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Abstract. We give a simple discussion of regression, multilinear regression and diagnositic anaylsis using
the EXCEL SUMMARY OUTPUT.

1. REGRESSION IN A NUTSHELL

Suppose that we have an algebra of unknowns, denoted A, that we have a subset K of A consisting of
unknowns that we feel we know a lot about or can reasonably determine or easily observe, and suppose that
Y is an unknown which we are interested in determining. If we are given the values of the unknowns in
K, can we use that information to help us guess the value of Y ? For instance, if I am trying to guess your
age, might some other information be of help? Given this extra information, how do we make the best use
of it? The idea in Regression is to try to choose the unknown in K which is ”closest” to Y and use its
value as a guess for the value of Y. If YR in K is the chosen unknown to use in place of Y, here, we call YR a
Regression Model for Y. We call the difference Y − YR the Error or Residual and denote it by YE , so

Y = YR + YE .

The next question here is how to choose YR among all the unknowns in K? The simplest criteria is to
minimize the expected squared error E(Y 2

E), which is called the Method of Least Squares.

2. INTRODUCTION TO BASICS OF REGRESSION

In more detail, the basic idea of Regression is to attempt to predict the value of an unknown Y from
knowledge of the values of unkowns X1, X2, X3, ..., Xk. We should then look for a function of k real variables,
say f, so that knowing xj is the value of the unknown Xj for each j ≤ k would then lead us to guess the
value y for the unknown Y, where the number y is calculated using the function f as

y = f(x1, x2, x3, ..., xk).

In this setting, we refer to Y as the Dependent or Objective Variable and each Xj is called an
Independent or Explanatory Variable.

Of course the first question here is naturally: How do we choose the function f?

In many cases, we have some experience with the unknowns which may dictate at least a specific form for
the function f. The function f would then be built with various algebraic expressions involving the symbols
x1, x2, x3, ..., xk, as well as other parameters (numbers to be chosen), say β0, β1, β2, β3, ..., βl. We then really
have a function f of k + l variables x1, ..., xk, β0, β1, ..., βl. This means our guess y for the value of Y is

y = f(x1, x2, x3, ..., xk, β0, β1, β2, ..., βl).

In effect, we are really forming the new unknown YR, called the Regression Model where

YR = f(X1, X2, X3, ..., Xk, β0, β1, β2, ..., βl),
1
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and all the various possible choices for the parameters β0, β1, β2, β3, ..., βl lead to all the various possible
regression models forming the set K of unknowns which are the candidates for the best regression model.

Our next problem is then to try and choose the parameter values β0, β1, β2, ..., βl so as to ”minimize” the
error = Y − y. At least we would like to have for any x1, x2, ..., xk, that

y = E(Y |X1 = x1, X2 = x2, X3 = x3, ..., Xk = xk).

But

E(YR|X1 = x1, X2 = x2, X3 = x3, ..., Xk = xk) = f(x1, x2, x3, ..., xk, β0, β1, β2, ..., βl) = y,

so this means that we need

E(YR) = E(Y ).

But, with a little more careful thought here, we realize the sense in which this error is to be minimized
involves a choice as to how to define a ”distance” between Y and YR. The simplest most obvious choice here
is to use the Expected Squared Error, so we would choose the parameters β0, β1, ..., βl so as to minimize

σ2
e = E([Y − YR]2).

Let us denote the error in our model by YE , that is,

YE = Y − YR,
so

Y = YR + YE ,

and

if E(YR) = E(Y ), then E(YE) = 0 and σ2
e = E(Y 2

E).

Consider now, that if we notice some correlation of YE and YR, we would seek to include that correlated
part of the error somehow with our model, so it is fairly clear that an optimal regression model would have
YE and YR uncorrelated. This means that

σ2
Y = σ2

e + σ2
YR
.

In practice, we may not know enough about the unknowns to be able to directly calculate σe, but as
with anything involving expectation our recourse is to use sample data from a sample of some reasonable
size, denoted n. In this case, we have our unknowns actually being replaced by unknowns on a sample space
S of n equally likely outcomes, so the set of all unknowns on this sample space is denoted Rn, as it is an
n−dimensional space. Notice that the result of taking a sample of observations of Y is a list of n numerical
values, and the space of such lists is n−dimensional. In effect, the sampling replaces Y by a list y and each
of the unknowns Xj is replaced by a list xj , which results in YR being replaced by a list of numbers yR and
the process of minimizing the expected squared error becomes replaced by the problem of minimizing the

squared distance between y and yR in Rn. Solving this should result in specific values β̂0, β̂1, ..., β̂l, which for
a large sample size n we would expect should be reasonably close to the actual optimal values β0, β1, β2, ..., βl.
We then use the sample regression model

ŶR = f(X1, X2, X3, ..., Xk, β̂0, β̂1, β̂2, β̂3, ..., β̂l),

as that is certainly the best we can do based only on the data.
The notational convention used here is very common in statistics, that is if ξ is a population parameter,

then when we estimate it using sample data, its estimate would be denoted ξ̂. For instance, if we use µY
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to denote the expected value of Y, then the sample mean ȳ may also be denoted by µ̂Y , and the sample
variance s2

y may also be denoted by σ̂2
Y , since s2

y is an unbiased estimator of σ2
Y .

3. BASICS OF MULTILINEAR REGRESSION

At this point, we have decided that the regression model is to be evaluated by the criteria of minimizing
the expected squared error, so finally, we must actually make the choice of the form of f. A particularly simple
choice is called the Multilinear Model formed by choosing f to be the simple multilinear function, with
k = l, and

y = f(x1, x2, x3, ..., xk, β0, β1, β2, β3, ..., βk) = β0 + β1x1 + β2x2 + β3x3 + ...+ βkxk.

This means that our regression model YR is simply

YR = β0 + β1X1 + β2X2 + β3X3 + ...+ βkXk.

In this case we can see that as the constants β0, β1, β2, ..., βk vary over Rk+1, that the resulting possible
regression models vary throughout an m dimensional linear space, K, where dim(K) = m ≤ k + 1, with
the most likely situation being m = k + 1. This means that the optimal choice for the regression model is
the point of this space closest to Y. This is found by simply dropping a perpendicular to the linear space
of possible models, and this means that for the resulting optimal regression model, the error or residual YE
is perpendicular to K. Since the linear space K of possible models includes the constants, as well as the
regression model YR, in particular, this certainly guarantees that YE and YR are perpendicular, and that
E(YE) = 0, so

E(Y ) = E(YR), and σ2
Y = σ2

e + σ2
YR
.

Likewise, regarding the sample data, in Rn+1, the same would apply, namely, the linear space of possible
sample regression models vary over k+1 dimensions inside Rn+1, and likewise the optimal sample regression
model is chosen so that yR and yE are perpendicular in Rn+1 which guarantees that y and yR have the
same sample mean and that the corresponding sample errors called Residuals have sample mean zero.

We should notice here the significance of the coefficient parameters β0, β1, β2, β3, ..., βk. In the expression

y = β0 + β1x1 + β2x2 + β3x3 + ...+ βkxk,

If we set x1 = x2 = x3 = ... = xk = 0, then the resulting value of y is y = β0, and we call β0 the Regression
Intercept. On the other hand, for any x1, x2, x3, ..., xk if a particular variable, say xj is increased by one
unit, then the value of y increases by βj . Thus, βj is the Rate of change of y with respect to change in xj ,
or the increase in y per unit increase in xj .

Given that the methods of linear algebra can be effectively used to calculate the regression model YR,
our next job is to assess the utility of the regression model. We define the Multilinear Correlation as
the correlation of Y and YR, which we denote by ρ. The Coefficient of Determination is the square of
the multilinear correlation, ρ2. Think now in terms of simple linear regression where we have only a single
explanatory variable which is YR itself. We know that

σ2
YR

= ρ2σ2
Y ,

so the equation

σ2
Y = σ2

YR
+ σ2

e

gives

σ2
Y = ρ2σ2

Y + σ2
e

which we can easily solve for ρ2 giving
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ρ2 = 1− σ2
e

σ2
Y

.

Returning now to the sample data and the resulting estimated regression model ŶR, we see that we would
estimate σ2

Y as the sample variance s2
y and we also need to estimate σ2

e from the sample data. To get an
idea how to proceed here, let us first assume that we are dealing with a population of size N and that our
sample in fact consists of the whole population, so that n = N. Then, the variance of the residual is simply
the sum of the squared errors divided by N. We denote the sum of the squared errors for the sample data
by SSE. We denote the sum of the squared deviations of the sample data y of values of Y from the sample
mean ȳ by SSY, so we likewise denote by SSR the sum of the squared deviations of the sample regression
model from the sample mean. Thus,

σ2
Y =

SSY

N
, σ2

YR
=
SSR

N
, and σ2

e =
SSE

N
, in case n = N.

and therefore the coefficient of determination is, after cancelling factors of N,

ρ2 = 1− SSE

SSY
.

We can also note here that as σ2
Y = σ2

YR
+ σ2

e , multiplying by N gives

SSY = SSR+ SSE.

But this last equation must also be true even if n < N, since the result applies to the case where the sample
of size n is taken as the whole population-anything true for any whole population must be true for any
sample treated as a whole population, and therefore also, for any sample data,

1− SSE

SSY
=
SSY − SSE

SSY
=
SSR

SSY
.

However, for samples of size n < N, we have

s2
y =

SSY

n− 1
best estimates σ2

Y ,

because the number of Degrees of Freedom in the SSY is n − 1. Likewise, the degrees of freedom in
SSE can be shown to be n− (k + 1) because the computation of the SSE involves all the k + 1 estimated
regression coefficients and each replacement of a true regression coefficient by a sample estimate forces the
loss of one degree of freedom. Thus we write

df(SSY ) = n− 1 and df(SSE) = n− (k + 1).

Since the sample regression model and the sample residuals are perpendicular and sum to the sample data
for the objective variable, it follows that

df(SSY ) = df(SSR) + df(SSE), and therefore df(SSR) = k,

that is, the SSR has degrees of freedom equal to the number of explanatory variables. Thus our best
estimates from the sample data are

σ̂2
Y =

SSY

df(SSY )
, σ̂2

R =
SSR

df(SSR)
, and σ̂2

e =
SSE

df(SSE)
.

In multilinear regression and in other statistical applications involving the analysis of variance (ANOVA), we
must deal with various sums of squares, as here we have three different sums of squares (SS), and generally,
each will have its associated degrees of freedom. The variance estimate is then obtained by dividing the SS
by its degrees of freedom, the result being termed the mean sum of squares, denoted MS. For instance, we
would write
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MSY =
SSY

df(SSY )
, MSR =

SSR

df(SSR)
, and MSE =

SSE

df(SSE)
.

With this notation, commonly used in computer readouts for ANOVA, then

σ̂2
Y = MSY, σ̂2

R = MSR, and σ̂2
e = MSE.

It is customary to denote the sample estimate of ρ in multlinear regression by R(adjusted), that is, the
estimate of the coefficient of determination ρ2 from the data is

ρ̂2 = R2(adjusted) = 1− MSE

MSY
so the correlation estimate is ρ̂ = R(adjusted),

whereas the sloppier estimate of the coefficient of determination given by

R2 =
SSR

SSY
is the ”unadjusted” R2, which is in effect treating the sample as if it is the whole population. Thus, for very
large samples, the adjusted R-square is usually very close to the R-square, so for large samples, it is enough
to examine R-square as the estimate of the true coefficient of determination, ρ2.

Keep in mind that the adjusted R2 is the estimate of the coefficient of determination from the sample
data which tells us the fraction of variation in Y that is accounted for with the regression model ŶR, and this
is a number between 0 and 1. Therefore, we want the coefficient of determination and likewise the adjusted
R2 to be a number near 1, that is the closer the coefficient of determination is to 1, the more variation in
Y is being captured by the variation in the regression model, and therefore the better the regression model.
Likewise, the unadjusted R2 is hopefully near 1. Of course, ”near” 1 in certain situations might be as low
as only 0.3, the specifics of the application really dictate what is needed here.

But, beyond the coefficient of determination, we also have the regression coefficient estimates β̂0, β̂1, ..., β̂k,
which are themselves actually functions of the sample data, and therefore are themselves actually random

variables which can be standardized. Of course the variance of β̂j can only be estimated from the sample

data, and that estimate actually involves all the estimated values β̂0, β̂1, ..., β̂k, which means the appropriate
sum of squares also has n− (k + 1) degrees of freedom. That is, for normally distributed unknowns,

s2
β̂j

σ2
β̂j

has the χ2
d, distribution for d = n− (k + 1) degrees of freedom.

The result is that given a hypothetical value bj for βj , then β̂j itself can be standardized using the sample
data to have the student−t distribution for n− (k + 1) degrees of freedom using the formula

tdata =
β̂j − bj
sβ̂j

, df = n− (k + 1).

Thus to form a confidence interval for βj with confidence = C, first find the proper t−critical value for this
level of confidence, denoted tC and n − (k + 1) degrees of freedom, and then the margin of error, ME is
simply

ME = [tC ]sβ̂j

which results in the confidence interval

βj = β̂j ±ME = β̂j ± [tC ]sβ̂j
.

Likewise, to perform the two-tail hypothesis test

H0 : βj = bj versus Ha : βj 6= bj ,
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we have the P-Value of the data is simply

P-Value = 2P (t ≥ |tdata| Given df = n− (k + 1)),

and we can easily make the obvious modifications here to perform one-tail tests.

4. EXCEL SUMMARY OUTPUT FOR MULTILINEAR REGRESSION

When performing multilinear regression using EXCEL, we begin by labeling the columns with the names
of the various variables in cells of an upper row, with the dependent variable in the left most column. Then
simply put the data for each variable in the column beginning with the cell underneath the variable name.
Make sure each row contains the data for a single member of the population. Then clicking the DATA tab,
if the Data Analysis Toolpak has been added on to the EXCEL software package, then there will appear a
tab button labelled DATA ANALYSIS. Clicking the DATA ANALYSIS button then brings up a drop-down
menu from which you highlight and click on REGRESSION. This brings up a dialog box in which to enter
the data and make choices for the output, and the first time you do this, just check all the boxes. That way
you get everything and you can experiment to see what you can use. To enter the data, begin by clicking
the button next to the space marked DEPENDENT VARIABLE and then highlight the dependent variable
column INCLUDING THE LABEL for the dependent variable. Then for the INDEPENDENT VARIABLE
highlight the whole rectangle of cells including the column headings for all columns of explanatory variables.
Then just hit the enter button and the EXCEL software will produce a new worksheet. You will find on this
worksheet a table labeled SUMMARY OUTPUT and underneath a table labelled ANOVA and underneath
that a table labelled RESIDUAL OUTPUT. The first thing to notice at the top of the SUMMARY OUTPUT
table is MULTIPLE R which is the value of R computed from the data, and underneath appear R-square and
Adjusted R-square, the standard error, and Observations (=n, the sample size). Next in the table labelled
ANOVA which is an acronym for ANALYSIS OF VARIANCE that is ANalysis Of VAriance, appears the
more detailed results used in computing R and R2, namely, the column giving the degrees of freedom for
the Regression, the Residual, and the Total, the SS or Sum of Squares of each, and then the MS which is
SS/df. The next column has the F−ratio

F =
MSR

MSE
.

Clearly we want this F−ratio to be large, as ideally, MSE is near zero and MSR is close to σ2
Y , and SSR

is nearly all of SSY. On the other hand, for a regression model with little value most of the variation of Y
will be in the residuals that is the errors, so MSR will be small and the denominator MSE will be large
making the F−ratio have a value near zero. The F−statistic can be looked up in standard tables to see how
good the model is. However, the last column of the ANOVA table has the significance F , so you do not even
need the F−statistical table. Thus, the Significance F in the table is actually the significance of the data or
equivalently, the P-Value of the data as evidence against the null hypothesis that all regression coefficients
are actually zero.

Underneath the table with the degrees of freedom is another table for the Regression Coefficients which
has no label but its rows to the left are labelled with Intercept followed by the names of the explanatory
variables used. The next column then has the sample values for all the regression coefficients followed by
the column giving the standard error for each regression coefficient followed by the t−statistic using the
hypothetical value zero for the coefficient followed by the P-Value for the null hypothesis that the coefficient
is actually zero, followed by lower and upper boundaries for the 95 percent confidence interval for the true
value of the regression coefficient. Thus to find the margin of error, ME for a confidence interval with
confidence C, we simply look up the appropriate t−critical value just as for any other confidence interval,
using df = n− (k + 1), and then

ME = t · s,
where s is the standard error in the SUMMARY OUTPUT table for the given regression coefficient.
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Regarding the P-Values in the regression coefficient table, since the null hypothesis is that the coefficient
is zero, any time we see a P-Value above 0.05, we should be suspicious that the particular coefficient might
actually be zero so that the particular variable is actually not explaining any of the variation in the dependent
variable. Such variables with high P-Value are good candidates for being eliminated from the model.

Finally, the last table of the regression output is the table labelled RESIDUAL OUTPUT. The first column
simply lists the numbers 1 through n, and the second column actually gives the values of the dependent
variable predicted by the regression model followed by the column of residuals, that is, the differences between
the values predicted by the model and the values of the dependent variable actually in the data (the left
most column in the original data). Since the expected residual is zero and the sample mean residual is zero,
it follows that the standard residual is simply the residual divided by the square root of MSE:

tj =
(yj − ŷj)√
MSE

, j ≤ n.

However, the values reported by the EXCEL SUMMARY OUTPUT compute this using n− 1 degrees of
freedom which is incorrect, as the correct number of degrees of freedom is n− (k+ 1). For large samples this
does not make a big difference, but we need to keep in mind that this part of the summary output is not
correct.

5. SUMMARY OUTPUTS FOR MULTILINEAR REGRESSION

Besides EXCEL, there are a number of computer software packages and online tools for doing statistical
analysis ranging from simple tools that are free online to industry standard packages such as SAS and S.
In case of doing multilinear regression quite often you are simply faced with understanding the summary
output as a real statistician has done most of the work of handling the actual data electronically. These
summary outputs all look a little different but have a common general form. Usually the first thing near
the beginning will be the values some or all of R,R2, and R2

a. You will see ”R-square” or”R-sq” for R2 and
”R-square adjusted” or ”R-sq-adj” or any other obvious reference for R2

a. That is the first thing to look for.
You want these near 1.

Next you will probably see the value of n indicated nearby as ”sample size” maybe or some obvious
reference to the size of the sample. The various sums of squares are usually given in a table similar in form
to that for the EXCEL ANOVA. That is you will see a row for the errors which might be indicated by the
word errors or the word residual(s), a row for the model which might be indicated by the word model or the
word regression, and usually last, a row for the objective, typically indicated as ”total”. Across the top of
such a small table you will usually see column labels, SS for sum of squares, maybe DF for degrees of freedom
or some other obvious abbreviation for degrees of freedom, a column labeled MS for mean sum of squares, a
column labelled F, and a column labelled p-value or maybe simply ”p”. In the row for the model under the
SS appears the sum of squared deviations the model makes from the sample mean of the objective variable
data, whereas in the row for the errors under SS appears the sum of squared errors the model makes from
the actual sample values of the objective variable, and then for the row indicated by total you will notice
the sum of the other two rows, as we know SSR+ SSE = SST. Likewise, in the column giving the degrees
of freedom, you will notice the value in the model row gives simply the number of predictor variables, as we
know that is its number of degrees of freedom. Then for the degrees of freedom in the error row you will see
the difference between the total degrees of freedom, n− 1, which is in the row for the totals, as we know the
degrees of freedom for the errors plus the number of degrees of freedom for the model is the total number
of degrees of freedom. Then under the MS column you will typically see the SS divided by the DF for each
row giving the corresponding mean sum of squares. The MST is often left out because the main objective
is usually to compute F which is MSR/MSE. So the column labelled F usually simply has that quotient
reported giving the value of the F−statistic.

Now, keep in mind, that if the model is totally meaningless, the data will still lead to a regression model,
so we should first look to test this overall null hypothesis that the model is of no help. Well, if we assume the
model is no help, then the scattering of values of the model is just more errors, so the SSR and SSE would
have the same expected values and thus calling this σ2

e , on dividing through the equation SSR+SSE = SST
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by σ2
e we get a sum of chi-squares giving the chi-square for the total, and thus the MSR/MSE under the

null hypothesis does in fact have the F (dR, dE)−distribution. Here I use dE for the degrees of freedom in
SSE and dR for the degrees of freedom in SSR. Of course, then dR is simply the number of explanatory
variables. Therefore, under the null hypothesis that the model is useless, both numerator and denominator
of the F− ratio

F =
MSR

MSE
are estimating the same σ2

e and so this ratio should end up near 1 indicating a useless model. On the other
hand, for a good model, the MSR should be large capturing the σ2

Y and the denominator should be near σ2
e

which for a good model would be small leading to a large value for F. Thus the overall p-value of the model
as indicated by the data is

P (F (dR, dE) > F )

which you could look up in a table for the F− distribution, but this p-value is typically reported in the last
column for your convenience.

Of course, in any model, some of the explanatory variables may individually be very good while others are
relatively useless, so in addition to the tabulated sums of squares and the F−ratio there will be a table where
the rows are labelled by the various explanatory variables, followed by a column of their coefficient values
in the model followed by a column of standard errors for those coefficients computed from the data, and as
in the EXCEL summary output, typically the p-value for the null hypothesis that the indicated coefficient
could in fact simply be zero. Thus, whenever we see a p-value above our working level of significance, we are
well to consider eliminating that ”explanatory” variable as it may be actually useless in the model. But of
course, if we do that, then the data must have that column in the data eliminated and the whole multilinear
regression computation done over again in order to get the proper coefficient calculations for the remaining
explanatory variables and see the new p-values. Thus eliminating any explanatory variables leads to redoing
the regression calculation and getting new regression coefficients for the remaining explanatory variables.

Now, once the model is evaluated statistically as described here, of course the main use of the model is
to make actual predictions of the objective variable when the explanatory variables are given specific values,
so this you should try doing. You will notice that in the outputs the values of coefficients are usually given
to many decimal places. This is because the regression computations involve calculation related to inversion
which become very sensitive to slight changes. For instance you can use a calculator to see that slight changes
in the values of MSR and MSE can lead to major variations in the F−ratio.

Some summary outputs many not include the adjusted R-square, but only the value of R2. In fact, the
three numbers R2, R2

a, and F are related and it might be useful to note some of the relations which are
following. For degrees of freedom,

dR = k, dT = n− 1, dE = dT − dR = n− k − 1, dT = dR + dE .

Set D =
dE
dR

. Then
dT
dR

= 1 +D and
dT
dE .

= 1 +D−1.

SST = SSR+ SSE, SSR = SST − SSE,

R2 =
SSR

SST
= 1− SSE

SST
, so 1−R2 =

SSE

SST
, and

SSR

SSE
=

R2

1−R2
.

R2
a = 1− MSE

MST
, so 1−R2

a =
MSE

MST
=
dT
dE
· SSE
SST

= (1 +D−1)(1−R2).

Also,
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dT · (1−R2) =
SSE

MST
= dE ·

MSE

MST
= dE · (1−R2

a),

so

dT · (1−R2) = dE · (1−R2
a),

and therefore,

R2
a = 1− dT

dE
· (1−R2) =

dT ·R2 − dR
dE

.

Likewise,

1−R2 =
dE
dT
· (1−R2

a) and R2 = 1− dE
dT
· (1−R2

a) =
dR + dE ·R2

a

dT
.

Therefore,

R2

1−R2
=
dR + dE ·R2

a

dE · (1−R2
a)

=
1 +DR2

a

D(1−R2
a)
.

Now, we have

F =
MSR

MSE
= D · SSR

SSE
= D · R2

1−R2
=

1 +DR2
a

(1−R2
a)
.

When we solve the equation for R2 in terms of F, we easily find

R2 =
F

D + F
,

whereas when we solve for R2
a in terms of F, we find

R2
a =

F − 1

D + F
,

which means in particular that

R2 −R2
a = (D + F )−1 and F = (R2 −R2

a)−1 −D.
It should be noted that because of the inversions here that these last four equations though simple are

very sensitive to inputs, especially when R2 and R2
a are nearly the same as happens in examples where both

are nearly 1.
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