Eq.

The discrete energy function is formed so that as the discretization is redtigd@ds a
well-defined limit. This is done by defining the continuous energy function

L L
Ex,t) = Cl/ [||dx/ds| — 1] ds+ Cz/ [(d®x/ds? - A) — c(s, 1)]?ds
0 0

which increases from zero as the actual shape of the creature departs from its targ
discrete version of this energy is

N -1
Eq = Cias ) [|(¢F —x/As| - 112
k=1
Ni—1
+CyAS Z [ — x4 x (¢ — x* 1)) /As® — (s, 1)]%.
k=2

The term containing the cross product is chosen as an approximation to the curvatul
the computed shape. The consta@isandC, are chosen to be large to ensure a shar
reasonably close to the target. The values used hef@are10 andC, = 10P.

The organism was discretized with 128 particles sost 1.575x 103, The vortices
were placed on a uniform rectangular grid of slze-4.6875x 102 covering an area
of 0.0545 squared units, requiring 2480 vortices. The cutoff parameter was chosen t
§ =0.01342 for both the vorticity and the impulse. The cutoff used was the radial functi
fs(r)=58"21(r/5), wheref (r) = X (4e™"" — e /2.

The forces in this computation may be extremely large due to the high stiffness requ
in the energy function. This imposes a time-step limitation that can be severe (with a g
based method this limitation is much more severe than a CFL condition), which ma
it practical to treat the force calculation at least semi-implicitly [8, 13, 15]. The resu
below, however, were obtained using a 5th-order Runge—Kutta method with a time ste
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0.18 0.18 0.18
01 015 02 02 03 035 01 016 02 025 03 035 01 015 02 025 03 035
024 024 024
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" \/— (b) 02 (f) 02 \\_/—\ M)
0.18 0.18 0.18
01 015 02 025 03 035 01 015 02 025 03 035 01 015 02 026 03 03
024 024 024
022 022 022
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N —— @O @]~ ®
0.18 0.18 018
o1 015 02 025 03 035 01 015 02 025 03 035 01 015 02 025 03 035
024 024 024
0.22 (d) 022 (h) 0.22 (])
02 02 02
0.18 018 0.18
01 015 02 025 03 035 o1 o015 02 025 03 035 01 015 02 025 03 035

FIG.4. Swimming motion over three periods. Frames showtn=a0, 0.05, 0.125, 0.2, 0.275, 0.35, 0.4, 0.475,
0.55, 0.625, 0.7, and 0.75. The viscosity was 2 x 107,

At =6.25x 107°, The viscosity was set to= 2 x 10~4, which gives a Reynolds number
of aboutR=127. For comparison we mention that the time step used in [9] for a simil
problem, but with an implicit method, was smaller than the one used here, even wher
Reynolds number in [9] was about 50 times smaller.

Frames (a)—(I) of Fig. 4 show the creature from 0 tot = 0.75, which corresponds to
three periods of the target wave. The creature swims to the right at a rate of about 6.5
its body length per wave period.

The forces are designed to keep contiguous particles describing the organism at a
ration of approximatehAs throughout the motion. Figure 5 shows the computed length
the creature during the simulation. The original length of 0.2 is maintained within a relat
error of less than 0.1%.

Due to the nature of the forces, the creature itself is a very strong vortex sheet. FigL
shows contours of vorticity at four instants during the motion. Solid contours are of posi
vorticity and dashed contours are of negative vorticity. A distinctive feature is that the regi
of vorticity along the organism alternate in sign according to its curvature and these reg
slide down the body of the creature until they reach the tail and are shed behind it. -
shedding of vorticity is not observed at low Reynolds numbers. Flow circulation regic
matching these vortex patterns have been observed experimentally [14, p. 57]. FigL
shows the velocity field at two times when the wave through the body of the creature i
opposite phases.
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FIG. 5. Length of the swimming creature during three periods of the computation.
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7. DISCUSSION AND CONCLUSIONS

A method designed to model the interaction of high Reynolds number flows with flexil
membranes has been presented. The method uses a combination of vortices and in
elements. Numerical experiments indicate that the method converges at least at a |
rate. The Lagrangian nature of the method allows the modeling of slightly viscous flu
and avoids instabilities associated with grid methods. These are especially severe
very stiff forces are combined with low viscosity [23]. There has been relatively little wo
done on the development of numerical methods specifically designed for a high Reyn
number regime, although many applications fall into this category. In the vortex/impu
method the time step is restricted by the stiffness of the system of ordinary differer
equations, but is unaffected by increasingly large Reynolds numbers. The stiffness o
problem has been addressed in various contexts. Proposed approaches designed to ir
the time step include implicit or semi-implicit treatment of the forces [8, 13, 15] and otf
ways of removing the stiffness [24]. These have not been used here but are being exp
for future implementations of the method.

In high Reynolds number flows, the vorticity that affects the fluid motion significantly
restricted to a smaller region near the immersed boundaries. In order to resolve these b
ary layers numerically, the vortices must be packed more closely within this region. The
evaluation of the velocity is necessary once the number of particles becomes large en
This was not done in the present paper for the modest number of particles used. Since
method presented here there are interactions between different types of particles, the
several potentials that will have to be evaluated using fast algorithms. They are the velc
induced by the vortices, Eq. (7), the velocity induced by the impulse, Eq. (8), the derivati
of these velocity contributions since they are used to update the impulse strengths, ar
potential associated with the diffusion. Of these, only the vortex potential and the diffus
kernel have been previously addressed. Work in this direction is needed.
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